Petra Kuhnert

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Gaussian Ensemble Belief Propagation for Efficient Inference in High-Dimensional Systems 2024 Daniel MacKinlay
Russell Tsuchida
Dan Pagendam
Petra Kuhnert
+ Resolving Ethics Trade-offs in Implementing Responsible AI 2024 Conrad Sanderson
Emma Schleiger
David C. Douglas
Petra Kuhnert
Qinghua Lu
+ PDF Chat Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires 2023 Joel Janek Dabrowski
Dan Pagendam
James Hilton
Conrad Sanderson
Daniel MacKinlay
Carolyn Huston
Andrew Bolt
Petra Kuhnert
+ A Neural Emulator for Uncertainty Estimation of Fire Propagation 2023 Andrew Bolt
Conrad Sanderson
Joel Janek Dabrowski
Carolyn Huston
Petra Kuhnert
+ A Neural Emulator for Uncertainty Estimation of Fire Propagation 2023 Andrew Bolt
Conrad Sanderson
Joel Janek Dabrowski
Carolyn Huston
Petra Kuhnert
+ PDF Chat A Spatio-Temporal Neural Network Forecasting Approach for Emulation of Firefront Models 2022 Andrew Bolt
Carolyn Huston
Petra Kuhnert
Joel Janek Dabrowski
James Hilton
Conrad Sanderson
+ PDF Chat Smallset Timelines: A Visual Representation of Data Preprocessing Decisions 2022 Lydia R Lucchesi
Petra Kuhnert
Jenny L. Davis
Lexing Xie
+ An Emulation Framework for Fire Front Spread 2022 Andrew Bolt
Joel Janek Dabrowski
Carolyn Huston
Petra Kuhnert
+ A Spatio-Temporal Neural Network Forecasting Approach for Emulation of Firefront Models 2022 Andrew Bolt
Carolyn Huston
Petra Kuhnert
Joel Janek Dabrowski
James Hilton
Conrad Sanderson
+ Towards Data Assimilation in Level-Set Wildfire Models Using Bayesian Filtering 2022 Joel Janek Dabrowski
Carolyn Huston
James Hilton
Stéphane Mangeon
Petra Kuhnert
+ Bayesian Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires 2022 Joel Janek Dabrowski
Dan Pagendam
James Hilton
Conrad Sanderson
Daniel MacKinlay
Carolyn Huston
Andrew Bolt
Petra Kuhnert
+ Smallset Timelines: A Visual Representation of Data Preprocessing Decisions 2022 Lydia R Lucchesi
Petra Kuhnert
Jenny Davis
Lexing Xie
+ The Provision and Utility of Science and Uncertainty to Decision-Makers: Earth Science Case Studies 2018 Mark Quigley
Luke G. Bennetts
Patricia Durance
Petra Kuhnert
Mark Lindsay
Keith G. Pembleton
Melanie E. Roberts
Christopher J. White
+ PDF Chat Comment 2018 Petra Kuhnert
+ Bayesian Model Comparison: Review and Discussion 2005 Clair Alston‐Knox
Petra Kuhnert
Samantha Low‐Choy
R. McVinish
Kerrie Mengersen
+ Bridging the Gap between Different Statistical Approaches: An Integrated Framework for Modelling 2003 Petra Kuhnert
Kerrie Mengersen
Peter Tesar
+ Reliability Measures for Local Nodes Assessment in Classification Trees 2003 Petra Kuhnert
Kerrie Mengersen
+ Genetic analysis of the age at menopause by using estimating equations and Bayesian random effects models 2000 K-A Do
Bradley M. Broom
Petra Kuhnert
David L. Duffy
Alexandre A. Todorov
Susan A. Treloar
Nicholas G. Martin
+ Genetic analysis of the age at menopause by using estimating equations and Bayesian random effects models 2000 K-A Do
Bradley M. Broom
Petra Kuhnert
David L. Duffy
Alexandre A. Todorov
Susan A. Treloar
Nicholas G. Martin
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Convolutional LSTM Neural Networks for Modeling Wildland Fire Dynamics 2020 John Burge
Matthew Bonanni
Matthias Ihme
Ricky Hu
3
+ TensorFlow: A system for large-scale machine learning 2016 Martı́n Abadi
Paul Barham
Jianmin Chen
Zhifeng Chen
Andy Davis
Jay B. Dean
Matthieu Devin
Sanjay Ghemawat
Geoffrey Irving
Michael Isard
3
+ Modeling 3‐D spatio‐temporal biogeochemical processes with a forest of 1‐D statistical emulators 2012 William B. Leeds
Christopher K. Wikle
JĂ©rĂŽme Fiechter
Jeremiah Brown
Ralph F. Milliff
3
+ Modeling wildland fire propagation with level set methods 2009 Vivien Mallet
David E. Keyes
F. E. Fendell
3
+ A review of machine learning applications in wildfire science and management 2020 Piyush Jain
Sean C. P. Coogan
Sriram Ganapathi Subramanian
Mark Crowley
Steve Taylor
Mike Flannigan
3
+ Building high accuracy emulators for scientific simulations with deep neural architecture search 2021 Muhammad Kasim
Duncan Watson‐Parris
Lucia Deaconu
Sophy Oliver
Peter Hatfield
D. H. Froula
Giovanni Gregori
M. J. Jarvis
Samar Khatiwala
Jun Korenaga
3
+ Opportunistic emulation of computationally expensive simulations via Deep Learning 2021 Conrad Sanderson
Dan Pagendam
Brendan Power
Frederick Bennett
Ross Darnell
3
+ PDF Chat Bayesian Physics Informed Neural Networks for data assimilation and spatio-temporal modelling of wildfires 2023 Joel Janek Dabrowski
Dan Pagendam
James Hilton
Conrad Sanderson
Daniel MacKinlay
Carolyn Huston
Andrew Bolt
Petra Kuhnert
2
