Kuai Fang

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network 2017 Kuai Fang
Chaopeng Shen
Daniel Kifer
Xiao Yang
4
+ PDF Chat A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists 2018 Chaopeng Shen
3
+ Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data 2017 Anuj Karpatne
Gowtham Atluri
James H. Faghmous
Michael Steinbach
Arindam Banerjee
Auroop R. Ganguly
Shashi Shekhar
Nagiza Samatova
Vipin Kumar
2
+ PDF Chat Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets 2019 Frederik Kratzert
Daniel Klotz
Guy Shalev
GĂŒnter Klambauer
Sepp Hochreiter
Grey Nearing
2
+ PDF Chat Deep learning in neural networks: An overview 2014 JĂŒrgen Schmidhuber
2
+ PDF Chat Enhancing Streamflow Forecast and Extracting Insights Using Long‐Short Term Memory Networks With Data Integration at Continental Scales 2020 Dapeng Feng
Kuai Fang
Chaopeng Shen
2
+ PDF Chat Distributed long-term hourly streamflow predictions using deep learning – A case study for State of Iowa 2020 Zhongrun Xiang
Ä°brahim Demir
2
+ PDF Chat Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks 2018 Frederik Kratzert
Daniel Klotz
Claire Brenner
Karsten Schulz
Mathew Herrnegger
2
+ PDF Chat From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling 2021 Wen‐Ping Tsai
Dapeng Feng
Ming Pan
Hylke E. Beck
Kathryn Lawson
Yuan Yang
Jiangtao Liu
Chaopeng Shen
2
+ PDF Chat Evaluating the Potential and Challenges of an Uncertainty Quantification Method for Long Short‐Term Memory Models for Soil Moisture Predictions 2020 Kuai Fang
Daniel Kifer
Kathryn Lawson
Chaopeng Shen
2
+ ADADELTA: An Adaptive Learning Rate Method 2012 Matthew D. Zeiler
2
+ What Role Does Hydrological Science Play in the Age of Machine Learning? 2020 Grey Nearing
Frederik Kratzert
Alden Keefe Sampson
Craig Pelissier
Daniel Klotz
Jonathan Frame
Cristina Prieto
Hoshin V. Gupta
2
+ Reconciling modern machine-learning practice and the classical bias–variance trade-off 2019 Mikhail Belkin
Daniel Hsu
Siyuan Ma
Soumik Mandal
1
+ Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm 2016 Qiang Liu
Dilin Wang
1
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
1
+ PDF Chat Deep learning to represent subgrid processes in climate models 2018 Stephan Rasp
Michael S. Pritchard
Pierre Gentine
1
+ PDF Chat Physics Guided RNNs for Modeling Dynamical Systems: A Case Study in Simulating Lake Temperature Profiles 2019 Xiaowei Jia
Jared Willard
Anuj Karpatne
Jordan S. Read
Jacob A. Zwart
Michael Steinbach
Vipin Kumar
1
+ PDF Chat The proper care and feeding of CAMELS: How limited training data affects streamflow prediction 2020 Martin Gauch
Juliane Mai
Jimmy Lin
1
+ PDF Chat Deep learning of subsurface flow via theory-guided neural network 2020 Nanzhe Wang
Dongxiao Zhang
Haibin Chang
Heng Li
1
+ PDF Chat DeepXDE: A Deep Learning Library for Solving Differential Equations 2021 Lu Lu
Xuhui Meng
Zhiping Mao
George Em Karniadakis
1
+ PDF Chat AI Feynman: A physics-inspired method for symbolic regression 2020 Silviu‐Marian Udrescu
Max Tegmark
1
+ PDF Chat Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport 2020 Qizhi He
David A. Barajas‐Solano
G. Tartakovsky
Alexandre M. Tartakovsky
1
+ PDF Chat Learning constitutive relations from indirect observations using deep neural networks 2020 Daniel Zhengyu Huang
Kailai Xu
Charbel Farhat
Eric Darve
1
+ PDF Chat A comprehensive review of deep learning applications in hydrology and water resources 2020 Muhammed Sit
Bekir Demiray
Zhongrun Xiang
Gregory J. Ewing
Yusuf Sermet
Ä°brahim Demir
1
+ PDF Chat On doing large-scale hydrology with Lions: Realising the value of perceptual models and knowledge accumulation 2020 Thorsten Wagener
Tom Gleeson
Gemma Coxon
Andreas Hartmann
Nicholas Howden
Francesca Pianosi
Shams Rahman
Rafael Rosolem
Lina Stein
Ross Woods
1
