Daniel Hsu

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat The Piranha Problem: Large Effects Swimming in a Small Pond 2024 Christopher Tosh
Philip Greengard
Ben Goodrich
Andrew Gelman
Aki Vehtari
Daniel Hsu
+ PDF Chat Learning Gaussian Multi-Index Models with Gradient Flow: Time Complexity and Directional Convergence 2024 Berfin ƞimƟek
Ahmed Bendjeddou
Daniel Hsu
+ PDF Chat Interactive Machine Teaching by Labeling Rules and Instances 2024 Giannis Karamanolakis
Daniel Hsu
Luis Gravano
+ PDF Chat One-layer transformers fail to solve the induction heads task 2024 Clayton Sanford
Daniel Hsu
Matus Telgarsky
+ PDF Chat Transformers Provably Learn Sparse Token Selection While Fully-Connected Nets Cannot 2024 Zixuan Wang
Stanley Wei
Daniel Hsu
Jason D. Lee
+ PDF Chat Group-wise oracle-efficient algorithms for online multi-group learning 2024 Samuel Deng
Daniel Hsu
Jingwen Liu
+ PDF Chat Seasonality Patterns in 311-Reported Foodborne Illness Cases and Machine Learning-Identified Indications of Foodborne Illnesses from Yelp Reviews, New York City, 2022-2023 2024 Eden Shaveet
Crystal Su
Daniel Hsu
Luis Gravano
+ PDF Chat Transformers, parallel computation, and logarithmic depth 2024 Clayton Sanford
Daniel Hsu
Matus Telgarsky
+ PDF Chat Statistical-computational trade-offs in tensor PCA and related problems via communication complexity 2024 Rishabh Dudeja
Daniel Hsu
+ PDF Chat Multi-group Learning for Hierarchical Groups 2024 Samuel Deng
Daniel Hsu
+ Group conditional validity via multi-group learning 2023 Samuel Deng
Navid Ardeshir
Daniel Hsu
+ Representational Strengths and Limitations of Transformers 2023 Clayton Sanford
Daniel Hsu
Matus Telgarsky
+ On the sample complexity of estimation in logistic regression 2023 Daniel Hsu
Arya Mazumdar
+ PDF Chat On the proliferation of support vectors in high dimensions* 2022 Daniel Hsu
Vidya Muthukumar
Ji Xu
+ Masked prediction tasks: a parameter identifiability view 2022 Bingbin Liu
Daniel Hsu
Pradeep Ravikumar
Andrej Risteski
+ Statistical-Computational Trade-offs in Tensor PCA and Related Problems via Communication Complexity 2022 Rishabh Dudeja
Daniel Hsu
+ Learning Tensor Representations for Meta-Learning 2022 Samuel Deng
Yilin Guo
Daniel Hsu
Debmalya Mandal
+ Near-Optimal Statistical Query Lower Bounds for Agnostically Learning Intersections of Halfspaces with Gaussian Marginals 2022 Daniel Hsu
Clayton Sanford
Rocco A. Servedio
Emmanouil-Vasileios Vlatakis-Gkaragkounis
+ Intrinsic dimensionality and generalization properties of the $\mathcal{R}$-norm inductive bias 2022 Clayton Sanford
Navid Ardeshir
Daniel Hsu
+ Bayesian decision-making under misspecified priors with applications to meta-learning 2021 Max Simchowitz
Christopher Tosh
Akshay Krishnamurthy
Daniel Hsu
Thodoris Lykouris
Miroslav Dudı́k
Robert E. Schapire
+ Support vector machines and linear regression coincide with very high-dimensional features 2021 Navid Ardeshir
Clayton Sanford
Daniel Hsu
+ Consistent Risk Estimation in Moderately High-Dimensional Linear Regression 2021 Ji Xu
Arian Maleki
Kamiar Rahnama Rad
Daniel Hsu
+ Support vector machines and linear regression coincide with very high-dimensional features 2021 Navid Ardeshir
Clayton Sanford
Daniel Hsu
+ Generalization bounds via distillation 2021 Daniel Hsu
Ziwei Ji
Matus Telgarsky
Lan Wang
+ On the Approximation Power of Two-Layer Networks of Random ReLUs 2021 Daniel Hsu
Clayton Sanford
Rocco A. Servedio
Emmanouil-Vasileios Vlatakis-Gkaragkounis
+ Generalization bounds via distillation 2021 Daniel Hsu
Ziwei Ji
Matus Telgarsky
Lan Wang
+ On the Approximation Power of Two-Layer Networks of Random ReLUs 2021 Daniel Hsu
Clayton Sanford
Rocco A. Servedio
Emmanouil-Vasileios Vlatakis-Gkaragkounis
