+
|
Some exponential Diophantine equations III: a new look at the generalized Lebesgue–Nagell equation
|
2024
|
LE Mao-hua
Gökhan Soydan
|
+
|
On the solutions of some Lebesgue–Ramanujan–Nagell type equations
|
2024
|
Elif Kızıldere Mutlu
Gökhan Soydan
|
+
PDF
Chat
|
An elementary approach to the generalized Ramanujan–Nagell equation
|
2023
|
Elif Kızıldere Mutlu
LE Mao-hua
Gökhan Soydan
|
+
|
An elementary approach to the generalized Ramanujan-Nagell equation
|
2023
|
Elif Kızıldere Mutlu
LE Mao-hua
Gökhan Soydan
|
+
|
Integers of a quadratic field with prescribed sum and product
|
2023
|
Andrew Bremner
Gökhan Soydan
|
+
|
On the Ternary Purely Exponential Diophantine Equation $(ak)^x+(bk)^y=((a+b)k)^z$ with Prime Powers $a$ and $b$
|
2023
|
LE Mao-hua
Gökhan Soydan
|
+
PDF
Chat
|
A modular approach to the generalized Ramanujan–Nagell equation
|
2022
|
Elif Kızıldere Mutlu
LE Mao-hua
Gökhan Soydan
|
+
PDF
Chat
|
On elliptic curves induced by rational Diophantine quadruples
|
2022
|
Andrej Dujella
Gökhan Soydan
|
+
|
A note on the Diophantine equation $$\varvec{x^2=4p^n-4p^m+\ell ^2}$$
|
2021
|
Fadwa S. Abu Muriefah
LE Mao-hua
Gökhan Soydan
|
+
PDF
Chat
|
On a class of generalized Fermat equations of signature (2,2n,3)
|
2021
|
Karolina Chałupka
Andrzej Dąbrowski
Gökhan Soydan
|
+
PDF
Chat
|
A note on the ternary Diophantine equation <i>x</i> <sup>2</sup> − <i>y</i> <sup>2</sup> <i> <sup>m</sup> </i> = z<i> <sup>n</sup> </i>
|
2021
|
Attila Bérczes
LE Mao-hua
István Pink
Gökhan Soydan
|
+
PDF
Chat
|
Rational points in geometric progression on the unit circle
|
2021
|
Gamze Savaş Çelik
Mohammad Sadek
Gökhan Soydan
|
+
PDF
Chat
|
A note on Terai's conjecture concerning primitive Pythagorean triples
|
2021
|
LE Mao-hua
Gökhan Soydan
|
+
|
On a class of generalized Fermat equations of signature $(2,2n,3)$
|
2021
|
Karolina Chałupka
Andrzej Dąbrowski
Gökhan Soydan
|
+
|
On the power values of the sum of three squares in arithmetic progression
|
2021
|
LE Mao-hua
Gökhan Soydan
|
+
|
The Shuffle Variant of a Diophantine equation of Miyazaki and Togbé
|
2021
|
Elif Kızıldere Mutlu
Gökhan Soydan
Qing Han
Pingzhi Yuan
|
+
|
A modular approach to the generalized Ramanujan-Nagell equation
|
2021
|
Elif Kızıldere Mutlu
LE Mao-hua
Gökhan Soydan
|
+
|
On a class of generalized Fermat equations of signature $(2,2n,3)$
|
2021
|
Karolina Chałupka
Andrzej Dąbrowski
Gökhan Soydan
|
+
PDF
Chat
|
A note on the exponential Diophantine equation (A^2n)^x+(B^2n)^y=((A^2+B^2)n)^z
|
2020
|
LE Mao-hua
Gökhan Soydan
|
+
|
Rational Points in Geometric Progression on the Unit Circle
|
2020
|
Gamze Savaş Çelik
Mohammad Sadek
Gökhan Soydan
|
+
PDF
Chat
|
Resolution of the equation $(3^{x_1}-1)(3^{x_2}-1)=(5^{y_1}-1)(5^{y_2}-1)$
|
2020
|
Kálmán Liptai
László Németh
Gökhan Soydan
László Szalay
|
+
|
A note on the ternary purely exponential diophantine equation Ax + By = Cz with A + B = C2
|
2020
|
Elif Kızıldere Mutlu
LE Mao-hua
Gökhan Soydan
|
+
|
A brief survey on the generalized lebesgue-ramanujan-nagell equation
|
2020
|
LE Mao-hua
Gökhan Soydan
|
+
|
On the Diophantine equation $(5pn^{2}-1)^{x}+(p(p-5)n^{2}+1)^{y}=(pn)^{z}$
|
2020
|
Elif Kızıldere Mutlu
Gökhan Soydan
|
+
|
On a class of Lebesgue-Ljunggren-Nagell type equations
|
2020
|
Andrzej Dąbrowski
Nursena Günhan Ay
Gökhan Soydan
|
+
|
On a class of Lebesgue-Ljunggren-Nagell type equations