+ Combining non-parametric models with logistic regression: an application to motor vehicle injury data 2000 Petra Kuhnert
Kim‐Anh Do
Rod McClure
2
+ Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images 1984 Stuart Geman
Donald Geman
2
+ PDF Chat Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors) 2000 Jerome H. Friedman
Trevor Hastie
Robert Tibshirani
2
+ Which Neural Net Architectures Give Rise To Exploding and Vanishing Gradients? 2018 Boris Hanin
2
+ PDF Chat Inference from Iterative Simulation Using Multiple Sequences 1992 Andrew Gelman
Donald B. Rubin
2
+ PDF Chat A comprehensive review of deep learning applications in hydrology and water resources 2020 Muhammed Sit
Bekir Demiray
Zhongrun Xiang
Gregory J. Ewing
Yusuf Sermet
Ä°brahim Demir
2
+ Improving Deep Learning Interpretability by Saliency Guided Training. 2021 Aya Abdelsalam Ismail
HĂ©ctor Corrada Bravo
Soheil Feizi
2
+ Monte Carlo sampling methods using Markov chains and their applications 1970 W. Keith Hastings
2
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James T. Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
2
+ PDF Chat Monte Carlo Statistical Methods 2000 Hoon Kim
Christian P. Robert
George Casella
1
+ A comparison of two nonparametric estimation schemes: MARS and neural networks 1993 Richard D. De Veaux
Dimitris C. Psichogios
Lyle Ungar
1
+ Assessing familial aggregation of age at onset, by using estimating equations, with application to breast cancer. 1996 Li Hsu
Lue Ping Zhao
1
+ An introduction to multivariate adaptive regression splines 1995 Jerome H. Friedman
Charles B. Roosen
1
+ Bayesian density estimation using bernstein polynomials 1999 Sonia Petrone
1
+ Monte Carlo Estimation of Mixed Models for Large Complex Pedigrees 1994 Sun-Wei Guo
E. A. Thompson
1
+ Correlated Binary Regression with Covariates Specific to Each Binary Observation 1988 Ross L. Prentice
1
+ Reversible Jump MCMC Converging to Birth-and-Death MCMC and More General Continuous Time Samplers 2001 Olivier Cappé
Christian P. Robert
Tobias Rydén
1
+ PDF Chat Bayesian analysis of mixture models with an unknown number of components—an alternative to reversible jump methods 2000 Matthew Stephens
1
+ A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence 1978 David Clayton
1
+ PDF Chat The Method of Path Coefficients 1934 Sewall Wright
1
+ PDF Chat Bayesian Measures of Model Complexity and Fit 2002 David J. Spiegelhalter
Nicola Best
Bradley P. Carlin
Angelika van der Linde
1
+ Stochastic gradient boosting 2002 Jerome H. Friedman
1
+ MARS: A tutorial 1992 Sonja Sekulic
Bruce R. Kowalski
1
+ PDF Chat Deviance information criteria for missing data models 2006 Gilles Celeux
Florence Forbes
Caroline Robert
D. M. Titterington
1
+ Reliability Measures for Local Nodes Assessment in Classification Trees 2003 Petra Kuhnert
Kerrie Mengersen
1
+ Variable Selection via Gibbs Sampling 1993 Edward I. George
Robert E. McCulloch
1
+ On assessing the strength of dependency between failure time variates 1996 Li Hsu
1
+ Recursive Partitioning for the Identification of Disease Risk Subgroups: A Case-Control Study of Subarachnoid Hemorrhage 1998 Lorene M. Nelson
D. Blöch
W. T. Longstreth
Hong Shi
1
+ Bayesian Model Choice Via Markov Chain Monte Carlo Methods 1995 Bradley P. Carlin
Siddhartha Chib
1
+ Bayesian Environmental Policy Decisions: Two Case Studies 1996 Lara J. Wolfson
Joseph B. Kadane
Mitchell J. Small
1
+ Genetic analysis of the age at menopause by using estimating equations and Bayesian random effects models 2000 K-A Do
Bradley M. Broom
Petra Kuhnert
David L. Duffy
Alexandre A. Todorov
Susan A. Treloar
Nicholas G. Martin
1
+ A fast distance‐based approach for determining the number of components in mixtures 2003 Sujit K. Sahu
Russell Cheng
1
+ Bayesian Nonparametric Modeling Using Mixtures of Triangular Distributions 2001 François Perron
Kerrie Mengersen
1
+ Pedigree analysis package vs. MIXD: Fitting the mixed model on a large pedigree 1996 Adam B. Olshen
Ellen M. Wijsman
1
+ Longitudinal data analysis using generalized linear models 1986 Kung‐Yee Liang
Scott L. Zeger
1
+ PDF Chat Bayesian CART Model Search 1998 Hugh Chipman
Edward I. George
Robert E. McCulloch
1
+ PDF Chat Fairness through awareness 2012 Cynthia Dwork
Moritz Hardt
Toniann Pitassi
Omer Reingold
Richard S. Zemel
1
+ Expected-posterior prior distributions for model selection 2002 Jose Perez
1
+ An Introduction to the Bootstrap 1994 Bradley Efron
Robert Tibshirani
1
+ Bayesian Statistics 4. 1993 Jim Q. Smith
J. M. Bernardo
James O. Berger
A. P. Dawid
A. F. M. Smith
1
+ The Advanced Theory of Statistics. 1978 G. M. Clarke
M. G. Kendall
A. Stuart
1
+ Bayesian point null hypothesis testing via the posterior likelihood ratio 2005 Murray Aitkin
Richard J. Boys
Tom Chadwick
1