+ Bayesian decision-making under misspecified priors with applications to meta-learning 2021 Max Simchowitz
Christopher Tosh
Akshay Krishnamurthy
Daniel Hsu
Thodoris Lykouris
Miroslav Dudı́k
Robert E. Schapire
+ Simple and near-optimal algorithms for hidden stratification and multi-group learning 2021 Christopher Tosh
Daniel Hsu
+ Support vector machines and linear regression coincide with very high-dimensional features 2021 Navid Ardeshir
Clayton Sanford
Daniel Hsu
+ The piranha problem: Large effects swimming in a small pond 2021 Christopher Tosh
Philip Greengard
Ben Goodrich
Andrew Gelman
Aki Vehtari
Daniel Hsu
+ Biased Programmers? Or Biased Data? A Field Experiment in Operationalizing AI Ethics 2020 Bo Cowgill
Fabrizio Dell’Acqua
Samuel Deng
Daniel Hsu
Nakul Verma
Augustin Chaintreau
+ PDF Chat Interpreting deep learning models for weak lensing 2020 José Manuel Zorrilla Matilla
M. Sharma
Daniel Hsu
ZoltĂĄn Haiman
+ Cross-Lingual Text Classification with Minimal Resources by Transferring a Sparse Teacher 2020 Giannis Karamanolakis
Daniel Hsu
Luis Gravano
+ Contrastive learning, multi-view redundancy, and linear models 2020 Christopher Tosh
Akshay Krishnamurthy
Daniel Hsu
+ Statistical Query Lower Bounds for Tensor PCA 2020 Rishabh Dudeja
Daniel Hsu
+ PDF Chat Biased Programmers? Or Biased Data? A Field Experiment in Operationalizing AI Ethics 2020 Bo Cowgill
Fabrizio Dell’Acqua
Samuel Deng
Daniel Hsu
Nakul Verma
Augustin Chaintreau
+ Classification vs regression in overparameterized regimes: Does the loss function matter? 2020 V. Sai Muthukumar
Adhyyan Narang
Vignesh Subramanian
Mikhail Belkin
Daniel Hsu
Anant Sahai
+ Contrastive estimation reveals topic posterior information to linear models 2020 Christopher Tosh
Akshay Krishnamurthy
Daniel Hsu
+ Ensuring Fairness Beyond the Training Data 2020 Debmalya Mandal
Samuel Deng
Suman Jana
Jeannette M. Wing
Daniel Hsu
+ On the proliferation of support vectors in high dimensions 2020 Daniel Hsu
Vidya Muthukumar
Ji Xu
+ Detecting Foodborne Illness Complaints in Multiple Languages Using English Annotations Only 2020 Ziyi Liu
Giannis Karamanolakis
Daniel Hsu
Luis Gravano
+ Detecting Foodborne Illness Complaints in Multiple Languages Using English Annotations Only 2020 Ziyi Liu
Giannis Karamanolakis
Daniel Hsu
Luis Gravano
+ Cross-Lingual Text Classification with Minimal Resources by Transferring a Sparse Teacher 2020 Giannis Karamanolakis
Daniel Hsu
Luis Gravano
+ Ensuring Fairness Beyond the Training Data 2020 Debmalya Mandal
Samuel Deng
Suman Jana
Jeannette M. Wing
Daniel Hsu
+ PDF Chat Two Models of Double Descent for Weak Features 2020 Mikhail A. Belkin
Daniel Hsu
Ji Xu
+ PDF Chat Biased Programmers? Or Biased Data? A Field Experiment in Operationalizing AI Ethics 2020 Bo Cowgill
Fabrizio Dell’Acqua
Sam Deng
Daniel Hsu
Nakul Verma
Augustin Chaintreau
+ Statistical Query Lower Bounds for Tensor PCA 2020 Rishabh Dudeja
Daniel Hsu
+ Biased Programmers? Or Biased Data? A Field Experiment in Operationalizing AI Ethics 2020 Bo Cowgill
Fabrizio Dell’Acqua
Samuel Deng
Daniel Hsu
Nakul Verma
Augustin Chaintreau
+ Cross-Lingual Text Classification with Minimal Resources by Transferring a Sparse Teacher 2020 Giannis Karamanolakis
Daniel Hsu
Luis Gravano
+ Contrastive learning, multi-view redundancy, and linear models 2020 Christopher Tosh
Akshay Krishnamurthy
Daniel Hsu
+ Classification vs regression in overparameterized regimes: Does the loss function matter? 2020 V. Sai Muthukumar
Adhyyan Narang
Vignesh Subramanian
Mikhail Belkin
Daniel Hsu
Anant Sahai
+ A New Framework for Query Efficient Active Imitation Learning. 2019 Daniel Hsu
+ PDF Chat Parameter identification in Markov chain choice models 2019 Arushi Gupta
Daniel Hsu
+ Privacy accounting and quality control in the sage differentially private ML platform 2019 Mathias LĂ©cuyer