|
2020
|
Andrzej Dąbrowski
Nursena Günhan Ay
Gökhan Soydan
|
+
|
The Diophantine equation $(x+1)^k+(x+2)^k+\cdots+(\ell x)^k=y^n$ revisited
|
2020
|
Daniele Bartoli
Gökhan Soydan
|
+
|
A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation
|
2020
|
LE Mao-hua
Gökhan Soydan
|
+
|
A note on the ternary purely exponential Diophantine equation $A^x+B^y=C^z$ with $A+B=C^2$
|
2020
|
Elif Kızıldere Mutlu
LE Mao-hua
Gökhan Soydan
|
+
PDF
Chat
|
On the exponential Diophantine equation $(n-1)^{x}+(n+2)^{y}=n^{z}$
|
2020
|
Hairong Bai
Elif Kızıldere Mutlu
Gökhan Soydan
Pingzhi Yuan
|
+
|
Rational Points in Geometric Progression on the Unit Circle
|
2020
|
Gamze Savaş Çelik
Mohammad Sadek
Gökhan Soydan
|
+
|
On a class of Lebesgue-Ljunggren-Nagell type equations
|
2020
|
Andrzej Dąbrowski
Nursena Günhan Ay
Gökhan Soydan
|
+
|
On the Diophantine equation $(5pn^{2}-1)^{x}+(p(p-5)n^{2}+1)^{y}=(pn)^{z}$
|
2020
|
Elif Kızıldere Mutlu
Gökhan Soydan
|
+
PDF
Chat
|
An application of Baker’s method to the Jeśmanowicz’ conjecture on primitive Pythagorean triples
|
2019
|
LE Mao-hua
Gökhan Soydan
|
+
PDF
Chat
|
Rational sequences on different models of elliptic curves
|
2019
|
Gamze Savaş Çelik
Mohammad Sadek
Gökhan Soydan
|
+
|
Rational sequences on different models of elliptic curves
|
2019
|
Gamze Savaş Çelik
Mohammad Sadek
Gökhan Soydan
|
+
|
Rational sequences on different models of elliptic curves
|
2019
|
Gamze Savaş ÇELİK
Mohammad Sadek
Gökhan Soydan
|
+
PDF
Chat
|
Elliptic curves containing sequences of consecutive cubes
|
2018
|
Gamze Savaş Çelik
Gökhan Soydan
|
+
|
On the Diophantine equation (( c + 1) m 2 + 1) x + ( cm 2
|
2018
|
Elif Kızıldere Mutlu
Takafumi Miyazaki
Gökhan Soydan
|
+
|
Elliptic Curves Containing Sequences of Consecutive Cubes
|
2018
|
Gamze Savaş Çelik
Gökhan Soydan
|
+
|
Elliptic Curves Containing Sequences of Consecutive Cubes
|
2018
|
Gamze Savaş Çelik
Gökhan Soydan
|
+
|
On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+\cdots+(lx)^{k}=y^{n}$
|
2017
|
Gökhan Soydan
|
+
|
On the Diophantine equation (x+ 1) + (x+ 2) + ... + (2x) =y
|
2017
|
Attila Bérczes
István Pink
Gamze Savaş
Gökhan Soydan
|
+
|
A note on the Diophantine equations $x^{2}\pm5^{\alpha}\cdot p^{n}=y^{n}$
|
2017
|
Gökhan Soydan
|
+
|
Complete solution of the Diophantine Equation $x^{2}+5^{a}\cdot 11^{b}=y^{n}$
|
2017
|
Gökhan Soydan
Nikos Tzanakis
|
+
|
On the conjecture of Jeśmanowicz
|
2017
|
Gökhan Soydan
Musa Demi̇rci̇
İsmail Naci Cangül
Alain Togbé
|
+
|
A note on the Diophantine equations $x^{2}\pm5^α\cdot p^{n}=y^{n}$
|
2017
|
Gökhan Soydan
|
+
|
On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+...+(lx)^{k}=y^{n}$
|
2017
|
Gökhan Soydan
|
+
|
On the exponential Diophantine equation $$x^{2}+2^{a}p^{b}=y^{n}$$ x 2 + 2 a p b = y n
|
2015
|
Huilin Zhu
LE Mao-hua
Gökhan Soydan
Alain Togbé
|
+
|
Note on “On the Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>n</mml:mi><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>m</mml:mi></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></…
|
2014
|
Gökhan Soydan
İsmail Naci Cangül
|
+
PDF
Chat
|
Corrigendum to "On the Diophantine equation $X^2+7^\alpha.11^\beta=y^n$ [Miskolc Math. Notes, Vol.13 (2012) No. 2, pp. 515-527]
|
2014
|
Gökhan Soydan
|
+
PDF
Chat
|
On the diophantine equation x 2 + 2a · 3b · 11c = y n
|
2013
|
İsmail Naci Cangül
