Ilias Diakonikolas

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat A Near-optimal Algorithm for Learning Margin Halfspaces with Massart Noise 2025 Ilias Diakonikolas
Nikos Zarifis
+ PDF Chat Entangled Mean Estimation in High-Dimensions 2025 Ilias Diakonikolas
Daniel M. Kane
Sihan Liu
Thanasis Pittas
+ PDF Chat Clustering Mixtures of Bounded Covariance Distributions Under Optimal Separation 2025 Ilias Diakonikolas
Daniel M. Kane
Jasper C. H. Lee
Thanasis Pittas
+ PDF Chat Active Learning of General Halfspaces: Label Queries vs Membership Queries 2024 Ilias Diakonikolas
Daniel M. Kane
Mingchen Ma
+ PDF Chat SoS Certificates for Sparse Singular Values and Their Applications: Robust Statistics, Subspace Distortion, and More 2024 Ilias Diakonikolas
Samuel B. Hopkins
Ankit Pensia
Stefan Tiegel
+ PDF Chat Implicit High-Order Moment Tensor Estimation and Learning Latent Variable Models 2024 Ilias Diakonikolas
Daniel M. Kane
+ PDF Chat Reliable Learning of Halfspaces under Gaussian Marginals 2024 Ilias Diakonikolas
Lisheng Ren
Nikos Zarifis
+ PDF Chat Learning a Single Neuron Robustly to Distributional Shifts and Adversarial Label Noise 2024 Shuyao Li
Sushrut Karmalkar
Ilias Diakonikolas
Jelena Diakonikolas
+ PDF Chat Sample and Computationally Efficient Robust Learning of Gaussian Single-Index Models 2024 Puqian Wang
Nikos Zarifis
Ilias Diakonikolas
Jelena Diakonikolas
+ PDF Chat SoS Certifiability of Subgaussian Distributions and its Algorithmic Applications 2024 Ilias Diakonikolas
Samuel B. Hopkins
Ankit Pensia
Stefan Tiegel
+ PDF Chat Sum-of-squares lower bounds for Non-Gaussian Component Analysis 2024 Ilias Diakonikolas
Sushrut Karmalkar
Shuo Pang
Aaron Potechin
+ PDF Chat Efficient Testable Learning of General Halfspaces with Adversarial Label Noise 2024 Ilias Diakonikolas
Daniel M. Kane
Sihan Liu
Nikos Zarifis
+ PDF Chat First Order Stochastic Optimization with Oblivious Noise 2024 Ilias Diakonikolas
Sushrut Karmalkar
Jong-Ho Park
Christos Tzamos
+ Super Non-singular Decompositions of Polynomials and Their Application to Robustly Learning Low-Degree PTFs 2024 Ilias Diakonikolas
D. Kane
Vasilis Kontonis
Sihan Liu
Nikos Zarifis
+ Testing Closeness of Multivariate Distributions via Ramsey Theory 2024 Ilias Diakonikolas
D. Kane
Sihan Liu
+ PDF Chat Online Learning of Halfspaces with Massart Noise 2024 Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ PDF Chat Super Non-singular Decompositions of Polynomials and their Application to Robustly Learning Low-degree PTFs 2024 Ilias Diakonikolas
Daniel M. Kane
Vasilis Kontonis
Sihan Liu
Nikos Zarifis
+ PDF Chat Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination 2024 Ilias Diakonikolas
Daniel M. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
+ PDF Chat Robust Second-Order Nonconvex Optimization and Its Application to Low Rank Matrix Sensing 2024 Shuyao Li
Yu Cheng
Ilias Diakonikolas
Jelena Diakonikolas
Rong Ge
Stephen J. Wright
+ PDF Chat SQ Lower Bounds for Non-Gaussian Component Analysis with Weaker Assumptions 2024 Ilias Diakonikolas
Daniel M. Kane
Lisheng Ren
Yuxin Sun
+ PDF Chat Statistical Query Lower Bounds for Learning Truncated Gaussians 2024 Ilias Diakonikolas
Daniel M. Kane
Thanasis Pittas
Nikos Zarifis
+ PDF Chat Robustly Learning Single-Index Models via Alignment Sharpness 2024 Nikos Zarifis
Puqian Wang
Ilias Diakonikolas
Jelena Diakonikolas
+ PDF Chat How Does Unlabeled Data Provably Help Out-of-Distribution Detection? 2024 Xuefeng Du
Zhen Fang
Ilias Diakonikolas
Yixuan Li
+ PDF Chat Online Robust Mean Estimation 2024 Daniel M. Kane
Ilias Diakonikolas
Hanshen Xiao
Sihan Liu
+ Algorithmic High-Dimensional Robust Statistics 2023 Ilias Diakonikolas
Daniel M. Kane
+ A Strongly Polynomial Algorithm for Approximate Forster Transforms and Its Application to Halfspace Learning 2023 Ilias Diakonikolas
Christos Tzamos
Daniel M. Kane
+ PDF Chat Gaussian Mean Testing Made Simple 2023 Ilias Diakonikolas
Daniel M. Kane
Ankit Pensia
+ Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals 2023 Ilias Diakonikolas
Daniel M. Kane
Lisheng Ren
+ Efficient Testable Learning of Halfspaces with Adversarial Label Noise 2023 Ilias Diakonikolas
Daniel M. Kane
Vasilis Kontonis
Sihan Liu
Nikos Zarifis
+ A Spectral Algorithm for List-Decodable Covariance Estimation in Relative Frobenius Norm 2023 Ilias Diakonikolas
Daniel M. Kane
Jasper C. H. Lee
Ankit Pensia
Thanasis Pittas
+ Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA 2023 Ilias Diakonikolas
Daniel M. Kane
Ankit Pensia
Thanasis Pittas
+ Robustly Learning a Single Neuron via Sharpness 2023 Puqian Wang
Nikos Zarifis
Ilias Diakonikolas
Jelena Diakonikolas
+ SQ Lower Bounds for Learning Bounded Covariance GMMs 2023 Ilias Diakonikolas
Daniel M. Kane
Thanasis Pittas
Nikos Zarifis
+ Information-Computation Tradeoffs for Learning Margin Halfspaces with Random Classification Noise 2023 Ilias Diakonikolas
Jelena Diakonikolas
Daniel M. Kane
Puqian Wang
Nikos Zarifis
+ Near-Optimal Bounds for Learning Gaussian Halfspaces with Random Classification Noise 2023 Ilias Diakonikolas
