Christoforos Anagnostopoulos

Follow

Generating author description...

All published works
Action Title Year Authors
+ Notes on the H-measure of classifier performance 2021 David J. Hand
Christoforos Anagnostopoulos
+ PDF Chat Adaptive regularization for Lasso models in the context of nonstationary data streams 2018 Ricardo Pio Monti
Christoforos Anagnostopoulos
Giovanni Montana
+ Learning population and subject-specific brain connectivity networks via mixed neighborhood selection 2017 Ricardo Pio Monti
Christoforos Anagnostopoulos
Giovanni Montana
+ A framework for adaptive regularization in streaming Lasso models. 2016 Ricardo Pio Monti
Christoforos Anagnostopoulos
Giovanni Montana
+ Adaptive regularization for Lasso models in the context of non-stationary data streams 2016 Ricardo Pio Monti
Christoforos Anagnostopoulos
Giovanni Montana
+ PDF Chat Towards tailoring non-invasive brain stimulation using real-time fMRI and Bayesian optimization 2016 Romy Lorenz
Ricardo Pio Monti
Adam Hampshire
Yury Koush
Christoforos Anagnostopoulos
A. Aldo Faisal
David Sharp
Giovanni Montana
Robert Leech
Inês R. Violante
+ PDF Chat Text-mining the neurosynth corpus using deep boltzmann machines 2016 Ricardo Pio Monti
Romy Lorenz
Robert Leech
Christoforos Anagnostopoulos
Giovanni Montana
+ Text-mining the NeuroSynth corpus using Deep Boltzmann Machines 2016 Ricardo Pio Monti
Romy Lorenz
Robert Leech
Christoforos Anagnostopoulos
Giovanni Montana
+ The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI 2016 Romy Lorenz
Ricardo Pio Monti
Inês R. Violante
Christoforos Anagnostopoulos
A. Aldo Faisal
Giovanni Montana
Robert Leech
+ Adaptive regularization for Lasso models in the context of non-stationary data streams 2016 Ricardo Pio Monti
Christoforos Anagnostopoulos
Giovanni Montana
+ Text-mining the NeuroSynth corpus using Deep Boltzmann Machines 2016 Ricardo Pio Monti
Romy Lorenz
Robert Leech
Christoforos Anagnostopoulos
Giovanni Montana
+ Learning population and subject-specific brain connectivity networks via Mixed Neighborhood Selection 2015 Ricardo Pio Monti
Christoforos Anagnostopoulos
Giovanni Montana
+ Graph embeddings of dynamic functional connectivity reveal discriminative patterns of task engagement in HCP data 2015 Ricardo Pio Monti
Romy Lorenz
Peter J. Hellyer
Robert Leech
Christoforos Anagnostopoulos
Giovanni Montana
+ PDF Chat Graph Embeddings of Dynamic Functional Connectivity Reveal Discriminative Patterns of Task Engagement in HCP Data 2015 Ricardo Pio Monti
Romy Lorenz
Peter J. Hellyer
Robert Leech
Christoforos Anagnostopoulos
Giovanni Montana
+ Measuring the functional connectome "on-the-fly": towards a new control signal for fMRI-based brain-computer interfaces 2015 Ricardo Pio Monti
Romy Lorenz
Christoforos Anagnostopoulos
Robert Leech
Giovanni Montana
+ Estimating Optimal Active Learning via Model Retraining Improvement 2015 Lewis P. G. Evans
Niall M. Adams
Christoforos Anagnostopoulos
+ Streaming regularization parameter selection via stochastic gradient descent 2015 Ricardo Pio Monti
Romy Lorenz
Robert Leech
Christoforos Anagnostopoulos
Giovanni Montana
+ Stopping criteria for boosting automatic experimental design using real-time fMRI with Bayesian optimization 2015 Romy Lorenz
Ricardo Pio Monti
Inês R. Violante
A. Aldo Faisal
Christoforos Anagnostopoulos
Robert Leech
Giovanni Montana
+ Graph embeddings of dynamic functional connectivity reveal discriminative patterns of task engagement in HCP data 2015 Ricardo Pio Monti
Romy Lorenz
Peter W. Hellyer
Robert Leech
Christoforos Anagnostopoulos
Giovanni Montana
+ Learning population and subject-specific brain connectivity networks via Mixed Neighborhood Selection 2015 Ricardo Pio Monti
Christoforos Anagnostopoulos
Giovanni Montana
+ Estimating Optimal Active Learning via Model Retraining Improvement 2015 Lewis P. G. Evans
Niall M. Adams
Christoforos Anagnostopoulos
+ Measuring the functional connectome "on-the-fly": towards a new control signal for fMRI-based brain-computer interfaces 2015 Ricardo Pio Monti