Riley Spahn
Kiran Vodrahalli
Roxana Geambasu
Daniel Hsu
+ Weakly Supervised Attention Networks for Fine-Grained Opinion Mining and Public Health 2019 Giannis Karamanolakis
Daniel Hsu
Luis Gravano
+ PDF Chat Weak lensing cosmology with convolutional neural networks on noisy data 2019 DezsƑ Ribli
BĂĄlint Pataki
José Manuel Zorrilla Matilla
Daniel Hsu
ZoltĂĄn Haiman
IstvĂĄn Csabai
+ Leveraging Just a Few Keywords for Fine-Grained Aspect Detection Through Weakly Supervised Co-Training 2019 Giannis Karamanolakis
Daniel Hsu
Luis Gravano
+ PDF Chat Privacy Accounting and Quality Control in the Sage Differentially Private ML Platform 2019 Mathias LĂ©cuyer
Riley Spahn
Kiran Vodrahalli
Roxana Geambasu
Daniel Hsu
+ Reconciling modern machine-learning practice and the classical bias–variance trade-off 2019 Mikhail Belkin
Daniel Hsu
Siyuan Ma
Soumik Mandal
+ PDF Chat Mixing time estimation in reversible Markov chains from a single sample path 2019 Daniel Hsu
Aryeh Kontorovich
David Levin
Yuval Peres
Csaba SzepesvĂĄri
Geoffrey Wolfer
+ Unbiased estimators for random design regression 2019 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ PDF Chat Using a machine learning approach to determine the space group of a structure from the atomic pair distribution function 2019 Chia-Hao Liu
Yunzhe Tao
Daniel Hsu
Qiang Du
Simon J. L. Billinge
+ A gradual, semi-discrete approach to generative network training via explicit Wasserstein minimization 2019 Yucheng Chen
Matus Telgarsky
Chao Zhang
Bolton Bailey
Daniel Hsu
Jian Peng
+ Diameter-based Interactive Structure Search. 2019 Christopher Tosh
Daniel Hsu
+ How many variables should be entered in a principal component regression equation 2019 Ji Xu
Daniel Hsu
+ On the number of variables to use in principal component regression 2019 Ji Xu
Daniel Hsu
+ PDF Chat Certified Robustness to Adversarial Examples with Differential Privacy 2019 Mathias LĂ©cuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel Hsu
Suman Jana
+ Correcting the bias in least squares regression with volume-rescaled sampling 2019 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ A cryptographic approach to black box adversarial machine learning 2019 Kevin Shi
Daniel Hsu
Allison Bishop
+ A gradual, semi-discrete approach to generative network training via explicit Wasserstein minimization 2019 Yucheng Chen
Matus Telgarsky
Chao Zhang
Bolton Bailey
Daniel Hsu
Jian Peng
+ Leveraging Just a Few Keywords for Fine-Grained Aspect Detection Through Weakly Supervised Co-Training 2019 Giannis Karamanolakis
Daniel Hsu
Luis Gravano
+ On the number of variables to use in principal component regression 2019 Ji Xu
Daniel Hsu
+ Weakly Supervised Attention Networks for Fine-Grained Opinion Mining and Public Health 2019 Giannis Karamanolakis
Daniel Hsu
Luis Gravano
+ Diameter-based Interactive Structure Discovery 2019 Christopher Tosh
Daniel Hsu
+ Consistent Risk Estimation in Moderately High-Dimensional Linear Regression 2019 Ji Xu
Arian Maleki
Kamiar Rahnama Rad
Daniel Hsu
+ A New Framework for Query Efficient Active Imitation Learning 2019 Daniel Hsu
+ Weakly Supervised Attention Networks for Fine-Grained Opinion Mining and Public Health 2019 Giannis Karamanolakis
Daniel Hsu
Luis Gravano
+ Leveraging Just a Few Keywords for Fine-Grained Aspect Detection Through Weakly Supervised Co-Training 2019 Giannis Karamanolakis
Daniel Hsu
Luis Gravano
+ Unbiased estimators for random design regression 2019 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ Reconciling modern machine learning and the bias-variance trade-off 2018 Mikhail Belkin
Daniel Hsu
Siyuan Ma
Soumik Mandal
+ Reconciling modern machine learning practice and the bias-variance trade-off 2018 Mikhail Belkin
