Laurence Aitchison

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Why you don't overfit, and don't need Bayes if you only train for one epoch 2024 Laurence Aitchison
+ PDF Chat Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines 2024 Edward Milsom
Ben Anson
Laurence Aitchison
+ PDF Chat Residual Stream Analysis with Multi-Layer SAEs 2024 T.V. Lawson
Lucy Farnik
Conor Houghton
Laurence Aitchison
+ Signatures of Bayesian inference emerge from energy-efficient synapses 2024 James Malkin
Cian O’Donnell
Conor Houghton
Laurence Aitchison
+ PDF Chat Questionable practices in machine learning 2024 Gavin Leech
Juan José Vázquez-Alcaraz
Misha Yagudin
Niclas Kupper
Laurence Aitchison
+ PDF Chat Using Neural Networks for Data Cleaning in Weather Datasets 2024 Jack R. P. Hanslope
Laurence Aitchison
+ Signatures of Bayesian inference emerge from energy efficient synapses 2024 James Malkin
Cian O’Donnell
Conor Houghton
Laurence Aitchison
+ PDF Chat How to set AdamW's weight decay as you scale model and dataset size 2024 Xi Wang
Laurence Aitchison
+ PDF Chat TouchSDF: A DeepSDF Approach for 3D Shape Reconstruction Using Vision-Based Tactile Sensing 2024 Mauro Comi
Yijiong Lin
Alex Church
Alessio Tonioni
Laurence Aitchison
Nathan F. Lepora
+ PDF Chat Snap-it, Tap-it, Splat-it: Tactile-Informed 3D Gaussian Splatting for Reconstructing Challenging Surfaces 2024 Mauro Comi
Alessio Tonioni
Max Yang
Jonathan Tremblay
Valts Blukis
Yijiong Lin
Nathan F. Lepora
Laurence Aitchison
+ PDF Chat Bayesian Reward Models for LLM Alignment 2024 Adam X. Yang
Maxime Robeyns
Thomas Coste
Jun Wang
Haitham Bou Ammar
Laurence Aitchison
+ PDF Chat Flexible infinite-width graph convolutional networks and the importance of representation learning 2024 Ben Anson
Edward Milsom
Laurence Aitchison
+ PDF Chat Position Paper: Bayesian Deep Learning in the Age of Large-Scale AI 2024 Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
David B. Dunson
Maurizio Filippone
Vincent Fortuin
Philipp Hennig
Aliaksandr Hubin
+ PDF Chat Signatures of Bayesian inference emerge from energy-efficient synapses 2023 James Malkin
Cian O’Donnell
Conor Houghton
Laurence Aitchison
+ Signatures of Bayesian inference emerge from energy efficient synapses 2023 James Malkin
Cian O’Donnell
Conor Houghton
Laurence Aitchison
+ Imitating careful experts to avoid catastrophic events 2023 Jack R. P. Hanslope
Laurence Aitchison
+ Decision trees compensate for model misspecification 2023 Hugh Panton
Gavin Leech
Laurence Aitchison
+ MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning 2023 Adam X. Yang
Laurence Aitchison
Henry B. Moss
+ Taylor TD-learning 2023 Michele Garibbo
Maxime Robeyns
Laurence Aitchison
+ Massively Parallel Reweighted Wake-Sleep 2023 Thomas Heap
Gavin Leech
Laurence Aitchison
+ An Improved Variational Approximate Posterior for the Deep Wishart Process 2023 Sebastian W. Ober
Ben Anson
Edward Milsom
Laurence Aitchison
+ Bayesian low-rank adaptation for large language models 2023 Adam X. Yang
Maxime Robeyns
Xi Wang
Laurence Aitchison
+ Signatures of Bayesian inference emerge from energy efficient synapses 2023 James Malkin
Cian O’Donnell
Conor Houghton
Laurence Aitchison
+ Convolutional Deep Kernel Machines 2023 Edward Milsom
Ben Anson
Laurence Aitchison
+ LoRA ensembles for large language model fine-tuning 2023 Xi Wang
Laurence Aitchison
Maja Rudolph
+ Using autodiff to estimate posterior moments, marginals and samples 2023 S.M. Bowyer
