Gökhan Soydan

Follow

Generating author description...

All published works
Action Title Year Authors
+ Some exponential Diophantine equations III: a new look at the generalized Lebesgue–Nagell equation 2024 LE Mao-hua
Gökhan Soydan
+ On the solutions of some Lebesgue–Ramanujan–Nagell type equations 2024 Elif Kızıldere Mutlu
Gökhan Soydan
+ PDF Chat An elementary approach to the generalized Ramanujan–Nagell equation 2023 Elif Kızıldere Mutlu
LE Mao-hua
Gökhan Soydan
+ An elementary approach to the generalized Ramanujan-Nagell equation 2023 Elif Kızıldere Mutlu
LE Mao-hua
Gökhan Soydan
+ Integers of a quadratic field with prescribed sum and product 2023 Andrew Bremner
Gökhan Soydan
+ On the Ternary Purely Exponential Diophantine Equation $(ak)^x+(bk)^y=((a+b)k)^z$ with Prime Powers $a$ and $b$ 2023 LE Mao-hua
Gökhan Soydan
+ PDF Chat A modular approach to the generalized Ramanujan–Nagell equation 2022 Elif Kızıldere Mutlu
LE Mao-hua
Gökhan Soydan
+ PDF Chat On elliptic curves induced by rational Diophantine quadruples 2022 Andrej Dujella
Gökhan Soydan
+ A note on the Diophantine equation $$\varvec{x^2=4p^n-4p^m+\ell ^2}$$ 2021 Fadwa S. Abu Muriefah
LE Mao-hua
Gökhan Soydan
+ PDF Chat On a class of generalized Fermat equations of signature (2,2n,3) 2021 Karolina Chałupka
Andrzej Dąbrowski
Gökhan Soydan
+ PDF Chat A note on the ternary Diophantine equation <i>x</i> <sup>2</sup> − <i>y</i> <sup>2</sup> <i> <sup>m</sup> </i> = z<i> <sup>n</sup> </i> 2021 Attila Bérczes
LE Mao-hua
István Pink
Gökhan Soydan
+ PDF Chat Rational points in geometric progression on the unit circle 2021 Gamze Savaş Çelik
Mohammad Sadek
Gökhan Soydan
+ PDF Chat A note on Terai's conjecture concerning primitive Pythagorean triples 2021 LE Mao-hua
Gökhan Soydan
+ On a class of generalized Fermat equations of signature $(2,2n,3)$ 2021 Karolina Chałupka
Andrzej Dąbrowski
Gökhan Soydan
+ On the power values of the sum of three squares in arithmetic progression 2021 LE Mao-hua
Gökhan Soydan
+ The Shuffle Variant of a Diophantine equation of Miyazaki and Togbé 2021 Elif Kızıldere Mutlu
Gökhan Soydan
Qing Han
Pingzhi Yuan
+ A modular approach to the generalized Ramanujan-Nagell equation 2021 Elif Kızıldere Mutlu
LE Mao-hua
Gökhan Soydan
+ On a class of generalized Fermat equations of signature $(2,2n,3)$ 2021 Karolina Chałupka
Andrzej Dąbrowski
Gökhan Soydan
+ PDF Chat A note on the exponential Diophantine equation (A^2n)^x+(B^2n)^y=((A^2+B^2)n)^z 2020 LE Mao-hua
Gökhan Soydan
+ Rational Points in Geometric Progression on the Unit Circle 2020 Gamze Savaş Çelik
Mohammad Sadek
Gökhan Soydan
+ PDF Chat Resolution of the equation $(3^{x_1}-1)(3^{x_2}-1)=(5^{y_1}-1)(5^{y_2}-1)$ 2020 Kálmán Liptai
László Németh
Gökhan Soydan
László Szalay
+ A note on the ternary purely exponential diophantine equation Ax + By = Cz with A + B = C2 2020 Elif Kızıldere Mutlu
LE Mao-hua
Gökhan Soydan
+ A brief survey on the generalized lebesgue-ramanujan-nagell equation 2020 LE Mao-hua