Jelena Diakonikolas
Daniel M. Kane
Puqian Wang
Nikos Zarifis
+ Efficiently Learning One-Hidden-Layer ReLU Networks via Schur Polynomials 2023 Ilias Diakonikolas
Daniel M. Kane
+ Self-Directed Linear Classification 2023 Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ Distribution-Independent Regression for Generalized Linear Models with Oblivious Corruptions 2023 Ilias Diakonikolas
Sushrut Karmalkar
Jong-Ho Park
Christos Tzamos
+ SQ Lower Bounds for Learning Mixtures of Linear Classifiers 2023 Ilias Diakonikolas
Daniel M. Kane
Yuxin Sun
+ Online Robust Mean Estimation 2023 Daniel M. Kane
Ilias Diakonikolas
Hanshen Xiao
Sihan Liu
+ Testing Closeness of Multivariate Distributions via Ramsey Theory 2023 Ilias Diakonikolas
Daniel M. Kane
Sihan Liu
+ Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean Estimation and Linear Regression 2023 Ilias Diakonikolas
Daniel M. Kane
Ankit Pensia
Thanasis Pittas
+ Clustering Mixtures of Bounded Covariance Distributions Under Optimal Separation 2023 Ilias Diakonikolas
Daniel M. Kane
Jasper C. H. Lee
Thanasis Pittas
+ Agnostically Learning Multi-index Models with Queries 2023 Ilias Diakonikolas
Daniel M. Kane
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ PDF Chat Clustering mixture models in almost-linear time via list-decodable mean estimation 2022 Ilias Diakonikolas
Daniel M. Kane
Daniel Kongsgaard
Jerry Li
Kevin Tian
+ PDF Chat Learning general halfspaces with general Massart noise under the Gaussian distribution 2022 Ilias Diakonikolas
Daniel M. Kane
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ Streaming Algorithms for High-Dimensional Robust Statistics 2022 Ilias Diakonikolas
Daniel M. Kane
Ankit Pensia
Thanasis Pittas
+ Optimal SQ Lower Bounds for Robustly Learning Discrete Product Distributions and Ising Models 2022 Ilias Diakonikolas
Daniel M. Kane
Yuxin Sun
+ Robust Sparse Mean Estimation via Sum of Squares 2022 Ilias Diakonikolas
Daniel M. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
+ List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering 2022 Ilias Diakonikolas
Daniel M. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
+ Learning a Single Neuron with Adversarial Label Noise via Gradient Descent 2022 Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ Near-Optimal Bounds for Testing Histogram Distributions 2022 Clément L. Canonne
Ilias Diakonikolas
Daniel M. Kane
Sihan Liu
+ Cryptographic Hardness of Learning Halfspaces with Massart Noise 2022 Ilias Diakonikolas
Daniel M. Kane
Pasin Manurangsi
Lisheng Ren
+ SQ Lower Bounds for Learning Single Neurons with Massart Noise 2022 Ilias Diakonikolas
Daniel M. Kane
Lisheng Ren
Yuxin Sun
+ Gaussian Mean Testing Made Simple 2022 Ilias Diakonikolas
Daniel M. Kane
Ankit Pensia
+ Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions 2022 Ilias Diakonikolas
Daniel M. Kane
Jasper C. H. Lee
Ankit Pensia
+ A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning 2022 Ilias Diakonikolas
Christos Tzamos
Daniel M. Kane
+ A Nearly Tight Bound for Fitting an Ellipsoid to Gaussian Random Points 2022 Daniel M. Kane
Ilias Diakonikolas
+ Forster Decomposition and Learning Halfspaces with Noise 2021 Ilias Diakonikolas
Daniel M. Kane
Christos Tzamos
+ ReLU Regression with Massart Noise 2021 Ilias Diakonikolas
Jongho Park
Christos Tzamos
+ ReLU Regression with Massart Noise 2021 Ilias Diakonikolas
Jong-Ho Park
Christos Tzamos
+ Threshold Phenomena in Learning Halfspaces with Massart Noise 2021 Ilias Diakonikolas
Daniel M. Kane
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ Outlier-Robust Learning of Ising Models Under Dobrushin's Condition 2021 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
Yuxin Sun
+ The Optimality of Polynomial Regression for Agnostic Learning under Gaussian Marginals 2021 Ilias Diakonikolas
Daniel M. Kane
Thanasis Pittas
Nikos Zarifis
+ The Sample Complexity of Robust Covariance Testing 2021 Ilias Diakonikolas
Daniel M. Kane
+ PDF Chat Optimal testing of discrete distributions with high probability 2021 Ilias Diakonikolas
Themis Gouleakis
Daniel M. Kane
John Peebles
Eric Price
+ PDF Chat Robustness meets algorithms 2021 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+ PDF Chat Rapid Approximate Aggregation with Distribution-Sensitive Interval Guarantees 2021 Stephen Macke
Maryam Aliakbarpour
Ilias Diakonikolas
Aditya Parameswaran
Ronitt Rubinfeld
+ The Optimality of Polynomial Regression for Agnostic Learning under Gaussian Marginals 2021 Ilias Diakonikolas
Daniel M. Kane
Thanasis Pittas
Nikos Zarifis
+ Outlier-Robust Learning of Ising Models Under Dobrushin's Condition 2021 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
Yuxin Sun
+ Forster Decomposition and Learning Halfspaces with Noise 2021 Ilias Diakonikolas
Daniel M. Kane
Christos Tzamos
+ Outlier-Robust Sparse Estimation via Non-Convex Optimization 2021 Yu Cheng
Ilias Diakonikolas
Daniel M. Kane
Rong Ge
Shivam Gupta
Mahdi Soltanolkotabi