Thomas Heap
Laurence Aitchison
+ The Fractions Skill Score doesn't always measure skill 2023 Bobby Antonio
Laurence Aitchison
+ TouchSDF: A DeepSDF Approach for 3D Shape Reconstruction using Vision-Based Tactile Sensing 2023 Mauro Comi
Yijiong Lin
Alex Church
Alessio Tonioni
Laurence Aitchison
Nathan F. Lepora
+ Mask wearing in community settings reduces SARS-CoV-2 transmission 2022 Gavin Leech
Darren Smith
Joshua Teperowski Monrad
Jonas B. Sandbrink
Benedict Snodin
Robert Zinkov
Benjamin Rader
John S. Brownstein
Yarin Gal
Samir Bhatt
+ What deep reinforcement learning tells us about human motor learning and vice-versa 2022 Michele Garibbo
Casimir J. H. Ludwig
Nathan F. Lepora
Laurence Aitchison
+ Random initialisations performing above chance and how to find them 2022 Frederik Benzing
Simon Schug
R. R. Meier
Johannes von Oswald
Yassir Akram
Nicolas Zucchet
Laurence Aitchison
Angelika Steger
+ Robustness to corruption in pre-trained Bayesian neural networks 2022 Xi Wang
Laurence Aitchison
+ Machine learning emulation of a local-scale UK climate model 2022 Henry Addison
Elizabeth Kendon
Suman Ravuri
Laurence Aitchison
P.A. Watson
+ A variational approximate posterior for the deep Wishart process 2021 Sebastian W. Ober
Laurence Aitchison
+ Semi-supervised learning objectives as log-likelihoods in a generative model of data curation. 2021 Stoil Ganev
Laurence Aitchison
+ Understanding the effectiveness of government interventions against the resurgence of COVID-19 in Europe 2021 Mrinank Sharma
Sören Mindermann
Darren Smith
Gavin Leech
Benedict Snodin
Janvi Ahuja
Jonas B. Sandbrink
Joshua Teperowski Monrad
George Altman
Gurpreet Dhaliwal
+ A fast point solver for deep nonlinear function approximators. 2021 Laurence Aitchison
+ Deep kernel machines and fast solvers for deep kernel machines 2021 Laurence Aitchison
+ A variational approximate posterior for the deep Wishart process 2021 Sebastian W. Ober
Laurence Aitchison
+ InfoNCE is a variational autoencoder. 2021 Laurence Aitchison
+ Mass mask-wearing notably reduces COVID-19 transmission 2021 Gavin Leech
Darren Smith
Jonas B. Sandbrink
Benedict Snodin
Robert Zinkov
Benjamin Rader
John S. Brownstein
Yarin Gal
Samir Bhatt
Mrinank Sharma
+ Data augmentation in Bayesian neural networks and the cold posterior effect. 2021 Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
+ PDF Chat BNNpriors: A library for Bayesian neural network inference with different prior distributions 2021 Vincent Fortuin
Adrià Garriga-Alonso
Mark van der Wilk
Laurence Aitchison
+ Deep kernel processes 2021 Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
+ Synaptic plasticity as Bayesian inference 2021 Laurence Aitchison
Jannes Jegminat
Jorge Aurelio Menendez
Jean-Pascal Pfister
Alexandre Pouget
Peter E. Latham
+ Variational Laplace for Bayesian neural networks 2021 Ali Ünlü
Laurence Aitchison
+ A statistical theory of out-of-distribution detection. 2021 Xi Wang
Laurence Aitchison
+ Undefined class-label detection vs out-of-distribution detection 2021 Xi Wang
Laurence Aitchison
+ Bayesian Neural Network Priors Revisited 2021 Vincent Fortuin
Adrià Garriga-Alonso
Florian Wenzel
Gunnar Rätsch
Richard E. Turner
Mark van der Wilk
Laurence Aitchison
+ Tactile Image-to-Image Disentanglement of Contact Geometry from Motion-Induced Shear 2021 Anupam K. Gupta
Laurence Aitchison
Nathan F. Lepora
+ Bayesian OOD detection with aleatoric uncertainty and outlier exposure 2021 Xi Wang