+ PDF Chat Improving Seasonal Forecast Using Probabilistic Deep Learning 2022 Baoxiang Pan
Gemma J. Anderson
André Gonçalves
D. D. Lucas
C. Bonfils
Jiwoo Lee
1
+ PDF Chat Stable architectures for deep neural networks 2017 Eldad Haber
Lars Ruthotto
1
+ Deep Convolutional Encoder‐Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media 2018 Shaoxing Mo
Yinhao Zhu
Nicholas Zabaras
Xiaoqing Shi
Jichun Wu
1
+ PDF Chat Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network 2021 Martin Gauch
Frederik Kratzert
Daniel Klotz
Grey Nearing
Jimmy Lin
Sepp Hochreiter
1
+ Physics guided machine learning using simplified theories 2021 Suraj Pawar
Omer San
Burak Aksoylu
Adil Rasheed
Trond Kvamsdal
1
+ PDF Chat The Data Synergy Effects of Time‐Series Deep Learning Models in Hydrology 2022 Kuai Fang
Daniel Kifer
Kathryn Lawson
Dapeng Feng
Chaopeng Shen
1
+ Hybrid FEM-NN models: Combining artificial neural networks with the finite element method 2021 Sebastian K. Mitusch
Simon W. Funke
Miroslav Kuchta
1
+ PDF Chat Application of deep learning to large scale riverine flow velocity estimation 2021 Mojtaba Forghani
Yizhou Qian
Jonghyun Lee
Matthew W. Farthing
Tyler Hesser
Peter K. Kitanidis
Eric Darve
1
+ Machine learning–accelerated computational fluid dynamics 2021 Dmitrii Kochkov
Jamie Smith
Ayya Alieva
Mengqing Wang
Michael P. Brenner
Stephan Hoyer
1
+ PDF Chat Continental-scale streamflow modeling of basins with reservoirs: Towards a coherent deep-learning-based strategy 2021 Wenyu Ouyang
Kathryn Lawson
Dapeng Feng
Lei Ye
Chi Zhang
Chaopeng Shen
1
+ PDF Chat Three ways to solve partial differential equations with neural networks — A review 2021 Jan Blechschmidt
Oliver G. Ernst
1
+ PDF Chat Mitigating Prediction Error of Deep Learning Streamflow Models in Large Data‐Sparse Regions With Ensemble Modeling and Soft Data 2021 Dapeng Feng
Kathryn Lawson
Chaopeng Shen
1
+ PDF Chat Variational encoder geostatistical analysis (VEGAS) with an application to large scale riverine bathymetry 2022 Mojtaba Forghani
Yizhou Qian
Jonghyun Lee
Matthew W. Farthing
Tyler Hesser
Peter K. Kitanidis
Eric Darve
1
+ PDF Chat Causality for Machine Learning 2022 Bernhard Schölkopf
1
+ Continuous Deep Equilibrium Models: Training Neural ODEs faster by integrating them to Infinity 2022 Avik Pal
Alan Edelman
Christopher Rackauckas
1
+ PDF Chat Why we need to focus on developing ethical, responsible, and trustworthy artificial intelligence approaches for environmental science 2022 Amy McGovern
Imme Ebert‐Uphoff
David John Gagne
Ann Bostrom
1
+ Bathymetry Inversion using a Deep-Learning-Based Surrogate for Shallow Water Equations Solvers 2022 Xiaofeng Liu
Yalan Song
Chaopeng Shen
1
+ Priors for Infinite Networks 1996 Radford M. Neal
1
+ Machine Learning for Understanding Inland Water Quantity, Quality, and Ecology 2022 Alison Appling
Samantha K. Oliver
Jordan S. Read
Jeffrey M. Sadler
Jacob A. Zwart
1
+ PDF Chat On the principles of Parsimony and Self-consistency for the emergence of intelligence 2022 Yi Ma
Doris Y. Tsao
Heung‐Yeung Shum
1
+ Universal Differential Equations for Scientific Machine Learning 2020 Christopher Rackauckas
Yingbo Ma
Carl Julius Martensen
Collin Warner
Kirill Zubov
Rohit Supekar
Dominic J. Skinner
Ali J. Ramadhan
Alan Edelman
1
+ DeepClouds.ai: Deep learning enabled computationally cheap direct numerical simulations 2022 Moumita Bhowmik
Manmeet Mahinderjit Singh
Suryachandra A. Rao
Souvik Paul
1
+ PDF Chat Differentiable, Learnable, Regionalized Process‐Based Models With Multiphysical Outputs can Approach State‐Of‐The‐Art Hydrologic Prediction Accuracy 2022 Dapeng Feng
Jiangtao Liu
Kathryn Lawson
Chaopeng Shen
1
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
1
+ PDF Chat Distributed long-term hourly streamflow predictions using deep learning – A case study for State of Iowa 2020 Zhongrun Xiang
Ä°brahim Demir
1