Daniel Hsu
Siyuan Ma
Soumik Mandal
+ Benefits of over-parameterization with EM 2018 Ji Xu
Daniel Hsu
Arian Maleki
+ Learning Single Index Models in Gaussian Space 2018 Rishabh Dudeja
Daniel Hsu
+ Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate 2018 Mikhail Belkin
Daniel Hsu
Partha P. Mitra
+ PDF Chat Non-Gaussian information from weak lensing data via deep learning 2018 Arushi Gupta
José Manuel Zorrilla Matilla
Daniel Hsu
ZoltĂĄn Haiman
+ Tail bounds for volume sampled linear regression. 2018 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ On the Connection between Differential Privacy and Adversarial Robustness in Machine Learning 2018 Mathias LĂ©cuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel Hsu
Suman Jana
+ Certified Robustness to Adversarial Examples with Differential Privacy 2018 Mathias LĂ©cuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel Hsu
Suman Jana
+ Leveraged volume sampling for linear regression 2018 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate 2018 Mikhail Belkin
Daniel Hsu
Partha P. Mitra
+ Correcting the bias in least squares regression with volume-rescaled sampling 2018 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ Leveraged volume sampling for linear regression 2018 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ Benefits of over-parameterization with EM 2018 Ji Xu
Daniel Hsu
Arian Maleki
+ Certified Robustness to Adversarial Examples with Differential Privacy 2018 Mathias LĂ©cuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel Hsu
Suman Jana
+ Coding with asymmetric prior knowledge. 2017 Alexandr Andoni
Javad Ghaderi
Daniel Hsu
Dan Rubenstein
Omri Weinstein
+ Linear regression without correspondence 2017 Daniel Hsu
Kevin Shi
Xiaorui Sun
+ PDF Chat FairTest: Discovering Unwarranted Associations in Data-Driven Applications 2017 Florian TramĂšr
Vaggelis Atlidakis
Roxana Geambasu
Daniel Hsu
Jean‐Pierre Hubaux
Mathias Humbert
Ari Juels
Huang Lin
+ Kernel Approximation Methods for Speech Recognition 2017 Avner May
Alireza Bagheri Garakani
Zhiyun Lu
Dong Guo
Kuan Liu
Aurélien Bellet
Linxi Fan
Michael Collins
Daniel Hsu
Brian Kingsbury
+ Kernel ridge vs. principal component regression: Minimax bounds and the qualification of regularization operators 2017 Lee H. Dicker
Dean P. Foster
Daniel Hsu
+ Linear regression without correspondence 2017 Daniel Hsu
Kevin Shi
Xiaorui Sun
+ PDF Chat Greedy Approaches to Symmetric Orthogonal Tensor Decomposition 2017 Cun Mu
Daniel Hsu
Donald Goldfarb
+ Greedy Approaches to Symmetric Orthogonal Tensor Decomposition 2017 Cun Mu
Daniel Hsu
Donald Goldfarb
+ Multi-period Time Series Modeling with Sparsity via Bayesian Variational Inference 2017 Daniel Hsu
+ Coding sets with asymmetric information 2017 Alexandr Andoni
Javad Ghaderi
Daniel Hsu
Dan Rubenstein
Omri Weinstein
+ Parameter identification in Markov chain choice models 2017 Arushi Gupta
Daniel Hsu
+ Anomaly Detection on Graph Time Series 2017 Daniel Hsu
+ Mixing time estimation in reversible Markov chains from a single sample path 2017 Daniel Hsu
Aryeh Kontorovich
David Levin
Yuval Peres
Csaba SzepesvĂĄri
+ PDF Chat Do dark matter halos explain lensing peaks? 2016 José Manuel Zorrilla Matilla
ZoltĂĄn Haiman
Daniel Hsu
Arushi Gupta
Andrea Petri
+ Greedy bi-criteria approximations for $k$-medians and $k$-means 2016 Daniel Hsu
Matus Telgarsky
+ Kernel ridge vs. principal component regression: minimax bounds and adaptability of regularization operators 2016 Lee H. Dicker
Dean P. Foster
Daniel Hsu
+ Global analysis of Expectation Maximization for mixtures of two Gaussians 2016 Ji Xu
Daniel Hsu
Arian Maleki
+ Loss minimization and parameter estimation with heavy tails 2016 Daniel Hsu
Sivan Sabato
