+
PDF
Chat
|
Why you don't overfit, and don't need Bayes if you only train for one
epoch
|
2024
|
Laurence Aitchison
|
+
PDF
Chat
|
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel
Machines
|
2024
|
Edward Milsom
Ben Anson
Laurence Aitchison
|
+
PDF
Chat
|
Residual Stream Analysis with Multi-Layer SAEs
|
2024
|
T.V. Lawson
Lucy Farnik
Conor Houghton
Laurence Aitchison
|
+
|
Signatures of Bayesian inference emerge from energy-efficient synapses
|
2024
|
James Malkin
Cian O’Donnell
Conor Houghton
Laurence Aitchison
|
+
PDF
Chat
|
Questionable practices in machine learning
|
2024
|
Gavin Leech
Juan José Vázquez-Alcaraz
Misha Yagudin
Niclas Kupper
Laurence Aitchison
|
+
PDF
Chat
|
Using Neural Networks for Data Cleaning in Weather Datasets
|
2024
|
Jack R. P. Hanslope
Laurence Aitchison
|
+
|
Signatures of Bayesian inference emerge from energy efficient synapses
|
2024
|
James Malkin
Cian O’Donnell
Conor Houghton
Laurence Aitchison
|
+
PDF
Chat
|
How to set AdamW's weight decay as you scale model and dataset size
|
2024
|
Xi Wang
Laurence Aitchison
|
+
PDF
Chat
|
TouchSDF: A DeepSDF Approach for 3D Shape Reconstruction Using Vision-Based Tactile Sensing
|
2024
|
Mauro Comi
Yijiong Lin
Alex Church
Alessio Tonioni
Laurence Aitchison
Nathan F. Lepora
|
+
PDF
Chat
|
Snap-it, Tap-it, Splat-it: Tactile-Informed 3D Gaussian Splatting for
Reconstructing Challenging Surfaces
|
2024
|
Mauro Comi
Alessio Tonioni
Max Yang
Jonathan Tremblay
Valts Blukis
Yijiong Lin
Nathan F. Lepora
Laurence Aitchison
|
+
PDF
Chat
|
Bayesian Reward Models for LLM Alignment
|
2024
|
Adam X. Yang
Maxime Robeyns
Thomas Coste
Jun Wang
Haitham Bou Ammar
Laurence Aitchison
|
+
PDF
Chat
|
Flexible infinite-width graph convolutional networks and the importance
of representation learning
|
2024
|
Ben Anson
Edward Milsom
Laurence Aitchison
|
+
PDF
Chat
|
Position Paper: Bayesian Deep Learning in the Age of Large-Scale AI
|
2024
|
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
David B. Dunson
Maurizio Filippone
Vincent Fortuin
Philipp Hennig
Aliaksandr Hubin
|
+
PDF
Chat
|
Signatures of Bayesian inference emerge from energy-efficient synapses
|
2023
|
James Malkin
Cian O’Donnell
Conor Houghton
Laurence Aitchison
|
+
|
Signatures of Bayesian inference emerge from energy efficient synapses
|
2023
|
James Malkin
Cian O’Donnell
Conor Houghton
Laurence Aitchison
|
+
|
Imitating careful experts to avoid catastrophic events
|
2023
|
Jack R. P. Hanslope
Laurence Aitchison
|
+
|
Decision trees compensate for model misspecification
|
2023
|
Hugh Panton
Gavin Leech
Laurence Aitchison
|
+
|
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning
|
2023
|
Adam X. Yang
Laurence Aitchison
Henry B. Moss
|
+
|
Taylor TD-learning
|
2023
|
Michele Garibbo
Maxime Robeyns
Laurence Aitchison
|
+
|
Massively Parallel Reweighted Wake-Sleep
|
2023
|
Thomas Heap
Gavin Leech
Laurence Aitchison
|
+
|
An Improved Variational Approximate Posterior for the Deep Wishart Process
|
2023
|
Sebastian W. Ober
Ben Anson
Edward Milsom
Laurence Aitchison
|
+
|
Bayesian low-rank adaptation for large language models
|
2023
|
Adam X. Yang
Maxime Robeyns
Xi Wang
Laurence Aitchison
|
+
|
Signatures of Bayesian inference emerge from energy efficient synapses
|
2023
|
James Malkin
Cian O’Donnell
Conor Houghton
Laurence Aitchison
|
+
|
Convolutional Deep Kernel Machines