+ Non-Gaussian Component Analysis via Lattice Basis Reduction 2021 Ilias Diakonikolas
Daniel M. Kane
+ ReLU Regression with Massart Noise 2021 Ilias Diakonikolas
Jong-Ho Park
Christos Tzamos
+ Learning General Halfspaces with General Massart Noise under the Gaussian Distribution 2021 Ilias Diakonikolas
Daniel M. Kane
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ Boosting in the Presence of Massart Noise 2021 Ilias Diakonikolas
Russell Impagliazzo
Daniel M. Kane
Rex Lei
Jessica Sorrell
Christos Tzamos
+ Agnostic Proper Learning of Halfspaces under Gaussian Marginals 2021 Ilias Diakonikolas
Daniel M. Kane
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ Statistical Query Lower Bounds for List-Decodable Linear Regression 2021 Ilias Diakonikolas
Daniel M. Kane
Ankit Pensia
Thanasis Pittas
Alistair Stewart
+ Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean Estimation 2021 Ilias Diakonikolas
Daniel M. Kane
Daniel Kongsgaard
Jerry Li
Kevin Tian
+ The Sample Complexity of Robust Covariance Testing 2020 Ilias Diakonikolas
Daniel M. Kane
+ Hardness of Learning Halfspaces with Massart Noise. 2020 Ilias Diakonikolas
Daniel M. Kane
+ Robust High-Dimensional Statistics 2020 Ilias Diakonikolas
Daniel M. Kane
+ Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models 2020 Ilias Diakonikolas
Daniel M. Kane
+ List-Decodable Mean Estimation in Nearly-PCA Time 2020 Ilias Diakonikolas
Daniel M. Kane
Daniel Kongsgaard
Jerry Li
Kevin Tian
+ PDF Chat Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models 2020 Ilias Diakonikolas
Daniel M. Kane
+ Outlier-Robust Clustering of Gaussians and Other Non-Spherical Mixtures 2020 Ainesh Bakshi
Ilias Diakonikolas
Samuel B. Hopkins
Daniel M. Kane
Sushrut Karmalkar
Pravesh K. Kothari
+ Optimal Testing of Discrete Distributions with High Probability 2020 Ilias Diakonikolas
Themis Gouleakis
Daniel M. Kane
John Peebles
Eric Price
+ Outlier Robust Mean Estimation with Subgaussian Rates via Stability 2020 Ilias Diakonikolas
Daniel M. Kane
Ankit Pensia
+ Outlier Robust Mean Estimation with Subgaussian Rates via Stability 2020 Ilias Diakonikolas
Daniel M. Kane
Ankit Pensia
+ Approximation Schemes for ReLU Regression 2020 Ilias Diakonikolas
Surbhi Goel
Sushrut Karmalkar
Adam R. Klivans
Mahdi Soltanolkotabi
+ Learning Halfspaces with Tsybakov Noise. 2020 Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ Robustly Learning any Clusterable Mixture of Gaussians. 2020 Ilias Diakonikolas
Samuel B. Hopkins
Daniel M. Kane
Sushrut Karmalkar
+ PDF Chat Near-Optimal Disjoint-Path Facility Location Through Set Cover by Pairs 2020 David Johnson
Lee Breslau
Ilias Diakonikolas
Nick Duffield
Yu Gu
MohammadTaghi Hajiaghayi
Howard Karloff
MaurĂ­cio G. C. Resende
Subhabrata Sen
+ Learning Halfspaces with Massart Noise Under Structured Distributions 2020 Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ PDF Chat Testing Bayesian Networks 2020 Clément L. Canonne
Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Efficient Algorithms for Multidimensional Segmented Regression 2020 Ilias Diakonikolas
Jerry Li
Anastasia Voloshinov
+ High-Dimensional Robust Mean Estimation via Gradient Descent 2020 Yu Cheng
Ilias Diakonikolas
Rong Ge
Mahdi Soltanolkotabi
+ Efficiently Learning Adversarially Robust Halfspaces with Noise 2020 Omar Montasser
Surbhi Goel
Ilias Diakonikolas
Nathan Srebro
+ Approximation Schemes for ReLU Regression 2020 Ilias Diakonikolas
Surbhi Goel
Sushrut Karmalkar
Adam R. Klivans
Mahdi Soltanolkotabi
+ Non-Convex SGD Learns Halfspaces with Adversarial Label Noise 2020 Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ List-Decodable Mean Estimation via Iterative Multi-Filtering 2020 Ilias Diakonikolas
Daniel M. Kane
Daniel Kongsgaard
+ Algorithms and SQ Lower Bounds for PAC Learning One-Hidden-Layer ReLU Networks 2020 Ilias Diakonikolas
Daniel M. Kane
Vasilis Kontonis
Nikos Zarifis
+ Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and ReLUs under Gaussian Marginals 2020 Ilias Diakonikolas
Daniel M. Kane
Nikos Zarifis
+ The Complexity of Adversarially Robust Proper Learning of Halfspaces with Agnostic Noise 2020 Ilias Diakonikolas
Daniel M. Kane
Pasin Manurangsi
+ Learning Halfspaces with Massart Noise Under Structured Distributions 2020 Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ A Polynomial Time Algorithm for Learning Halfspaces with Tsybakov Noise 2020 Ilias Diakonikolas
Daniel M. Kane
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ List-Decodable Mean Estimation via Iterative Multi-Filtering 2020 Ilias Diakonikolas
Daniel M. Kane
Daniel Kongsgaard
+ Optimal Testing of Discrete Distributions with High Probability. 2020 Ilias Diakonikolas
Themis Gouleakis
Daniel M. Kane
John Peebles
Eric Price
+ List-Decodable Mean Estimation in Nearly-PCA Time 2020 Ilias Diakonikolas
Daniel M. Kane
Daniel Kongsgaard
Jerry Li
Kevin Tian
+ The Sample Complexity of Robust Covariance Testing 2020 Ilias Diakonikolas
Daniel M. Kane
+ Near-Optimal Statistical Query Hardness of Learning Halfspaces with Massart Noise 2020 Ilias Diakonikolas