+ Search Improves Label for Active Learning 2016 Alina Beygelzimer
Daniel Hsu
John Langford
Chicheng Zhang
+ Global Analysis of Expectation Maximization for Mixtures of Two Gaussians 2016 Ji Xu
Daniel Hsu
Arian Maleki
+ Greedy bi-criteria approximations for $k$-medians and $k$-means 2016 Daniel Hsu
Matus Telgarsky
+ Mixing time estimation in reversible Markov chains from a single sample path 2015 Daniel Hsu
Aryeh Kontorovich
Csaba SzepesvĂĄri
+ Discovering Unwarranted Associations in Data-Driven Applications with the FairTest Testing Toolkit 2015 Florian TramĂšr
Vaggelis Atlidakis
Roxana Geambasu
Daniel Hsu
Jean‐Pierre Hubaux
Mathias Humbert
Ari Juels
Huang Lin
+ Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path 2015 Daniel Hsu
Aryeh Kontorovich
Csaba SzepesvĂĄri
+ Tensor Decompositions for Learning Latent Variable Models (A Survey for ALT) 2015 Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
+ FairTest: Discovering Unwarranted Associations in Data-Driven Applications 2015 Florian TramĂšr
Vaggelis Atlidakis
Roxana Geambasu
Daniel Hsu
Jean‐Pierre Hubaux
Mathias Humbert
Ari Juels
Huang Lin
+ When are overcomplete topic models identifiable? uniqueness of tensor tucker decompositions with structured sparsity 2015 Animashree Anandkumar
Daniel Hsu
Majid Janzamin
Sham M. Kakade
+ Efficient and Parsimonious Agnostic Active Learning 2015 Tzu-Kuo Huang
Alekh Agarwal
Daniel Hsu
John Langford
Robert E. Schapire
+ PDF Chat Successive Rank-One Approximations for Nearly Orthogonally Decomposable Symmetric Tensors 2015 Cun Mu
Daniel Hsu
Donald Goldfarb
+ Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path 2015 Daniel Hsu
Aryeh Kontorovich
Csaba SzepesvĂĄri
+ Scalable Non-linear Learning with Adaptive Polynomial Expansions 2014 Alekh Agarwal
Alina Beygelzimer
Daniel Hsu
John Langford
Matus Telgarsky
+ Scalable Nonlinear Learning with Adaptive Polynomial Expansions 2014 Alekh Agarwal
Alina Beygelzimer
Daniel Hsu
John Langford
Matus Telgarsky
+ PDF Chat A Spectral Algorithm for Latent Dirichlet Allocation 2014 Anima Anandkumar
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Yi-Kai Liu
+ Heavy-tailed regression with a generalized median-of-means 2014 Daniel Hsu
Sivan Sabato
+ PDF Chat Random Design Analysis of Ridge Regression 2014 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ Weighted sampling of outer products 2014 Daniel Hsu
+ Tensor decompositions for learning latent variable models 2014 Animashree Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
+ The Large Margin Mechanism for Differentially Private Maximization 2014 Kamalika Chaudhuri
Daniel Hsu
Shuang Song
+ Fast Matrix Multiplication with Sketching 2014 Huan Wang
Christos Boutsidis
Edo Liberty
Daniel Hsu
+ Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits 2014 Alekh Agarwal
Daniel Hsu
Satyen Kale
John Langford
Lihong Li
Robert E. Schapire
+ A tensor approach to learning mixed membership community models 2014 Animashree Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
+ Scalable Nonlinear Learning with Adaptive Polynomial Expansions 2014 Alekh Agarwal
Alina Beygelzimer
Daniel Hsu
John Langford
Matus Telgarsky
+ Contrastive Learning Using Spectral Methods 2013 James Zou
Daniel Hsu
David C. Parkes
Ryan P. Adams
+ When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity 2013 Anima Anandkumar
Daniel Hsu
Majid Janzamin
Sham M. Kakade
+ Approximate loss minimization with heavy tails. 2013 Daniel Hsu
Sivan Sabato
+ When are Overcomplete Representations Identifiable? Uniqueness of Tensor Decompositions Under Expansion Constraints 2013 Animashree Anandkumar
Daniel Hsu
Majid Janzamin
Sham M. Kakade
+ A Tensor Spectral Approach to Learning Mixed Membership Community Models 2013 Animashree Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