Musa Demi̇rci̇
İlker Inam
Florian Luca
Gökhan Soydan
|
+
|
On the Diophantine equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mi>n</mml:mi><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math>
|
2012
|
Florian Luca
Gökhan Soydan
|
+
|
On the diophantine equation x 2 + 2 a · 19 b = y n
|
2012
|
Gökhan Soydan
Maciej Ulas
Hui Lin Zhu
|
+
|
On the Diophantine equation x^2+2^a.3^b.11^c=y^n
|
2012
|
İsmail Naci Cangül
Musa Demi̇rci̇
İlker Inam
Florian Luca
Gökhan Soydan
|
+
|
On the Diophantine equation x^2+7^{alpha}.11^{beta}=y^n
|
2012
|
Gökhan Soydan
|
+
PDF
Chat
|
On the ratio of directed lengths on the plane with generalized absolute value metric and related properties
|
2012
|
Gökhan Soydan
Yusuf Doğru
Umut Arslandoğan
|
+
|
The Diophantine Equation x^{2}+11^{m}=y^{n}
|
2011
|
Gökhan Soydan
Musa Demi̇rci̇
İsmail Naci Cangül
|
+
|
The Group Structure of Bachet Elliptic Curves over Finite Fields F_{p}
|
2011
|
Nazlı Yıldız İkikardeş
Musa Demi̇rci̇
Gökhan Soydan
İsmail Naci Cangül
|
+
PDF
Chat
|
The Pythagorean theorem and area formula for triangles on the plane with generalized absolute value metric
|
2011
|
Gökhan Soydan
Yusuf Doğru
N. UMUT ARSLANDOGAN
|
+
|
The Diophantine Equation x^{2}+11^{m}=y^{n}
|
2011
|
Gökhan Soydan
Musa Demi̇rci̇
İsmail Naci Cangül
|
+
|
The Group Structure of Bachet Elliptic Curves over Finite Fields F_{p}
|
2011
|
Nazlı Yıldız İkikardeş
Musa Demi̇rci̇
Gökhan Soydan
İsmail Naci Cangül
|
+
PDF
Chat
|
On the diophantine equation $x^{2}+5^{a}\cdot 11^{b}=y^{n}$
|
2010
|
Musa Demi̇rci̇
İsmail Naci Cangül
Gökhan Soydan
Nikos Tzanakis
|
+
|
On the Diophantine Equation <i>x</i> <sup>2</sup> + 2 <sup> <i>a</i> </sup> · 11 <sup> <i>b</i> </sup> = <i>y</i> <sup> <i>n</i> </sup>
|
2010
|
İsmail Naci Cangül
Musa Demi̇rci̇
Florian Luca
Ákos Pintér
Gökhan Soydan
|
+
|
On the Diophantine Equation $x^{2}+5^{a}\cdot 11^{b}=y^{n} $
|
2010
|
İsmail Naci Cangül
Musa Demi̇rci̇
Gökhan Soydan
Nikos Tzanakis
|
+
PDF
Chat
|
The group structure of Bachet elliptic curves over finite fields $F_p$
|
2009
|
Nazlı Yıldız İkikardeş
Musa Demi̇rci̇
Gökhan Soydan
İsmail Naci Cangül
|
+
PDF
Chat
|
A p-adic Look at the Diophantine Equation x[sup 2]+11[sup 2k] = y[sup n]
|
2009
|
İsmail Naci Cangül
Gökhan Soydan
Yılmaz Şimşek
Theodore E. Simos
George Psihoyios
Ch. Tsitouras
|
+
PDF
Chat
|
Rational Points on Elliptic Curves $y^{2}=x^{3}+a^{3}$ in ${\bf F}_p$ where $p\equiv 1\pmod6$ is Prime
|
2007
|
Musa Demi̇rci̇
Gökhan Soydan
İsmail Naci Cangül
|
+
PDF
Chat
|
CORRIGENDUM ON "THE NUMBER OF POINTS ON ELLIPTIC CURVES E:y<sup>2</sup>=x<sup>3</sup>+cx OVER 𝔽<sub>p</sub>MOD 8"
|
2007
|
İlker Inam
Gökhan Soydan
Musa Demi̇rci̇
Osman BiZim
İsmail Naci Cangül
|
+
|
The Number of Rational Points on Elliptic Curves y2 = x3 + a3 on Finite Fields
|
2007
|
Musa Demi̇rci̇
Nazlı Yıldız İkikardeş
Gökhan Soydan
İsmail Naci Cangül
|
+
PDF
Chat
|
Rational Points on Elliptic Curves 2 3 3y = x + a inF , where p 5(mod 6) is Prime
|
2007
|
Gökhan Soydan
Musa Demi̇rci̇
Nazlı Yıldız İkikardeş
İsmail Naci Cangül
|
+
|
Classification of the Bachet Elliptic Curves y2 = x3 + a3 in Fp, where p ≡ 1 (mod 6) is Prime
|
2007
|
Nazlı Yıldız İkikardeş
Gökhan Soydan
Musa Demi̇rci̇
İsmail Naci Cangül
|
+
|
On the additive structure of the set of quadratic residues modulo p
|
2000
|
İsmail Naci Cangül
Musa Demi̇rci̇
Nazli Yildiz
Gökhan Soydan
|