Daniel M. Kane
+ Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models 2020 Ilias Diakonikolas
Daniel M. Kane
+ Robustly Learning Mixtures of $k$ Arbitrary Gaussians 2020 Ainesh Bakshi
Ilias Diakonikolas
Jia He
Daniel M. Kane
Pravesh K. Kothari
Santosh Vempala
+ Optimal Testing of Discrete Distributions with High Probability 2020 Ilias Diakonikolas
Themis Gouleakis
Daniel M. Kane
John Peebles
Eric Price
+ Rapid Approximate Aggregation with Distribution-Sensitive Interval Guarantees 2020 Stephen Macke
Maryam Aliakbarpour
Ilias Diakonikolas
Aditya Parameswaran
Ronitt Rubinfeld
+ Outlier Robust Mean Estimation with Subgaussian Rates via Stability 2020 Ilias Diakonikolas
Daniel M. Kane
Ankit Pensia
+ Robustly Learning any Clusterable Mixture of Gaussians 2020 Ilias Diakonikolas
Samuel B. Hopkins
Daniel M. Kane
Sushrut Karmalkar
+ Learning Halfspaces with Tsybakov Noise 2020 Ilias Diakonikolas
Vasilis Kontonis
Christos Tzamos
Nikos Zarifis
+ Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering 2019 Ilias Diakonikolas
Daniel M. Kane
Sushrut Karmalkar
Eric Price
Alistair Stewart
+ Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin 2019 Ilias Diakonikolas
Daniel M. Kane
Pasin Manurangsi
+ PDF Chat On the Complexity of the Inverse Semivalue Problem for Weighted Voting Games 2019 Ilias Diakonikolas
Chrystalla Pavlou
+ PDF Chat Degree-đť‘‘ chow parameters robustly determine degree-đť‘‘ PTFs (and algorithmic applications) 2019 Ilias Diakonikolas
Daniel M. Kane
+ Faster Algorithms for High-Dimensional Robust Covariance Estimation 2019 Yu Cheng
Ilias Diakonikolas
Rong Ge
David P. Woodruff
+ Robust Estimators in High-Dimensions Without the Computational Intractability 2019 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+ PDF Chat Efficient Algorithms and Lower Bounds for Robust Linear Regression 2019 Ilias Diakonikolas
Weihao Kong
Alistair Stewart
+ PDF Chat Robust Estimators in High-Dimensions Without the Computational Intractability 2019 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+ Equipping Experts/Bandits with Long-term Memory 2019 Kai Zheng
Haipeng Luo
Ilias Diakonikolas
Liwei Wang
+ Distribution-Independent PAC Learning of Halfspaces with Massart Noise 2019 Ilias Diakonikolas
Themis Gouleakis
Christos Tzamos
+ Faster Algorithms for High-Dimensional Robust Covariance Estimation 2019 Yu Cheng
Ilias Diakonikolas
Rong Ge
David P. Woodruff
+ PDF Chat High-Dimensional Robust Mean Estimation in Nearly-Linear Time 2019 Yu Cheng
Ilias Diakonikolas
Rong Ge
+ A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families 2019 Brian Axelrod
Ilias Diakonikolas
Anastasios Sidiropoulos
Alistair Stewart
Gregory Valiant
+ Communication and Memory Efficient Testing of Discrete Distributions 2019 Ilias Diakonikolas
Themis Gouleakis
Daniel M. Kane
Sankeerth Rao
+ A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families 2019 Brian Axelrod
Ilias Diakonikolas
Alistair Stewart
Anastasios Sidiropoulos
Gregory Valiant
+ Distribution-Independent PAC Learning of Halfspaces with Massart Noise 2019 Ilias Diakonikolas
Themis Gouleakis
Christos Tzamos
+ Recent Advances in Algorithmic High-Dimensional Robust Statistics 2019 Ilias Diakonikolas
Daniel M. Kane
+ Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering 2019 Ilias Diakonikolas
Sushrut Karmalkar
Daniel M. Kane
Eric Price
Alistair Stewart
+ Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin 2019 Ilias Diakonikolas
Daniel M. Kane
Pasin Manurangsi
+ On the Complexity of the Inverse Semivalue Problem for Weighted Voting Games 2018 Ilias Diakonikolas
Chrystalla Pavlou
+ A Polynomial Time Algorithm for Maximum Likelihood Estimation of Multivariate Log-concave Densities. 2018 Ilias Diakonikolas
Anastasios Sidiropoulos
Alistair Stewart
+ Degree-$d$ Chow Parameters Robustly Determine Degree-$d$ PTFs (and Algorithmic Applications) 2018 Ilias Diakonikolas
Daniel M. Kane
+ Near-Optimal Sample Complexity Bounds for Maximum Likelihood Estimation of Multivariate Log-concave Densities 2018 Timothy S. Carpenter
Ilias Diakonikolas
Anastasios Sidiropoulos
Alistair Stewart
+ Testing conditional independence of discrete distributions 2018 Clément L. Canonne
Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Learning geometric concepts with nasty noise 2018 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ List-decodable robust mean estimation and learning mixtures of spherical gaussians 2018 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Near-Optimal Sample Complexity Bounds for Maximum Likelihood Estimation of Multivariate Log-concave Densities 2018 Timothy S. Carpenter
Ilias Diakonikolas
Anastasios Sidiropoulos
Alistair Stewart
+ Fast and Sample Near-Optimal Algorithms for Learning Multidimensional Histograms 2018 Ilias Diakonikolas
Jerry Li
Ludwig Schmidt
+ Testing Conditional Independence of Discrete Distributions 2018 Clément L. Canonne
Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Sever: A Robust Meta-Algorithm for Stochastic Optimization 2018 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Jacob Steinhardt