+ A Tensor Spectral Approach to Learning Mixed Membership Community Models 2013 Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
+ PDF Chat Learning mixtures of spherical gaussians 2013 Daniel Hsu
Sham M. Kakade
+ A Tensor Approach to Learning Mixed Membership Community Models 2013 Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
+ Loss minimization and parameter estimation with heavy tails 2013 Daniel Hsu
Sivan Sabato
+ PDF Chat Stochastic Convex Optimization with Bandit Feedback 2013 Alekh Agarwal
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Alexander Rakhlin
+ When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity 2013 Animashree Anandkumar
Daniel Hsu
Majid Janzamin
Sham M. Kakade
+ PDF Chat Tensor Decompositions for Learning Latent Variable Models 2012 Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
+ Identifiability and Unmixing of Latent Parse Trees 2012 Daniel Hsu
Sham M. Kakade
Percy Liang
+ Two SVDs Suffice: Spectral decompositions for probabilistic topic modeling and latent Dirichlet allocation 2012 Animashree Anandkumar
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Yi-Kai Liu
+ A Method of Moments for Mixture Models and Hidden Markov Models 2012 Animashree Anandkumar
Daniel Hsu
Sham M. Kakade
+ A spectral algorithm for learning Hidden Markov Models 2012 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ Learning High-Dimensional Mixtures of Graphical Models 2012 Animashree Anandkumar
Daniel Hsu
Sham M. Kakade
+ Learning Topic Models and Latent Bayesian Networks Under Expansion Constraints 2012 Animashree Anandkumar
Daniel Hsu
Adel Javanmard
Sham M. Kakade
+ An Online Learning-based Framework for Tracking 2012 Kamalika Chaudhuri
Yoav Freund
Daniel Hsu
+ PDF Chat A tail inequality for quadratic forms of subgaussian random vectors 2012 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ Identifiability and Unmixing of Latent Parse Trees 2012 Percy Liang
Daniel Hsu
Sham M. Kakade
+ A concentration theorem for projections 2012 Sanjoy Dasgupta
Daniel Hsu
Nakul Verma
+ Analysis of a randomized approximation scheme for matrix multiplication 2012 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ PDF Chat Tail inequalities for sums of random matrices that depend on the intrinsic dimension 2012 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ Learning mixtures of spherical Gaussians: moment methods and spectral decompositions 2012 Daniel Hsu
Sham M. Kakade
+ Learning Sparse Low-Threshold Linear Classifiers 2012 Sivan Sabato
Shai Shalev‐Shwartz
Nathan Srebro
Daniel Hsu
Tong Zhang
+ Convergence Rates for Differentially Private Statistical Estimation 2012 Kamalika Chaudhuri
Daniel Hsu
+ A Spectral Algorithm for Latent Dirichlet Allocation 2012 Animashree Anandkumar
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Yi-Kai Liu
+ A Method of Moments for Mixture Models and Hidden Markov Models 2012 Animashree Anandkumar
Daniel Hsu
Sham M. Kakade
+ Random design analysis of ridge regression 2012 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ Tensor decompositions for learning latent variable models 2012 Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
+ PDF Chat Parallel Online Learning 2011 Daniel Hsu
Nikos Karampatziakis
John Langford
Alex Smola
+ Stochastic convex optimization with bandit feedback 2011 Alekh Agarwal
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Alexander Rakhlin
+ An Analysis of Random Design Linear Regression 2011 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ Efficient Optimal Learning for Contextual Bandits 2011 Miroslav Dudı́k
Daniel Hsu
Satyen Kale
Nikos Karampatziakis
John Langford
Lev Reyzin
Tong Zhang