Gökhan Soydan
+ On the Diophantine equation $(5pn^{2}-1)^{x}+(p(p-5)n^{2}+1)^{y}=(pn)^{z}$ 2020 Elif Kızıldere Mutlu
Gökhan Soydan
+ On a class of Lebesgue-Ljunggren-Nagell type equations 2020 Andrzej Dąbrowski
Nursena Günhan Ay
Gökhan Soydan
+ On a class of Lebesgue-Ljunggren-Nagell type equations 2020 Andrzej Dąbrowski
Nursena Günhan Ay
Gökhan Soydan
+ The Diophantine equation $(x+1)^k+(x+2)^k+\cdots+(\ell x)^k=y^n$ revisited 2020 Daniele Bartoli
Gökhan Soydan
+ A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation 2020 LE Mao-hua
Gökhan Soydan
+ A note on the ternary purely exponential Diophantine equation $A^x+B^y=C^z$ with $A+B=C^2$ 2020 Elif Kızıldere Mutlu
LE Mao-hua
Gökhan Soydan
+ PDF Chat On the exponential Diophantine equation $(n-1)^{x}+(n+2)^{y}=n^{z}$ 2020 Hairong Bai
Elif Kızıldere Mutlu
Gökhan Soydan
Pingzhi Yuan
+ Rational Points in Geometric Progression on the Unit Circle 2020 Gamze Savaş Çelik
Mohammad Sadek
Gökhan Soydan
+ On a class of Lebesgue-Ljunggren-Nagell type equations 2020 Andrzej Dąbrowski
Nursena Günhan Ay
Gökhan Soydan
+ On the Diophantine equation $(5pn^{2}-1)^{x}+(p(p-5)n^{2}+1)^{y}=(pn)^{z}$ 2020 Elif Kızıldere Mutlu
Gökhan Soydan
+ PDF Chat An application of Baker’s method to the Jeśmanowicz’ conjecture on primitive Pythagorean triples 2019 LE Mao-hua
Gökhan Soydan
+ PDF Chat Rational sequences on different models of elliptic curves 2019 Gamze Savaş Çelik
Mohammad Sadek
Gökhan Soydan
+ Rational sequences on different models of elliptic curves 2019 Gamze Savaş Çelik
Mohammad Sadek
Gökhan Soydan
+ Rational sequences on different models of elliptic curves 2019 Gamze Savaş ÇELİK
Mohammad Sadek
Gökhan Soydan
+ PDF Chat Elliptic curves containing sequences of consecutive cubes 2018 Gamze Savaş Çelik
Gökhan Soydan
+ On the Diophantine equation (( c + 1) m 2 + 1) x + ( cm 2 2018 Elif Kızıldere Mutlu
Takafumi Miyazaki
Gökhan Soydan
+ Elliptic Curves Containing Sequences of Consecutive Cubes 2018 Gamze Savaş Çelik
Gökhan Soydan
+ Elliptic Curves Containing Sequences of Consecutive Cubes 2018 Gamze Savaş Çelik
Gökhan Soydan
+ On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+\cdots+(lx)^{k}=y^{n}$ 2017 Gökhan Soydan
+ On the Diophantine equation (x+ 1) + (x+ 2) + ... + (2x) =y 2017 Attila Bérczes
István Pink
Gamze Savaş
Gökhan Soydan
+ A note on the Diophantine equations $x^{2}\pm5^{\alpha}\cdot p^{n}=y^{n}$ 2017 Gökhan Soydan
+ Complete solution of the Diophantine Equation $x^{2}+5^{a}\cdot 11^{b}=y^{n}$ 2017 Gökhan Soydan
Nikos Tzanakis
+ On the conjecture of Jeśmanowicz 2017 Gökhan Soydan
Musa Demi̇rci̇
İsmail Naci Cangül
Alain Togbé
+ A note on the Diophantine equations $x^{2}\pm5^α\cdot p^{n}=y^{n}$ 2017 Gökhan Soydan
+ On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+...+(lx)^{k}=y^{n}$ 2017 Gökhan Soydan
+ On the exponential Diophantine equation $$x^{2}+2^{a}p^{b}=y^{n}$$ x 2 + 2 a p b = y n 2015 Huilin Zhu
LE Mao-hua
Gökhan Soydan
Alain Togbé