Alistair Stewart
+ Testing Identity of Multidimensional Histograms 2018 Ilias Diakonikolas
Daniel M. Kane
John Peebles
+ Testing for Families of Distributions via the Fourier Transform 2018 Clément L. Canonne
Ilias Diakonikolas
Alistair Stewart
+ PDF Chat Robustly Learning a Gaussian: Getting Optimal Error, Efficiently 2018 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+ Robust Learning of Fixed-Structure Bayesian Networks 2018 Yu Cheng
Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ On the Complexity of the Inverse Semivalue Problem for Weighted Voting Games 2018 Ilias Diakonikolas
Chrystalla Pavlou
+ A Polynomial Time Algorithm for Maximum Likelihood Estimation of Multivariate Log-concave Densities 2018 Ilias Diakonikolas
Anastasios Sidiropoulos
Alistair Stewart
+ Degree-$d$ Chow Parameters Robustly Determine Degree-$d$ PTFs (and Algorithmic Applications) 2018 Ilias Diakonikolas
Daniel M. Kane
+ Fast and Sample Near-Optimal Algorithms for Learning Multidimensional Histograms 2018 Ilias Diakonikolas
Jerry Li
Ludwig Schmidt
+ Near-Optimal Sample Complexity Bounds for Maximum Likelihood Estimation of Multivariate Log-concave Densities 2018 Timothy S. Carpenter
Ilias Diakonikolas
Anastasios Sidiropoulos
Alistair Stewart
+ Efficient Algorithms and Lower Bounds for Robust Linear Regression 2018 Ilias Diakonikolas
Weihao Kong
Alistair Stewart
+ High-Dimensional Robust Mean Estimation in Nearly-Linear Time 2018 Yu Cheng
Ilias Diakonikolas
Rong Ge
+ List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians 2017 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ PDF Chat Statistical Query Lower Bounds for Robust Estimation of High-Dimensional Gaussians and Gaussian Mixtures 2017 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Sample-Optimal Identity Testing with High Probability 2017 Ilias Diakonikolas
Themis Gouleakis
John Peebles
Eric Price
+ PDF Chat The Inverse Shapley value problem 2017 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ Being Robust (in High Dimensions) Can Be Practical 2017 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+ Learning Geometric Concepts with Nasty Noise 2017 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ PDF Chat Testing Shape Restrictions of Discrete Distributions 2017 Clément L. Canonne
Ilias Diakonikolas
Themis Gouleakis
Ronitt Rubinfeld
+ Fourier-Based Testing for Families of Distributions 2017 Clément L. Canonne
Ilias Diakonikolas
Alistair Stewart
+ Testing Bayesian Networks 2017 Clément L. Canonne
Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Robustly Learning a Gaussian: Getting Optimal Error, Efficiently 2017 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+ Near-Optimal Closeness Testing of Discrete Histogram Distributions 2017 Ilias Diakonikolas
Daniel M. Kane
Vladimir Nikishkin
+ Being Robust (in High Dimensions) Can Be Practical 2017 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+ Sample-Optimal Density Estimation in Nearly-Linear Time 2017 Jayadev Acharya
Ilias Diakonikolas
Jerry Li
Ludwig Schmidt
+ Differentially Private Identity and Closeness Testing of Discrete Distributions 2017 Maryam Aliakbarpour
Ilias Diakonikolas
Ronitt Rubinfeld
+ Sharp Bounds for Generalized Uniformity Testing 2017 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Testing Conditional Independence of Discrete Distributions 2017 Clément L. Canonne
Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Sharp Bounds for Generalized Uniformity Testing. 2017 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Optimal Identity Testing with High Probability 2017 Ilias Diakonikolas
Themis Gouleakis
John Peebles
Eric Price
+ Playing Anonymous Games using Simple Strategies 2017 Yu Cheng
Ilias Diakonikolas
Alistair Stewart
+ List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians 2017 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Being Robust (in High Dimensions) Can Be Practical 2017 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+ Near-Optimal Closeness Testing of Discrete Histogram Distributions 2017 Ilias Diakonikolas
Daniel M. Kane
Vladimir Nikishkin
+ Fourier-Based Testing for Families of Distributions 2017 Clément L. Canonne
Ilias Diakonikolas
Alistair Stewart
+ Robustly Learning a Gaussian: Getting Optimal Error, Efficiently 2017 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+ Learning Geometric Concepts with Nasty Noise 2017 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Testing Bayesian Networks 2016 Clément L. Canonne
Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Collision-based Testers are Optimal for Uniformity and Closeness 2016 Ilias Diakonikolas
Themis Gouleakis
John Peebles
Eric Price
+ Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures 2016 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ PDF Chat A New Approach for Testing Properties of Discrete Distributions 2016 Ilias Diakonikolas
Daniel M. Kane