+ Random design analysis of ridge regression 2011 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ Dimension-free tail inequalities for sums of random matrices 2011 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ Efficient Optimal Learning for Contextual Bandits 2011 Miroslav Dudı́k
Daniel Hsu
Satyen Kale
Nikos Karampatziakis
John Langford
Lev Reyzin
Tong Zhang
+ Spectral Methods for Learning Multivariate Latent Tree Structure 2011 Animashree Anandkumar
Kamalika Chaudhuri
Daniel Hsu
Sham M. Kakade
Le Song
Tong Zhang
+ Random design analysis of ridge regression 2011 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ A tail inequality for quadratic forms of subgaussian random vectors 2011 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ PDF Chat Scaling Up Machine Learning: Parallel Online Learning 2011 Daniel Hsu
Nikos Karampatziakis
John Langford
Alex Smola
+ Stochastic convex optimization with bandit feedback 2011 Alekh Agarwal
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Alexander Rakhlin
+ Parallel Online Learning 2011 Daniel Hsu
Nikos Karampatziakis
John Langford
Alex Smola
+ An online learning-based framework for tracking 2010 Kamalika Chaudhuri
Yoav Freund
Daniel Hsu
+ Agnostic Active Learning Without Constraints 2010 Alina Beygelzimer
Daniel Hsu
John Langford
Tong Zhang
+ Agnostic Active Learning Without Constraints 2010 Alina Beygelzimer
John Langford
Tong Zhang
Daniel Hsu
+ Robust Matrix Decomposition with Outliers 2010 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ A parameter-free hedging algorithm 2009 Kamalika Chaudhuri
Yoav Freund
Daniel Hsu
+ Tracking using explanation-based modeling 2009 Kamalika Chaudhuri
Yoav Freund
Daniel Hsu
+ Multi-Label Prediction via Compressed Sensing 2009 Daniel Hsu
Sham M. Kakade
John Langford
Tong Zhang
+ A new Hedging algorithm and its application to inferring latent random variables 2008 Yoav Freund
Daniel Hsu
+ A Spectral Algorithm for Learning Hidden Markov Models 2008 Daniel Hsu
Sham M. Kakade
Tong Zhang
+ A concentration theorem for projections 2006 Sanjoy Dasgupta
Daniel Hsu
Nakul Verma
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ A Method of Moments for Mixture Models and Hidden Markov Models 2012 Animashree Anandkumar
Daniel Hsu
Sham M. Kakade
18
+ PDF Chat Learning nonsingular phylogenies and hidden Markov models 2006 Elchanan Mossel
SĂ©bastien Roch
17
+ Learning mixtures of arbitrary gaussians 2001 Sanjeev Arora
Ravi Kannan
11
+ PDF Chat Adaptive estimation of a quadratic functional by model selection 2000 BĂ©atrice Laurent
Pascal Massart
11
+ Tensor decompositions for learning latent variable models 2014 Animashree Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
10
+ Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics 1977 Joseph B. Kruskal
10
+ Tensor Decompositions and Applications 2009 Tamara G. Kolda
Brett W. Bader
10
+ PDF Chat User-Friendly Tail Bounds for Sums of Random Matrices 2011 Joel A. Tropp
10
+ A Spectral Algorithm for Latent Dirichlet Allocation 2012 Animashree Anandkumar
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Yi-Kai Liu
9
+ Polynomial Learning of Distribution Families 2010 Mikhail Belkin
K. P. Sinha
9
+ PDF Chat Two Models of Double Descent for Weak Features 2020 Mikhail A. Belkin
Daniel Hsu
Ji Xu
8
+ Shifted power method for computing tensor eigenpairs. 2010 Jackson Mayo
Tamara G. Kolda
8
+ On Spectral Learning of Mixtures of Distributions 2005 Dimitris Achlioptas
Frank McSherry
8
+ A spectral algorithm for learning Hidden Markov Models 2012 Daniel Hsu
Sham M. Kakade
Tong Zhang
7
+ On the Best Rank-1 and Rank-(<i>R</i><sub>1</sub> ,<i>R</i><sub>2</sub> ,. . .,<i>R<sub>N</sub></i>) Approximation of Higher-Order Tensors 2000 Lieven De Lathauwer
Bart De Moor
Joos Vandewalle
7
+ PDF Chat Identifiability of parameters in latent structure models with many observed variables 2009 Elizabeth S. Allman