Laurence Aitchison
+ A theory of representation learning gives a deep generalisation of kernel methods 2021 Adam X. Yang
Maxime Robeyns
Edward Milsom
Nandi Schoots
Laurence Aitchison
+ A variational approximate posterior for the deep Wishart process 2021 Sebastian W. Ober
Laurence Aitchison
+ InfoNCE is variational inference in a recognition parameterised model 2021 Laurence Aitchison
+ Data augmentation in Bayesian neural networks and the cold posterior effect 2021 Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
+ Bayesian Neural Network Priors Revisited 2021 Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
Florian Wenzel
Gunnar Rätsch
Richard E. Turner
Mark van der Wilk
Laurence Aitchison
+ Variational Laplace for Bayesian neural networks 2021 Ali Ünlü
Laurence Aitchison
+ Gradient Regularisation as Approximate Variational Inference 2020 Ali Ünlü
Laurence Aitchison
+ Deep kernel processes 2020 Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
+ A statistical theory of cold posteriors in deep neural networks 2020 Laurence Aitchison
+ A statistical theory of semi-supervised learning 2020 Laurence Aitchison
+ Global inducing point variational posteriors for Bayesian neural networks 2020 Sebastian W. Ober
Laurence Aitchison
+ Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes 2020 Sebastian W. Ober
Laurence Aitchison
+ Legally grounded fairness objectives 2020 Dylan Holden-Sim
Gavin Leech
Laurence Aitchison
+ Variational Laplace for Bayesian neural networks 2020 Ali Ünlü
Laurence Aitchison
+ Semi-supervised learning objectives as log-likelihoods in a generative model of data curation 2020 Stoil Ganev
Laurence Aitchison
+ A statistical theory of cold posteriors in deep neural networks 2020 Laurence Aitchison
+ Deep kernel processes 2020 Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
+ Tensor Monte Carlo: Particle Methods for the GPU era 2019 Laurence Aitchison
+ Why bigger is not always better: on finite and infinite neural networks 2019 Laurence Aitchison
+ Why bigger is not always better: on finite and infinite neural networks 2019 Laurence Aitchison
+ Deep Convolutional Networks as shallow Gaussian Processes. 2018 Adrià Garriga-Alonso
Carl Edward Rasmussen
Laurence Aitchison
+ Bayesian filtering unifies adaptive and non-adaptive neural network optimization methods 2018 Laurence Aitchison
+ Discrete flow posteriors for variational inference in discrete dynamical systems 2018 Laurence Aitchison
Vincent Adam
Srinivas C. Turaga
+ Tensor Monte Carlo: particle methods for the GPU era 2018 Laurence Aitchison
+ Sampling-based probabilistic inference emerges from learning in neural circuits with a cost on reliability 2018 Laurence Aitchison
Guillaume Hennequin
Máté Lengyel
+ Deep Convolutional Networks as shallow Gaussian Processes 2018 Adrià Garriga-Alonso
Carl Edward Rasmussen
Laurence Aitchison
+ Bayesian filtering unifies adaptive and non-adaptive neural network optimization methods 2018 Laurence Aitchison
+ PDF Chat The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics 2016 Laurence Aitchison
Máté Lengyel
+ Synaptic sampling: A connection between PSP variability and uncertainty explains neurophysiological observations 2015 Laurence Aitchison
Peter E. Latham
+ Probabilistic Synapses 2014 Laurence Aitchison
Alex Pouget
Peter E. Latham
+ Synaptic plasticity as Bayesian inference. 2014 Laurence Aitchison
Jannes Jegminat
Jorge Aurelio Menendez
Jean-Pascal Pfister