+ PDF Chat Robust Estimators in High Dimensions without the Computational Intractability 2016 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+ Playing Anonymous Games using Simple Strategies 2016 Yu Cheng
Ilias Diakonikolas
Alistair Stewart
+ Fast algorithms for segmented regression 2016 Jayadev Acharya
Ilias Diakonikolas
Jerry Li
Ludwig Schmidt
+ PDF Chat The fourier transform of poisson multinomial distributions and its algorithmic applications 2016 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Robust Estimators in High Dimensions without the Computational Intractability 2016 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+ Testing Shape Restrictions of Discrete Distributions 2016 Clément L. Canonne
Ilias Diakonikolas
Themistoklis Gouleakis
Ronitt Rubinfeld
+ Learning Multivariate Log-concave Distributions 2016 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ PDF Chat A Robust Khintchine Inequality, and Algorithms for Computing Optimal Constants in Fourier Analysis and High-Dimensional Geometry 2016 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ Efficient Robust Proper Learning of Log-concave Distributions 2016 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Robust Learning of Fixed-Structure Bayesian Networks 2016 Yu Cheng
Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Fast Algorithms for Segmented Regression 2016 Jayadev Acharya
Ilias Diakonikolas
Jerry Li
Ludwig Schmidt
+ Near-Optimal Disjoint-Path Facility Location Through Set Cover by Pairs 2016 David S. Johnson
Lee Breslau
Ilias Diakonikolas
Nick Duffield
Yu Gu
MohammadTaghi Hajiaghayi
Howard Karloff
MaurĂ­cio G. C. Resende
Subhabrata Sen
+ PDF Chat How Good is the Chord Algorithm? 2016 Constantinos Daskalakis
Ilias Diakonikolas
Mihalis Yannakakis
+ Learning Multivariate Log-concave Distributions. 2016 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Playing Anonymous Games using Simple Strategies 2016 Yu Cheng
Ilias Diakonikolas
Alistair Stewart
+ Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures 2016 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Collision-based Testers are Optimal for Uniformity and Closeness 2016 Ilias Diakonikolas
Themis Gouleakis
John Peebles
Eric Price
+ Robust Estimators in High Dimensions without the Computational Intractability 2016 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
+ Testing Bayesian Networks 2016 Clément L. Canonne
Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ A New Approach for Testing Properties of Discrete Distributions 2016 Ilias Diakonikolas
Daniel M. Kane
+ The Fourier Transform of Poisson Multinomial Distributions and its Algorithmic Applications 2015 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ PDF Chat Optimal Algorithms and Lower Bounds for Testing Closeness of Structured Distributions 2015 Ilias Diakonikolas
Daniel M. Kane
Vladimir Nikishkin
+ Optimal Algorithms and Lower Bounds for Testing Closeness of Structured Distributions 2015 Ilias Diakonikolas
Daniel M. Kane
Vladimir Nikishkin
+ Testing Shape Restrictions of Discrete Distributions 2015 Clément L. Canonne
Ilias Diakonikolas
Themis Gouleakis
Ronitt Rubinfeld
+ PDF Chat Learning Poisson Binomial Distributions 2015 Constantinos Daskalakis
Ilias Diakonikolas
Rocco A. Servedio
+ Properly Learning Poisson Binomial Distributions in Almost Polynomial Time 2015 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ PDF Chat None 2015 Ilias Diakonikolas
Ragesh Jaiswal
Rocco A. Servedio
Li-Yang Tan
Andrew Wan
+ Sample-Optimal Density Estimation in Nearly-Linear Time 2015 Jayadev Acharya
Ilias Diakonikolas
Jerry Li
Ludwig Schmidt
+ Testing Shape Restrictions of Discrete Distributions 2015 Clément L. Canonne
Ilias Diakonikolas
Themis Gouleakis
Ronitt Rubinfeld
+ The Fourier Transform of Poisson Multinomial Distributions and its Algorithmic Applications 2015 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Optimal Algorithms and Lower Bounds for Testing Closeness of Structured Distributions 2015 Ilias Diakonikolas
Daniel M. Kane
Vladimir Nikishkin
+ Optimal Learning via the Fourier Transform for Sums of Independent Integer Random Variables 2015 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
+ Testing Identity of Structured Distributions 2014 Ilias Diakonikolas
Daniel M. Kane
Vladimir Nikishkin
+ Near-Optimal Density Estimation in Near-Linear Time Using Variable-Width Histograms 2014 Siu-On Chan
Ilias Diakonikolas
Rocco A. Servedio
Xiaorui Sun
+ PDF Chat Deterministic Approximate Counting for Juntas of Degree-2 Polynomial Threshold Functions 2014 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ PDF Chat Efficient density estimation via piecewise polynomial approximation 2014 Siu-On Chan
Ilias Diakonikolas
Rocco A. Servedio
Xiaorui Sun
+ PDF Chat Nearly Optimal Solutions for the Chow Parameters Problem and Low-Weight Approximation of Halfspaces 2014 Anindya De
Ilias Diakonikolas
Vitaly Feldman
Rocco A. Servedio
+ PDF Chat None 2014 Ilias Diakonikolas
Rocco A. Servedio
Li-Yang Tan
Andrew Wan
+ Near-Optimal Density Estimation in Near-Linear Time Using Variable-Width Histograms 2014 Siu On Chan