Romy Lorenz
Christoforos Anagnostopoulos
Robert Leech
Giovanni Montana
+ PDF Chat Estimating time-varying brain connectivity networks from functional MRI time series 2014 Ricardo Pio Monti
Peter J. Hellyer
David Sharp
Robert Leech
Christoforos Anagnostopoulos
Giovanni Montana
+ When does Active Learning Work 2014 Lewis P. G. Evans
Niall M. Adams
Christoforos Anagnostopoulos
+ Targeting Optimal Active Learning via Example Quality 2014 Lewis P. G. Evans
Niall M. Adams
Christoforos Anagnostopoulos
+ When does Active Learning Work? 2014 Lewis Evans
Niall M. Adams
Christoforos Anagnostopoulos
+ PDF Chat A better Beta for the H measure of classification performance 2013 David J. Hand
Christoforos Anagnostopoulos
+ Estimating Time-varying Brain Connectivity Networks from Functional MRI Time Series 2013 Ricardo Pio Monti
Peter J. Hellyer
David Sharp
Robert Leech
Christoforos Anagnostopoulos
Giovanni Montana
+ PDF Chat When Does Active Learning Work? 2013 Lewis P. G. Evans
Niall M. Adams
Christoforos Anagnostopoulos
+ Estimating Time-varying Brain Connectivity Networks from Functional MRI Time Series 2013 Ricardo Pio Monti
Peter W. Hellyer
David Sharp
Robert Leech
Christoforos Anagnostopoulos
Giovanni Montana
+ When is the area under the receiver operating characteristic curve an appropriate measure of classifier performance? 2012 David J. Hand
Christoforos Anagnostopoulos
+ A better Beta for the H measure of classification performance 2012 David J. Hand
Christoforos Anagnostopoulos
+ Dynamic trees for streaming and massive data contexts 2012 Christoforos Anagnostopoulos
Robert B. Gramacy
+ A better Beta for the H measure of classification performance 2012 David J. Hand
Christoforos Anagnostopoulos
+ Dynamic trees for streaming and massive data contexts 2012 Christoforos Anagnostopoulos
Robert B. Gramacy
+ Online optimization for variable selection in data streams 2008 Christoforos Anagnostopoulos
Dimitris K. Tasoulis
David J. Hand
Niall M. Adams
+ Simulating Dynamic Covariance Structures for Testing the Adaptive Behavior of Variable Selection Algorithms (Invited Paper) 2008 Christoforos Anagnostopoulos
Niall M. Adams
+ Simulating dynamic covariance structures for testing the adaptive behavior of variable selection algorithms 2008 Christoforos Anagnostopoulos
Niall M. Adams
+ Bertrand Paradoxes and Kolmogorov's Foundations of the Theory of Probability. 2006 Christoforos Anagnostopoulos
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
8
+ PDF Chat Estimating time-varying brain connectivity networks from functional MRI time series 2014 Ricardo Pio Monti
Peter J. Hellyer
David Sharp
Robert Leech
Christoforos Anagnostopoulos
Giovanni Montana
8
+ PDF Chat Emergence of Scaling in Random Networks 1999 Albert‐László Barabási
Réka Albert
6
+ PDF Chat Least angle regression 2004 Bradley Efron
Trevor Hastie
Iain M. Johnstone
Robert Tibshirani
6
+ High-dimensional graphs and variable selection with the Lasso 2006 Nicolai Meinshausen
Peter Bühlmann
5
+ PDF Chat Pathwise coordinate optimization 2007 Jerome H. Friedman
Trevor Hastie
Holger Höfling
Robert Tibshirani
5
+ The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI 2016 Romy Lorenz
Ricardo Pio Monti
Inês R. Violante
Christoforos Anagnostopoulos
A. Aldo Faisal
Giovanni Montana
Robert Leech
5
+ Sparse inverse covariance estimation with the graphical lasso 2007 Jerome H. Friedman
Trevor Hastie
R. Tibshirani
5
+ Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm 1977 A. P. Dempster
N. M. Laird
Donald B. Rubin
4
+ PDF Chat The Joint Graphical Lasso for Inverse Covariance Estimation Across Multiple Classes 2013 Patrick Danaher
Pei Wang
Daniela Witten
4
+ PDF Chat The Statistical Analysis of fMRI Data 2008 Martin A. Lindquist
4
+ PDF Chat The Variable Selection Problem 2000 Edward I. George
3
+ Statistical Methods in Diagnostic Medicine 2011 Xiao‐Hua Zhou
Nancy A. Obuchowski
Donna K. McClish
3
+ A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning 2010 Eric Brochu
Vlad M. Cora
Nando de Freitas
3