+ Note on “On the Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>n</mml:mi><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>m</mml:mi></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></… 2014 Gökhan Soydan
İsmail Naci Cangül
+ PDF Chat Corrigendum to "On the Diophantine equation $X^2+7^\alpha.11^\beta=y^n$ [Miskolc Math. Notes, Vol.13 (2012) No. 2, pp. 515-527] 2014 Gökhan Soydan
+ PDF Chat On the diophantine equation x 2 + 2a · 3b · 11c = y n 2013 İsmail Naci Cangül
Musa Demi̇rci̇
İlker Inam
Florian Luca
Gökhan Soydan
+ On the Diophantine equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mi>n</mml:mi><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math> 2012 Florian Luca
Gökhan Soydan
+ On the diophantine equation x 2 + 2 a · 19 b = y n 2012 Gökhan Soydan
Maciej Ulas
Hui Lin Zhu
+ On the Diophantine equation x^2+2^a.3^b.11^c=y^n 2012 İsmail Naci Cangül
Musa Demi̇rci̇
İlker Inam
Florian Luca
Gökhan Soydan
+ On the Diophantine equation x^2+7^{alpha}.11^{beta}=y^n 2012 Gökhan Soydan
+ PDF Chat On the ratio of directed lengths on the plane with generalized absolute value metric and related properties 2012 Gökhan Soydan
Yusuf Doğru
Umut Arslandoğan
+ The Diophantine Equation x^{2}+11^{m}=y^{n} 2011 Gökhan Soydan
Musa Demi̇rci̇
İsmail Naci Cangül
+ The Group Structure of Bachet Elliptic Curves over Finite Fields F_{p} 2011 Nazlı Yıldız İkikardeş
Musa Demi̇rci̇
Gökhan Soydan
İsmail Naci Cangül
+ PDF Chat The Pythagorean theorem and area formula for triangles on the plane with generalized absolute value metric 2011 Gökhan Soydan
Yusuf Doğru
N. UMUT ARSLANDOGAN
+ The Diophantine Equation x^{2}+11^{m}=y^{n} 2011 Gökhan Soydan
Musa Demi̇rci̇
İsmail Naci Cangül
+ The Group Structure of Bachet Elliptic Curves over Finite Fields F_{p} 2011 Nazlı Yıldız İkikardeş
Musa Demi̇rci̇
Gökhan Soydan
İsmail Naci Cangül
+ PDF Chat On the diophantine equation $x^{2}+5^{a}\cdot 11^{b}=y^{n}$ 2010 Musa Demi̇rci̇
İsmail Naci Cangül
Gökhan Soydan
Nikos Tzanakis
+ On the Diophantine Equation <i>x</i> <sup>2</sup> + 2 <sup> <i>a</i> </sup> · 11 <sup> <i>b</i> </sup> = <i>y</i> <sup> <i>n</i> </sup> 2010 İsmail Naci Cangül
Musa Demi̇rci̇
Florian Luca
Ákos Pintér
Gökhan Soydan
+ On the Diophantine Equation $x^{2}+5^{a}\cdot 11^{b}=y^{n} $ 2010 İsmail Naci Cangül
Musa Demi̇rci̇
Gökhan Soydan
Nikos Tzanakis
+ PDF Chat The group structure of Bachet elliptic curves over finite fields $F_p$ 2009 Nazlı Yıldız İkikardeş
Musa Demi̇rci̇
Gökhan Soydan
İsmail Naci Cangül
+ PDF Chat A p-adic Look at the Diophantine Equation x[sup 2]+11[sup 2k] = y[sup n] 2009 İsmail Naci Cangül
Gökhan Soydan
Yılmaz Şimşek
Theodore E. Simos
George Psihoyios
Ch. Tsitouras
+ PDF Chat Rational Points on Elliptic Curves $y^{2}=x^{3}+a^{3}$ in ${\bf F}_p$ where $p\equiv 1\pmod6$ is Prime 2007 Musa Demi̇rci̇
Gökhan Soydan
İsmail Naci Cangül
+ PDF Chat CORRIGENDUM ON "THE NUMBER OF POINTS ON ELLIPTIC CURVES E:y<sup>2</sup>=x<sup>3</sup>+cx OVER 𝔽<sub>p</sub>MOD 8" 2007 İlker Inam
Gökhan Soydan