Alex Pouget
Peter E. Latham
+ The Hamiltonian Brain 2014 Laurence Aitchison
Máté Lengyel
+ The Hamiltonian brain: efficient probabilistic inference with excitatory-inhibitory neural circuit dynamics 2014 Laurence Aitchison
Máté Lengyel
+ Fast sampling for Bayesian inference in neural circuits 2014 Guillaume Hennequin
Laurence Aitchison
Máté Lengyel
+ Zipf's law arises naturally in structured, high-dimensional data 2014 Laurence Aitchison
Nicola Corradi
Peter E. Latham
+ Synaptic plasticity as Bayesian inference 2014 Laurence Aitchison
Jannes Jegminat
Jorge Aurelio Menendez
Jean-Pascal Pfister
Alexandre Pouget
Peter E. Latham
+ The Hamiltonian brain: efficient probabilistic inference with excitatory-inhibitory neural circuit dynamics 2014 Laurence Aitchison
Máté Lengyel
+ Fast sampling for Bayesian inference in neural circuits 2014 Guillaume Hennequin
Laurence Aitchison
Máté Lengyel
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Weight Uncertainty in Neural Networks 2015 Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
7
+ Gaussian Process Behaviour in Wide Deep Neural Networks 2018 Alexander Matthews
Mark Rowland
Jiri Hron
Richard E. Turner
Zoubin Ghahramani
7
+ Stochastic Backpropagation and Approximate Inference in Deep Generative Models 2014 Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
7
+ Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes 2020 Sebastian W. Ober
Laurence Aitchison
6
+ Bayesian Learning via Stochastic Gradient Langevin Dynamics 2011 Max Welling
Yee Whye Teh
6
+ Deep Neural Networks as Gaussian Processes 2017 Jaehoon Lee
Yasaman Bahri
Roman Novak
Samuel S. Schoenholz
Jeffrey Pennington
Jascha Sohl‐Dickstein
5
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
5
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
5
+ PDF Chat The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics 2016 Laurence Aitchison
Máté Lengyel
5
+ Bayesian Neural Network Priors Revisited 2021 Vincent Fortuin
Adrià Garriga-Alonso
Florian Wenzel
Gunnar Rätsch
Richard E. Turner
Mark van der Wilk
Laurence Aitchison
4
+ Dendritic cortical microcircuits approximate the backpropagation algorithm 2018 João Sacramento
Rui Ponte Costa
Yoshua Bengio
Walter Senn
4
+ A probabilistic population code based on neural samples 2018 Sabyasachi Shivkumar
Richard D. Lange
Ankani Chattoraj
Ralf M. Haefner
4
+ PDF Chat Singular Wishart and multivariate beta distributions 2003 Muni S. Srivastava
4
+ Variational Dropout and the Local Reparameterization Trick 2015 Diederik P. Kingma
Tim Salimans
Max Welling
4
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
4
+ A statistical theory of cold posteriors in deep neural networks 2020 Laurence Aitchison
4
+ On the mathematical foundations of theoretical statistics 1922 Ronald Aylmer Fisher
4
+ Spatial Point Processes 2011 Mark Huber
4
+ Synaptic plasticity as Bayesian inference 2021 Laurence Aitchison
Jannes Jegminat
Jorge Aurelio Menendez
Jean-Pascal Pfister
Alexandre Pouget
Peter E. Latham
4
+ PDF Chat Energy-efficient population coding constrains network size of a neuronal array system 2016 Lianchun Yu
Chi Zhang
Liwei Liu
Yuguo Yu
4
+ Sparse, Flexible and Efficient Modeling using L 1 Regularization 2008 Saharon Rosset
Ji Zhu
4
+ Practical Deep Learning with Bayesian Principles 2019 Kazuki Osawa
Siddharth Swaroop
Mohammad Emtiyaz Khan
Anirudh Jain
Runa Eschenhagen
Richard E. Turner
Rio Yokota
4