|
2023
|
Edward Milsom
Ben Anson
Laurence Aitchison
|
+
|
LoRA ensembles for large language model fine-tuning
|
2023
|
Xi Wang
Laurence Aitchison
Maja Rudolph
|
+
|
Using autodiff to estimate posterior moments, marginals and samples
|
2023
|
S.M. Bowyer
Thomas Heap
Laurence Aitchison
|
+
|
The Fractions Skill Score doesn't always measure skill
|
2023
|
Bobby Antonio
Laurence Aitchison
|
+
|
TouchSDF: A DeepSDF Approach for 3D Shape Reconstruction using Vision-Based Tactile Sensing
|
2023
|
Mauro Comi
Yijiong Lin
Alex Church
Alessio Tonioni
Laurence Aitchison
Nathan F. Lepora
|
+
|
Mask wearing in community settings reduces SARS-CoV-2 transmission
|
2022
|
Gavin Leech
Darren Smith
Joshua Teperowski Monrad
Jonas B. Sandbrink
Benedict Snodin
Robert Zinkov
Benjamin Rader
John S. Brownstein
Yarin Gal
Samir Bhatt
|
+
|
What deep reinforcement learning tells us about human motor learning and vice-versa
|
2022
|
Michele Garibbo
Casimir J. H. Ludwig
Nathan F. Lepora
Laurence Aitchison
|
+
|
Random initialisations performing above chance and how to find them
|
2022
|
Frederik Benzing
Simon Schug
R. R. Meier
Johannes von Oswald
Yassir Akram
Nicolas Zucchet
Laurence Aitchison
Angelika Steger
|
+
|
Robustness to corruption in pre-trained Bayesian neural networks
|
2022
|
Xi Wang
Laurence Aitchison
|
+
|
Machine learning emulation of a local-scale UK climate model
|
2022
|
Henry Addison
Elizabeth Kendon
Suman Ravuri
Laurence Aitchison
P.A. Watson
|
+
|
A variational approximate posterior for the deep Wishart process
|
2021
|
Sebastian W. Ober
Laurence Aitchison
|
+
|
Semi-supervised learning objectives as log-likelihoods in a generative model of data curation.
|
2021
|
Stoil Ganev
Laurence Aitchison
|
+
|
Understanding the effectiveness of government interventions against the resurgence of COVID-19 in Europe
|
2021
|
Mrinank Sharma
Sören Mindermann
Darren Smith
Gavin Leech
Benedict Snodin
Janvi Ahuja
Jonas B. Sandbrink
Joshua Teperowski Monrad
George Altman
Gurpreet Dhaliwal
|
+
|
A fast point solver for deep nonlinear function approximators.
|
2021
|
Laurence Aitchison
|
+
|
Deep kernel machines and fast solvers for deep kernel machines
|
2021
|
Laurence Aitchison
|
+
|
A variational approximate posterior for the deep Wishart process
|
2021
|
Sebastian W. Ober
Laurence Aitchison
|
+
|
InfoNCE is a variational autoencoder.
|
2021
|
Laurence Aitchison
|
+
|
Mass mask-wearing notably reduces COVID-19 transmission
|
2021
|
Gavin Leech
Darren Smith
Jonas B. Sandbrink
Benedict Snodin
Robert Zinkov
Benjamin Rader
John S. Brownstein
Yarin Gal
Samir Bhatt
Mrinank Sharma
|
+
|
Data augmentation in Bayesian neural networks and the cold posterior effect.
|
2021
|
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
|
+
PDF
Chat
|
BNNpriors: A library for Bayesian neural network inference with different prior distributions
|
2021
|
Vincent Fortuin
Adrià Garriga-Alonso
Mark van der Wilk
Laurence Aitchison
|
+
|
Deep kernel processes
|
2021
|
Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
|
+
|
Synaptic plasticity as Bayesian inference
|
2021
|
Laurence Aitchison
Jannes Jegminat
Jorge Aurelio Menendez
Jean-Pascal Pfister
Alexandre Pouget
Peter E. Latham
|
+
|
Variational Laplace for Bayesian neural networks
|
2021
|
Ali Ünlü
Laurence Aitchison
|
+
|
A statistical theory of out-of-distribution detection.