Ilias Diakonikolas
Rocco A. Servedio
Xiaorui Sun
+ Testing Identity of Structured Distributions 2014 Ilias Diakonikolas
Daniel M. Kane
Vladimir Nikishkin
+ PDF Chat Optimal Algorithms for Testing Closeness of Discrete Distributions 2013 Siu-On Chan
Ilias Diakonikolas
Paul Valiant
Gregory Valiant
+ PDF Chat The Complexity of Optimal Multidimensional Pricing 2013 Xi Chen
Ilias Diakonikolas
Dimitris Paparas
Xiaorui Sun
Mihalis Yannakakis
+ PDF Chat A Polynomial-time Approximation Scheme for Fault-tolerant Distributed Storage 2013 Constantinos Daskalakis
Anindya De
Ilias Diakonikolas
Ankur Moitra
Rocco A. Servedio
+ Deterministic Approximate Counting for Juntas of Degree-$2$ Polynomial Threshold Functions 2013 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ How good is the Chord algorithm 2013 Constantinos Daskalakis
Ilias Diakonikolas
Mihalis Yannakakis
+ Deterministic Approximate Counting for Degree-2 Polynomial Threshold Functions. 2013 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ PDF Chat Learning mixtures of structured distributions over discrete domains 2013 Siu-On Chan
Ilias Diakonikolas
Xiaorui Sun
Rocco A. Servedio
+ PDF Chat Testing <i>k</i>-Modal Distributions: Optimal Algorithms via Reductions 2013 Constantinos Daskalakis
Ilias Diakonikolas
Rocco A. Servedio
Gregory Valiant
Paul Valiant
+ PDF Chat A Robust Khintchine Inequality, and Algorithms for Computing Optimal Constants in Fourier Analysis and High-Dimensional Geometry 2013 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ Deterministic Approximate Counting for Degree-$2$ Polynomial Threshold Functions 2013 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ Optimal Algorithms for Testing Closeness of Discrete Distributions 2013 Siu-On Chan
Ilias Diakonikolas
Gregory Valiant
Paul Valiant
+ Deterministic Approximate Counting for Juntas of Degree-$2$ Polynomial Threshold Functions 2013 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ Efficient Density Estimation via Piecewise Polynomial Approximation 2013 Siu-On Chan
Ilias Diakonikolas
Rocco A. Servedio
Xiaorui Sun
+ How good is the Chord algorithm? 2013 Constantinos Daskalakis
Ilias Diakonikolas
Mihalis Yannakakis
+ The Complexity of Optimal Multidimensional Pricing 2013 Xi Chen
Ilias Diakonikolas
Dimitris Paparas
Xiaorui Sun
Mihalis Yannakakis
+ A Polynomial-time Approximation Scheme for Fault-tolerant Distributed Storage 2013 Constantinos Daskalakis
Anindya De
Ilias Diakonikolas
Ankur Moitra
Rocco A. Servedio
+ The Inverse Shapley Value Problem 2012 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ PDF Chat Improved Approximation of Linear Threshold Functions 2012 Ilias Diakonikolas
Rocco A. Servedio
+ PDF Chat Nearly optimal solutions for the chow parameters problem and low-weight approximation of halfspaces 2012 Anindya De
Ilias Diakonikolas
Vitaly Feldman
Rocco A. Servedio
+ PDF Chat Learning poisson binomial distributions 2012 Constantinos Daskalakis
Ilias Diakonikolas
Rocco A. Servedio
+ Efficiency-Revenue Trade-offs in Auctions 2012 Ilias Diakonikolas
Christos H. Papadimitriou
George Pierrakos
Yaron Singer
+ On the Distribution of the Fourier Spectrum of Halfspaces 2012 Ilias Diakonikolas
Ragesh Jaiswal
Rocco A. Servedio
Li-Yang Tan
Andrew Wan
+ PDF Chat Learning <i>k</i>-Modal Distributions via Testing 2012 Constantinos Daskalakis
Ilias Diakonikolas
Rocco A. Servedio
+ The Inverse Shapley Value Problem 2012 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ Inverse problems in approximate uniform generation 2012 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ PDF Chat Efficiency-Revenue Trade-Offs in Auctions 2012 Ilias Diakonikolas
Christos H. Papadimitriou
George Pierrakos
Yaron Singer
+ PDF Chat The Inverse Shapley Value Problem 2012 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ A robust Khintchine-Kahane 2012 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ Nearly optimal solutions for the Chow Parameters Problem and low-weight approximation of halfspaces 2012 Anindya De
Ilias Diakonikolas
Vitaly Feldman
Rocco A. Servedio
+ A robust Khintchine inequality, and algorithms for computing optimal constants in Fourier analysis and high-dimensional geometry 2012 Anindya De
Ilias Diakonikolas
Rocco A. Servedio
+ Learning mixtures of structured distributions over discrete domains 2012 Siu-On Chan
Ilias Diakonikolas
Rocco A. Servedio
Xiaorui Sun
+ On the Distribution of the Fourier Spectrum of Halfspaces 2012 Ilias Diakonikolas
Ragesh Jaiswal
Rocco A. Servedio
Li-Yang Tan
Andrew Wan
+ Efficiency-Revenue Trade-offs in Auctions 2012 Ilias Diakonikolas
Christos Papadimitriou
George Pierrakos
Yaron Singer
+ Learning Poisson Binomial Distributions 2011 Constantinos Daskalakis
Ilias Diakonikolas
Rocco A. Servedio
+ PDF Chat Hardness Results for Agnostically Learning Low-Degree Polynomial Threshold Functions 2011 Ilias Diakonikolas
Ryan O’Donnell
Rocco A. Servedio
Yi Wu
+ Learning transformed product distributions 2011 Constantinos Daskalakis
