Derek J. Posselt

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Inverse Problem Theory and Methods for Model Parameter Estimation 2005 Albert Tarantola
3
+ Kernel embedding of maps for sequential Bayesian inference: The variational mapping particle filter 2018 Manuel Pulido
Peter Jan vanLeeuwen
2
+ Derivative reproducing properties for kernel methods in learning theory 2007 Ding‐Xuan Zhou
2
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
2
+ Stochastic variational inference 2013 Matthew D. Hoffman
David M. Blei
Chong Wang
John Paisley
2
+ Novel approach to nonlinear/non-Gaussian Bayesian state estimation 1993 Neil Gordon
David Salmond
A. F. M. Smith
2
+ PDF Chat Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter 2007 Brian R. Hunt
Eric J. Kostelich
Istvan Szunyogh
2
+ Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images 1984 Stuart Geman
Donald Geman
1
+ PDF Chat Optimal Scaling of Discrete Approximations to Langevin Diffusions 1998 Gareth O. Roberts
Jeffrey S. Rosenthal
1
+ PDF Chat Weak convergence and optimal scaling of random walk Metropolis algorithms 1997 Susan A. Gelman
Walter R. Gilks
Gareth O. Roberts
1
+ PDF Chat Annealing Markov Chain Monte Carlo with Applications to Ancestral Inference 1995 Charles J. Geyer
E. A. Thompson
1
+ Examples of Adaptive MCMC 2009 Gareth O. Roberts
Jeffrey S. Rosenthal
1
+ DRAM: Efficient adaptive MCMC 2006 Heikki Haario
Marko Laine
Antonietta Mira
Eero Saksman
1
+ Sampling-Based Approaches to Calculating Marginal Densities 1990 Alan E. Gelfand
A. F. M. Smith
1
+ Bayesian mixture modeling approach to account for heterogeneity in speed data 2010 Byung-Jung Park
Yunlong Zhang
Dominique Lord
1
+ Reversible jump Markov chain Monte Carlo computation and Bayesian model determination 1995 Peter J. Green
1
+ A Brief Survey of Bandwidth Selection for Density Estimation 1996 M. C. Jones
J. S. Marron
Simon J. Sheather
1
+ Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling 2009 Jasper A. Vrugt
Cajo J. F. ter Braak
Cees Diks
B.A. Robinson
James M. Hyman
David Higdon
1
+ The BUGS project: Evolution, critique and future directions 2009 David J. Lunn
David J. Spiegelhalter
Andrew C. Thomas
Nicky Best
1
+ PDF Chat Markov Chains for Exploring Posterior Distributions 1994 Luke Tierney
1
+ Monte Carlo sampling methods using Markov chains and their applications 1970 W. Keith Hastings
1
+ The Calculation of Posterior Distributions by Data Augmentation 1987 Martin A. Tanner
Wing Hung Wong
1
+ PDF Chat An introduction to sampling via measure transport 2016 Youssef Marzouk
Tarek Moselhy
Matthew Parno
Alessio Spantini
1
+ The Calculation of Posterior Distributions by Data Augmentation: Comment: A Noniterative Sampling/Importance Resampling Alternative to the Data Augmentation Algorithm for Creating a Few Imputations When Fractions of Missing Information Are Modest: The SIR Algorithm 1987 Donald B. Rubin
1
+ A Short History of MCMC: Subjective Recollections from Incomplete Data 2011 Christian P. Robert
George Casella
1
+ Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm 2016 Qiang Liu
Dilin Wang
1
+ Learning Combinatorial Optimization Algorithms over Graphs 2017 Hanjun Dai
Elias B. Khalil
Yuyu Zhang
Bistra Dilkina
Le Song
1
+ Horizon: Facebook's Open Source Applied Reinforcement Learning Platform 2018 Jason Gauci
Edoardo Conti
Yitao Liang
Kittipat Virochsiri
Yuchen He
Zachary Kaden
Vivek Narayanan
Xiaohui Ye
1
+ Neural Combinatorial Optimization with Reinforcement Learning 2016 Irwan Bello
Hieu Pham
Quoc V. Le
Mohammad Norouzi
Samy Bengio
1
+ Variational Particle Approximations 2017 Ardavan Saeedi
Tejas D. Kulkarni
Vikash K. Mansinghka
Samuel J. Gershman
1
+ Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm 2016 Qiang Liu
Dilin Wang
1
+ PDF Chat Machine learning for combinatorial optimization: A methodological tour d’horizon 2020 Yoshua Bengio
Andrea Lodi
Antoine Prouvost
1
+ PDF Chat Markov Chain Monte Carlo: Can We Trust the Third Significant Figure? 2008 James M. Flegal
Murali Haran
Galin L. Jones
1
+ Adaptive proposal distribution for random walk Metropolis algorithm 1999 Heikki Haario
Eero Saksman
J. Tamminen
1
+ Sampling via Measure Transport: An Introduction 2017 Youssef Marzouk
Tarek Moselhy
Matthew Parno
Alessio Spantini
1
+ PDF Chat Handbook of Markov Chain Monte Carlo 2011 Steve Brooks
Andrew Gelman
Galin L. Jones
Xiao‐Li Meng
1
+ MML mixture modelling of multi-state, Poisson, von Mises circular and Gaussian distributions 1997 Christopher S. Wallace
David L. Dowe
1
+ Variational Particle Approximations 2014 Ardavan Saeedi
Tejas D. Kulkarni
Vikash K. Mansinghka
Samuel J. Gershman
1
+ PDF Chat Formulation, existence, and computation of boundedly rational dynamic user equilibrium with fixed or endogenous user tolerance 2015 Ke Han
W.Y. Szeto
Terry L. Friesz
1
+ PDF Chat Validation of nonlinear inverse algorithms with Markov chain Monte Carlo method 2004 J. Tamminen
1
+ PDF Chat An Adaptive Metropolis Algorithm 2001 Heikki Haario
Eero Saksman
J. Tamminen
1
+ PDF Chat Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms 2007 Gareth O. Roberts
Jeffrey S. Rosenthal
1
+ Optimal scaling for various Metropolis-Hastings algorithms 2001 Gareth O. Roberts
Jeffrey S. Rosenthal
1