|
2021
|
Xi Wang
Laurence Aitchison
|
+
|
Undefined class-label detection vs out-of-distribution detection
|
2021
|
Xi Wang
Laurence Aitchison
|
+
|
Bayesian Neural Network Priors Revisited
|
2021
|
Vincent Fortuin
Adrià Garriga-Alonso
Florian Wenzel
Gunnar Rätsch
Richard E. Turner
Mark van der Wilk
Laurence Aitchison
|
+
|
Tactile Image-to-Image Disentanglement of Contact Geometry from Motion-Induced Shear
|
2021
|
Anupam K. Gupta
Laurence Aitchison
Nathan F. Lepora
|
+
|
Bayesian OOD detection with aleatoric uncertainty and outlier exposure
|
2021
|
Xi Wang
Laurence Aitchison
|
+
|
A theory of representation learning gives a deep generalisation of kernel methods
|
2021
|
Adam X. Yang
Maxime Robeyns
Edward Milsom
Nandi Schoots
Laurence Aitchison
|
+
|
A variational approximate posterior for the deep Wishart process
|
2021
|
Sebastian W. Ober
Laurence Aitchison
|
+
|
InfoNCE is variational inference in a recognition parameterised model
|
2021
|
Laurence Aitchison
|
+
|
Data augmentation in Bayesian neural networks and the cold posterior effect
|
2021
|
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
|
+
|
Bayesian Neural Network Priors Revisited
|
2021
|
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
Florian Wenzel
Gunnar Rätsch
Richard E. Turner
Mark van der Wilk
Laurence Aitchison
|
+
|
Variational Laplace for Bayesian neural networks
|
2021
|
Ali Ünlü
Laurence Aitchison
|
+
|
Gradient Regularisation as Approximate Variational Inference
|
2020
|
Ali Ünlü
Laurence Aitchison
|
+
|
Deep kernel processes
|
2020
|
Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
|
+
|
A statistical theory of cold posteriors in deep neural networks
|
2020
|
Laurence Aitchison
|
+
|
A statistical theory of semi-supervised learning
|
2020
|
Laurence Aitchison
|
+
|
Global inducing point variational posteriors for Bayesian neural networks
|
2020
|
Sebastian W. Ober
Laurence Aitchison
|
+
|
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
|
2020
|
Sebastian W. Ober
Laurence Aitchison
|
+
|
Legally grounded fairness objectives
|
2020
|
Dylan Holden-Sim
Gavin Leech
Laurence Aitchison
|
+
|
Variational Laplace for Bayesian neural networks
|
2020
|
Ali Ünlü
Laurence Aitchison
|
+
|
Semi-supervised learning objectives as log-likelihoods in a generative model of data curation
|
2020
|
Stoil Ganev
Laurence Aitchison
|
+
|
A statistical theory of cold posteriors in deep neural networks
|
2020
|
Laurence Aitchison
|
+
|
Deep kernel processes
|
2020
|
Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
|
+
|
Tensor Monte Carlo: Particle Methods for the GPU era
|
2019
|
Laurence Aitchison
|
+
|
Why bigger is not always better: on finite and infinite neural networks
|
2019
|
Laurence Aitchison
|
+
|
Why bigger is not always better: on finite and infinite neural networks
|
2019
|
Laurence Aitchison
|
+
|
Deep Convolutional Networks as shallow Gaussian Processes.
|
2018
|
Adrià Garriga-Alonso
Carl Edward Rasmussen
Laurence Aitchison
|
+
|
Bayesian filtering unifies adaptive and non-adaptive neural network optimization methods
|
2018
|
Laurence Aitchison
|
+
|
Discrete flow posteriors for variational inference in discrete dynamical systems
|
2018
|
Laurence Aitchison
Vincent Adam
Srinivas C. Turaga
|
+
|
Tensor Monte Carlo: particle methods for the GPU era
|
2018
|
Laurence Aitchison
|
+
|
Sampling-based probabilistic inference emerges from learning in neural circuits with a cost on reliability
|
2018
|
Laurence Aitchison
Guillaume Hennequin
Máté Lengyel
|
+
|
Deep Convolutional Networks as shallow Gaussian Processes
|
2018
|
Adrià Garriga-Alonso
Carl Edward Rasmussen
Laurence Aitchison
|
+
|
Bayesian filtering unifies adaptive and non-adaptive neural network optimization methods
|
2018
|
Laurence Aitchison
|
+
PDF
Chat
|
The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics
|
2016
|
Laurence Aitchison
Máté Lengyel
|
+
|
Synaptic sampling: A connection between PSP variability and uncertainty explains neurophysiological observations
|
2015
|
Laurence Aitchison
Peter E. Latham
|
+
|
Probabilistic Synapses
|
2014
|
Laurence Aitchison
Alex Pouget
Peter E. Latham
|
+
|
Synaptic plasticity as Bayesian inference.
|
2014
|
Laurence Aitchison
Jannes Jegminat
Jorge Aurelio Menendez
Jean-Pascal Pfister
Alex Pouget
Peter E. Latham
|
+
|
The Hamiltonian Brain
|
2014
|
Laurence Aitchison
Máté Lengyel
|
+
|
The Hamiltonian brain: efficient probabilistic inference with excitatory-inhibitory neural circuit dynamics
|
2014
|
Laurence Aitchison
Máté Lengyel
|
+
|
Fast sampling for Bayesian inference in neural circuits
|
2014
|
Guillaume Hennequin
Laurence Aitchison
Máté Lengyel
|
+
|
Zipf's law arises naturally in structured, high-dimensional data
|
2014
|
Laurence Aitchison
Nicola Corradi
Peter E. Latham
|
+
|
Synaptic plasticity as Bayesian inference
|
2014
|
Laurence Aitchison
Jannes Jegminat
Jorge Aurelio Menendez
Jean-Pascal Pfister
Alexandre Pouget
Peter E. Latham
|
+
|
The Hamiltonian brain: efficient probabilistic inference with excitatory-inhibitory neural circuit dynamics
|
2014
|
Laurence Aitchison
Máté Lengyel
|
+
|
Fast sampling for Bayesian inference in neural circuits
|
2014
|
Guillaume Hennequin
Laurence Aitchison
Máté Lengyel
|