Catherine Matias
John A. Rhodes
7
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
7
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
6
+ The Volume of Convex Bodies and Banach Space Geometry 1989 Gilles Pisier
6
+ Rank-One Approximation to High Order Tensors 2001 Tong Zhang
Gene H. Golub
6
+ Smallest singular value of random matrices and geometry of random polytopes 2004 A.E. Litvak
Alain Pajor
Mark Rudelson
Nicole Tomczak-Jaegermann
6
+ Some methods for classification and analysis of multivariate observations 1967 James B. MacQueen
6
+ Harmless Interpolation of Noisy Data in Regression 2020 V. Sai Muthukumar
Kailas Vodrahalli
Vignesh Subramanian
Anant Sahai
6
+ Benign overfitting in linear regression 2020 Peter L. Bartlett
Philip M. Long
GĂĄbor Lugosi
Alexander Tsigler
6
+ PDF Chat On Tail Probabilities for Martingales 1975 David A. Freedman
6
+ PDF Chat Most Tensor Problems Are NP-Hard 2013 Christopher J. Hillar
Lek‐Heng Lim
5
+ PDF Chat Singular Values and Eigenvalues of Tensors: A Variational Approach 2006 Lek‐Heng Lim
5
+ PDF Chat Learning Topic Models -- Going beyond SVD 2012 Sanjeev Arora
Rong Ge
Ankur Moitra
5
+ PDF Chat On exchangeable random variables and the statistics of large graphs and hypergraphs 2008 Tim Austin
5
+ Mixture Densities, Maximum Likelihood and the EM Algorithm 1984 Richard A. Redner
Homer F. Walker
5
+ PDF Chat Isotropic PCA and Affine-Invariant Clustering 2008 S. Charles Brubaker
Santosh Vempala
5
+ PDF Chat Sums of random Hermitian matrices and an inequality by Rudelson 2010 Roberto I. Oliveira
5
+ On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors 2002 Eleftherios Kofidis
Phillip A. Regalia
5
+ PDF Chat A jamming transition from under- to over-parametrization affects generalization in deep learning 2019 Stefano Spigler
Mario Geiger
StĂ©phane d’Ascoli
Levent Sagun
Giulio Biroli
Matthieu Wyart
5
+ Numerical Methods for Simultaneous Diagonalization 1993 Angelika Bunse‐Gerstner
Ralph Byers
Volker Mehrmann
5
+ Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm 1977 A. P. Dempster
N. M. Laird
Donald B. Rubin
5
+ Settling the Polynomial Learnability of Mixtures of Gaussians 2010 Ankur Moitra
Gregory Valiant
5
+ PDF Chat Random Design Analysis of Ridge Regression 2014 Daniel Hsu
Sham M. Kakade
Tong Zhang
5
+ Spectral partitioning of random graphs 2001 Frank McSherry
5
+ Surprises in high-dimensional ridgeless least squares interpolation 2022 Trevor Hastie
Andrea Montanari
Saharon Rosset
Ryan J. Tibshirani
5
+ PDF Chat Settling the Polynomial Learnability of Mixtures of Gaussians 2010 Ankur Moitra
Gregory Valiant
5
+ A Modern Take on the Bias-Variance Tradeoff in Neural Networks 2018 Brady Neal
Sarthak Mittal
Aristide Baratin
Vinayak Tantia
Matthew Scicluna
Simon Lacoste-Julien
Ioannis Mitliagkas
5
+ Provable ICA with Unknown Gaussian Noise, and Implications for Gaussian Mixtures and Autoencoders 2012 Sanjeev Arora
Rong Ge
Ankur Moitra
Sushant Sachdeva
5
+ Robust linear least squares regression 2011 Jean-Yves Audibert
Olivier Catoni
5
+ PDF Chat Certifying and Removing Disparate Impact 2015 Michael Feldman
Sorelle A. Friedler
John Moeller
Carlos Scheidegger
Suresh Venkatasubramanian
4
+ PDF Chat Learning mixtures of spherical gaussians 2013 Daniel Hsu
Sham M. Kakade
4
+ PDF Chat Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation 2012 André Uschmajew
4
+ Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis 1970 Richard A. Harshman
4
+ Convolutional Neural Networks for Sentence Classification 2014 Yoon Kim
4
+ PDF Chat Cosmology constraints from the weak lensing peak counts and the power spectrum in CFHTLenS data 2015 Jia Liu
Andrea Petri
ZoltĂĄn Haiman
Lam Hui
Jan M. Kratochvil
M. May
4