Musa Demi̇rci̇
Osman BiZim
İsmail Naci Cangül
+ The Number of Rational Points on Elliptic Curves y2 = x3 + a3 on Finite Fields 2007 Musa Demi̇rci̇
Nazlı Yıldız İkikardeş
Gökhan Soydan
İsmail Naci Cangül
+ PDF Chat Rational Points on Elliptic Curves 2 3 3y = x + a inF , where p 5(mod 6) is Prime 2007 Gökhan Soydan
Musa Demi̇rci̇
Nazlı Yıldız İkikardeş
İsmail Naci Cangül
+ Classification of the Bachet Elliptic Curves y2 = x3 + a3 in Fp, where p ≡ 1 (mod 6) is Prime 2007 Nazlı Yıldız İkikardeş
Gökhan Soydan
Musa Demi̇rci̇
İsmail Naci Cangül
+ On the additive structure of the set of quadratic residues modulo p 2000 İsmail Naci Cangül
Musa Demi̇rci̇
Nazli Yildiz
Gökhan Soydan
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ The Magma Algebra System I: The User Language 1997 Wieb Bosma
John Cannon
Catherine Playoust
20
+ PDF Chat Ternary Diophantine Equations via Galois Representations and Modular Forms 2004 Michael A. Bennett
Chris M. Skinner
13
+ PDF Chat On the Diophantine Equation <i>n</i>(<i>n</i> + <i>d</i>) · · · (<i>n</i> + (<i>k</i> − 1)<i>d</i>) = <i>by</i><sup><i>l</i></sup> 2004 Kálmán Győry
Lajos Hajdu
N. Saradha
12
+ On Cohn's conjecture concerning the diophantine equation¶ x 2 + 2 m = y n 2002 M. Le
10
+ PDF Chat Existence of primitive divisors of Lucas and Lehmer numbers 2001 Yonatan Bilu
Guillaume Hanrot
Paul Voutier
10
+ Some Exponential Diophantine Equations. I. The Equation D1x2 − D2y2 = λkz 1995 LE Mao-hua
8
+ PDF Chat The diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$x^2 + 3^m = y^n$" id="E1"><mml:mrow><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mn>3</mml:mn><mml:mi>m</mml:mi></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:math> 1996 Salmawaty Arif
Fadwa S. Abu Muriefah
7
+ PDF Chat On Arithmetic Progressions on Elliptic Curves 1999 Andrew Bremner
6
+ On the diophantine equation x2 + p2k = yn 2008 Attila Bérczes
István Pink
6
+ PDF Chat Linear forms in two logarithms and interpolation determinants II 2008 Laurent Michel
6
+ PDF Chat On the equation <i>x</i><sup>2</sup> + 2<sup><i>a</i></sup> · 3<sup><i>b</i></sup> = <i>y</i><sup><i>n</i></sup> 2002 Florian Luca
6
+ PDF Chat On Arithmetic Progressions on Genus Two Curves 2009 Maciej Ulas
6
+ PDF Chat On the Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$x^2 + 2^k = y^n $" id="E1"><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mi>k</mml:mi></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math> 1995 Salmawaty Arif
Fadwa S. Abu Muriefah
6
+ Rational points in geometric progressions on certain hyperelliptic curves 2013 Andrew Bremner
Maciej Ulas
6
+ Generalized Fermat equations: A miscellany 2014 Michael A. Bennett
Imin Chen
Sander R. Dahmen
Soroosh Yazdani
6
+ PDF Chat ON THE DIOPHANTINE EQUATION x2 + 52k = yn 2006 Fadwa S. Abu Muriefah
5
+ PDF Chat Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation 2006 Yann Bugeaud
Maurice Mignotte
Samir Siksek
5
+ ON THE DIOPHANTINE EQUATION x<sup>2</sup> + 2<sup>a</sup> · 5<sup>b</sup> = y<sup>n</sup> 2008 Florian Luca