+ Two problems with variational expectation maximisation for time series models 2011 Richard E. Turner
Maneesh Sahani
3
+ PDF Chat Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ Deep kernel processes 2021 Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
3
+ Noisy Natural Gradient as Variational Inference 2017 Guodong Zhang
Shengyang Sun
David Duvenaud
Roger Grosse
3
+ Deep Convolutional Networks as shallow Gaussian Processes 2018 Adrià Garriga-Alonso
Carl Edward Rasmussen
Laurence Aitchison
3
+ Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning 2019 Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
Andrew Gordon Wilson
3
+ What Are Bayesian Neural Network Posteriors Really Like 2021 Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
Andrew Gordon Wilson
3
+ A statistical theory of semi-supervised learning 2020 Laurence Aitchison
3
+ Exact Langevin Dynamics with Stochastic Gradients 2021 Adrià Garriga-Alonso
Vincent Fortuin
3
+ Inferring the effectiveness of government interventions against COVID-19 2020 Jan Brauner
Sören Mindermann
Mrinank Sharma
David Johnston
John Salvatier
Tomáš Gavenčiak
Anna B. Stephenson
Gavin Leech
George Altman
Vladimir Mikulik
3
+ The Promises and Pitfalls of Deep Kernel Learning 2021 Sebastian W. Ober
Carl Edward Rasmussen
Mark van der Wilk
3
+ What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 2017 Alex Kendall
Yarin Gal
3
+ PDF Chat Learning as filtering: Implications for spike-based plasticity 2022 Jannes Jegminat
Simone Carlo Surace
Jean-Pascal Pfister
3
+ Wide Residual Networks 2016 Sergey Zagoruyko
Nikos Komodakis
3
+ Why bigger is not always better: on finite and infinite neural networks 2019 Laurence Aitchison
3
+ Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors 2020 Michael W. Dusenberry
Ghassen Jerfel
Yeming Wen
Yi-An Ma
Jasper Snoek
Katherine Heller
Balaji Lakshminarayanan
Dustin Tran
3
+ Importance Weighted Autoencoders 2015 Yuri Burda
Roger Grosse
Ruslan Salakhutdinov
3
+ PDF Chat Identity Mappings in Deep Residual Networks 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ PDF Chat Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe 2020 Seth Flaxman
Swapnil Mishra
Axel Gandy
H. Juliette T. Unwin
Thomas A. Mellan
Helen Coupland
Charles Whittaker
Harrison Zhu
Tresnia Berah
Jeffrey W. Eaton
3
+ Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning 2021 Alexander Immer
Matthias Bauer
Vincent Fortuin
Gunnar Rätsch
Khan Emtiyaz
3
+ Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms 2017 Xiao Han
Kashif Rasul
Roland Vollgraf
3
+ The efficient evaluation of the hypergeometric function of a matrix argument 2006 Plamen Koev
Alan Edelman
2
+ Unsupervised Data Augmentation for Consistency Training 2019 Qizhe Xie
Zihang Dai
Eduard Hovy
Minh-Thang Luong
Quoc V. Le
2
+ PDF Chat Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey 2013 Kyle Willett
Chris Lintott
S. P. Bamford
Karen L. Masters
Brooke Simmons
Kevin Casteels
Edward M. Edmondson
L. Fortson
Sugata Kaviraj
William C. Keel
2
+ The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables 2016 Chris J. Maddison
Andriy Mnih
Yee Whye Teh
2
+ Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam 2018 Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Lin Wu
Yarin Gal
Akash Srivastava
2
+ PDF Chat On Singular Wishart and Singular Multivariate Beta Distributions 1994 Harald Uhlig
2
+ WAIC, but Why? Generative Ensembles for Robust Anomaly Detection 2018 Hyunsun Choi
Eric Jang
Alexander A. Alemi
2