+ PDF Chat Scale-Free Brain Functional Networks 2005 Vı́ctor M. Eguı́luz
Dante R. Chialvo
Guillermo Cecchi
Marwan N. Baliki
A. Vania Apkarian
3
+ Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models 2010 Han Liu
Kathryn Roeder
Larry Wasserman
3
+ PDF Chat Piecewise linear regularized solution paths 2007 Saharon Rosset
Ji Zhu
3
+ PDF Chat Bayesian anomaly detection methods for social networks 2010 Nicholas A. Heard
David Weston
Kiriaki Platanioti
David J. Hand
3
+ PDF Chat The Adaptive Lasso and Its Oracle Properties 2006 Hui Zou
2
+ PDF Chat Learning and comparing functional connectomes across subjects 2013 Gaël Varoquaux
R. Cameron Craddock
2
+ The Statistical Evaluation of Medical Tests for Classification and Prediction 2003 Margaret S. Pepe
2
+ Measuring the functional connectome "on-the-fly": towards a new control signal for fMRI-based brain-computer interfaces 2015 Ricardo Pio Monti
Romy Lorenz
Christoforos Anagnostopoulos
Robert Leech
Giovanni Montana
2
+ PDF Chat Partial Correlation Estimation by Joint Sparse Regression Models 2009 Jie Peng
Pei Wang
Nengfeng Zhou
Ji Zhu
2
+ Construction and Assessment of Classification Rules 1999 Mark R. Wade
David J. Hand
2
+ Regularization Paths for Generalized Linear Models via Coordinate Descent. 2010 Jerome H. Friedman
Trevor Hastie
Rob Tibshirani
2
+ Nonlinear Programming 1995 Dimitri P. Bertsekas
2
+ Generalized Additive Models 2014 Trevor Hastie
Robert Tibshirani
2
+ Statistical Learning with Sparsity 2015 Trevor Hastie
Robert Tibshirani
Martin J. Wainwright
2
+ Stopping criteria for boosting automatic experimental design using real-time fMRI with Bayesian optimization 2015 Romy Lorenz
Ricardo Pio Monti
Inês R. Violante
A. Aldo Faisal
Christoforos Anagnostopoulos
Robert Leech
Giovanni Montana
2
+ PDF Chat Forward stagewise regression and the monotone lasso 2007 Trevor Hastie
Jonathan Taylor
Robert Tibshirani
Guenther Walther
2
+ PDF Chat Controlling the familywise error rate in functional neuroimaging: a comparative review 2003 Thomas E. Nichols
Satoru Hayasaka
2
+ Convex Optimization 2004 Stephen Boyd
Lieven Vandenberghe
2
+ Dynamic reconfiguration of human brain networks during learning 2011 Danielle S. Bassett
Nicholas F. Wymbs
Mason A. Porter
Peter J. Mucha
Jean M. Carlson
Scott T. Grafton
2
+ The Matrix-Logarithmic Covariance Model 1996 Tom Y. M. Chiu
Tom Leonard
Kam‐Wah Tsui
2
+ PDF Chat Representation Learning: A Review and New Perspectives 2013 Yoshua Bengio
Aaron Courville
P. M. Durai Raj Vincent
2
+ LOCO: Distributing Ridge Regression with Random Projections 2014 Christina Heinze
Brian McWilliams
Nicolai Meinshausen
Gabriel Krummenacher
2
+ PDF Chat A Path Algorithm for the Fused Lasso Signal Approximator 2010 Hölger Hoefling
2
+ The Statistical Evaluation of Medical Tests for Classification and Prediction 2005 Margaret S. Pepe
2
+ Assessing the Performance of Classification Methods 2012 David J. Hand
2
+ An Homotopy Algorithm for the Lasso with Online Observations 2008 Pierre Garrigues
Laurent El Ghaoui
2
+ PDF Chat Time varying undirected graphs 2010 Shuheng Zhou
John Lafferty
Larry Wasserman
2
+ PDF Chat Sparsity and Smoothness Via the Fused Lasso 2004 Robert Tibshirani
Michael A. Saunders
Saharon Rosset
Ji Zhu
Keith Knight
2
+ Practical Bayesian Optimization of Machine Learning Algorithms 2012 Jasper Snoek
Hugo Larochelle
Ryan P. Adams
2
+ Variable Selection for Optimal Decision Making 2007 Lacey Gunter
Ji Zhu
Susan A. Murphy
2
+ Graphical Models in Applied Multivariate Statistics 1991 Colin Goodall
Joe Whittaker
2
+ The Little Bootstrap and other Methods for Dimensionality Selection in Regression: X-Fixed Prediction Error 1992 Leo Breiman
2
+ PDF Chat <i>L</i>1-Regularization Path Algorithm for Generalized Linear Models 2007 Mee Young Park
Trevor Hastie
2
+ PDF Chat Stability Selection 2010 Nicolai Meinshausen
Peter Bühlmann
2
+ PDF Chat Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors) 2000 Jerome H. Friedman
Trevor Hastie
Robert Tibshirani
1
+ Invariant Prior Distributions 2005 A. P. Dawid
1