Alain Togbé
5
+ Diophantine equations 1969 L. J. Mordell
5
+ On the Numerical Factors of the Arithmetic Forms α n ± β n 1913 R. D. Carmichael
5
+ PDF Chat The Arithmetic of Elliptic Curves 1986 Joseph H. Silverman
5
+ PDF Chat Les nombres de Lucas et Lehmer sans diviseur primitif 2006 Mourad Abouzaid
5
+ PDF Chat On Generalized Lebesgue-Ramanujan-Nagell Equations 2014 Attila Bérczes
István Pink
5
+ On the Diophantine Equation x 2 + 2 α 5 β 13 γ = y n 2008 Edray Herber Goins
Florian Luca
Alain Togbé
5
+ Integral solutions in arithmetic progression for y2=x3+k 1992 J. -B. Lee
William Vélez
5
+ PDF Chat A NOTE ON THE DIOPHANTINE EQUATION 2013 MOU JIE DENG
5
+ 14-term Arithmetic Progressions on Quartic Elliptic Curves 2006 Allan J. MacLeod
4
+ PDF Chat ON THE DIOPHANTINE EQUATION <i>x</i><sup>2</sup> + 5<sup><i>a</i></sup> 13<sup><i>b</i></sup> = <i>y</i><sup><i>n</i></sup> 2008 Fadwa S. Abu Muriefah
Florian Luca
Alain Togbé
4
+ PDF Chat A REFINED MODULAR APPROACH TO THE DIOPHANTINE EQUATION x<sup>2</sup> + y<sup>2n</sup> = z<sup>3</sup> 2011 Sander R. Dahmen
4
+ PDF Chat On sequences of consecutive squares on elliptic curves 2017 Mohamed Kamel
Mohammad Sadek
4
+ A Note on Arithmetic Progressions on Quartic Elliptic Curves 2005 Maciej Ulas
4
+ The Generalized Fermat Equation 2016 Michael A. Bennett
Preda Mihăilescu
Samir Siksek
4
+ PDF Chat Computing all S-integral points on elliptic curves 1999 Attila Pethö
Horst G. Zimmer
Josef Gebel
Emanuel Herrmann
4
+ An upper bound for least solutions of the exponential Diophantine equation D<sub>1</sub>x<sup>2</sup> - D<sub>2</sub>y<sup>2</sup> = λk<sup>z</sup> 2014 Hai Yang
Ruiqin Fu
4
+ PDF Chat Geometric progressions on elliptic curves 2017 Abdoul Aziz Ciss
Dustin Moody
4
+ PDF Chat Primitive Divisors of Lucas and Lehmer Sequences 1995 Paul Voutier
4
+ PDF Chat On The Diophantine Equation <i>ay</i> <sup>2</sup> $ <i>by</i> $c = <i>dx</i> <sup>n</sup> 1921 Edmund Landau
Alexander Ostrowski
4
+ Algorithms for Modular Elliptic Curves 1992 J. E. Cremona
4
+ PDF Chat On a Diophantine Equation 1951 Péter L. Erdős
4
+ On the Diophantine equation x 2+5 m =y n 2009 Liqun Tao
4
+ PDF Chat On the Lebesgue–Nagell equation 2011 Andrzej Dąbrowski
4
+ Modular Elliptic Curves and Fermat's Last Theorem 1995 Andrew Wiles
4
+ TERAI'S CONJECTURE ON EXPONENTIAL DIOPHANTINE EQUATIONS 2011 Takafumi Miyazaki
4
+ On the Diophantine Equation x2+q2k+1=yn 2002 Salmawaty Arif
Fadwa S. Abu Muriefah
4
+ A NOTE ON ARITHMETIC PROGRESSIONS ON ELLIPTIC CURVES 2003 Garikai Campbell
4
+ PDF Chat A NOTE ON THE DIOPHANTINE EQUATION 2013 Nobuhiro Terai
4
+ An Arithmetic Progression on Quintic Curves 2009 Alejandra Alvarado
4
+ Primary cyclotomic units and a proof of Catalans conjecture 2004 Preda Mihăilescu
4
+ PDF Chat The Modular Approach to Diophantine Equations 2008 Samir Siksek
3
+ Ring-Theoretic Properties of Certain Hecke Algebras 1995 Richard Taylor
Andrew Wiles
3