Ilias Diakonikolas
Rocco A. Servedio
+ Learning transformed product distributions 2011 Constantinos Daskalakis
Ilias Diakonikolas
Rocco A. Servedio
+ Testing $k$-Modal Distributions: Optimal Algorithms via Reductions 2011 Constantinos Daskalakis
Ilias Diakonikolas
Rocco A. Servedio
Gregory Valiant
Paul Valiant
+ Learning $k$-Modal Distributions via Testing 2011 Constantinos Daskalakis
Ilias Diakonikolas
Rocco A. Servedio
+ Learning Poisson Binomial Distributions 2011 Constantinos Daskalakis
Ilias Diakonikolas
Rocco A. Servedio
+ PDF Chat Bounded Independence Fools Degree-2 Threshold Functions 2010 Ilias Diakonikolas
Daniel M. Kane
Jelani Nelson
+ PDF Chat A Regularity Lemma, and Low-Weight Approximators, for Low-Degree Polynomial Threshold Functions 2010 Ilias Diakonikolas
Rocco A. Servedio
Li-Yang Tan
Andrew Wan
+ How good is the Chord algorithm? 2010 Constantinos Daskalakis
Ilias Diakonikolas
Mihalis Yannakakis
+ Hardness Results for Agnostically Learning Low-Degree Polynomial Threshold Functions 2010 Ilias Diakonikolas
Ryan O’Donnell
Rocco A. Servedio
Yi Wu
+ Bounded Independence Fools Degree-2 Threshold Functions 2009 Ilias Diakonikolas
Daniel M. Kane
Jelani Nelson
+ PDF Chat Improved Approximation of Linear Threshold Functions 2009 Ilias Diakonikolas
Rocco A. Servedio
+ Improved Approximation of Linear Threshold Functions 2009 Ilias Diakonikolas
Rocco A. Servedio
+ Average sensitivity and noise sensitivity of polynomial threshold functions 2009 Ilias Diakonikolas
Prasad Raghavendra
Rocco A. Servedio
Li-Yang Tan
+ A regularity lemma, and low-weight approximators, for low-degree polynomial threshold functions 2009 Ilias Diakonikolas
Rocco A. Servedio
Li-Yang Tan
Andrew Wan
+ Bounded Independence Fools Halfspaces 2009 Ilias Diakonikolas
Parikshit Gopalan
Ragesh Jaiswal
Rocco A. Servedio
Emanuele Viola
+ PDF Chat Computational Complexity, 2009. CCC '09. 24th Annual IEEE Conference on 2009 Ilias Diakonikolas
Rocco A. Servedio
+ Bounded Independence Fools Degree-2 Threshold Functions 2009 Ilias Diakonikolas
Daniel M. Kane
Jelani Nelson
+ PDF Chat Efficiently Testing Sparse GF(2) Polynomials 2008 Ilias Diakonikolas
Homin K. Lee
Kevin Matulef
Rocco A. Servedio
Andrew Wan
+ Small Approximate Pareto Sets for Bi-objective Shortest Paths and Other Problems 2008 Ilias Diakonikolas
Mihalis Yannakakis
+ Efficiently Testing Sparse GF(2) Polynomials 2008 Ilias Diakonikolas
Homin K. Lee
Kevin Matulef
Rocco A. Servedio
Andrew Wan
+ PDF Chat Small Approximate Pareto Sets for Bi-objective Shortest Paths and Other Problems 2007 Ilias Diakonikolas
Mihalis Yannakakis
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Learning poisson binomial distributions 2012 Constantinos Daskalakis
Ilias Diakonikolas
Rocco A. Servedio
28
+ PDF Chat Testing that distributions are close 2002 TuÄźkan Batu
Lance Fortnow
Ronitt Rubinfeld
Warren D. Smith
Patrick White
26
+ PDF Chat Statistical Query Lower Bounds for Robust Estimation of High-Dimensional Gaussians and Gaussian Mixtures 2017 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
25
+ A Coincidence-Based Test for Uniformity Given Very Sparsely Sampled Discrete Data 2008 Liam Paninski
24
+ Learning mixtures of structured distributions over discrete domains 2012 Siu-On Chan
Ilias Diakonikolas
Rocco A. Servedio
Xiaorui Sun
23
+ Optimal Algorithms for Testing Closeness of Discrete Distributions 2013 Siu-On Chan
Ilias Diakonikolas
Gregory Valiant
Paul Valiant
20
+ PDF Chat Robust Estimation of a Location Parameter 1964 Peter J. Huber
20
+ PDF Chat Settling the Polynomial Learnability of Mixtures of Gaussians 2010 Ankur Moitra
Gregory Valiant
19
+ PDF Chat Agnostic Estimation of Mean and Covariance 2016 Kevin A. Lai
Anup Rao
Santosh Vempala
19
+ PDF Chat Distributional and $L^{q}$ norm inequalities for polynomials over convex bodies in ${\Bbb R}^n$ 2001 Anthony Carbery
James Wright
19
+ PDF Chat Estimating a Density under Order Restrictions: Nonasymptotic Minimax Risk 1987 Lucien Birgé
18
+ Learning geometric concepts with nasty noise 2018 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
18
+ PDF Chat Efficient density estimation via piecewise polynomial approximation 2014 Siu-On Chan
Ilias Diakonikolas
Rocco A. Servedio
Xiaorui Sun
17
+ PDF Chat Complexity theoretic limitations on learning halfspaces 2016 Amit Daniely
17
+ Learning mixtures of arbitrary gaussians 2001 Sanjeev Arora
Ravi Kannan
17
+ PDF Chat Robust Estimators in High Dimensions without the Computational Intractability 2016 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
17
+ PDF Chat A size-free CLT for poisson multinomials and its applications 2016 Constantinos Daskalakis
Anindya De
Gautam Kamath
Christos Tzamos
16
+ Estimating the unseen 2011 Gregory Valiant
Paul Valiant
16
+ PDF Chat Inference and Modeling with Log-concave Distributions 2009 Guenther Walther
16
+ On Testing Expansion in Bounded-Degree Graphs 2000 Oded Goldreich
Dana Ron
16
+ Analysis of Boolean Functions 2014 Ryan O’Donnell
15
+ List-decodable robust mean estimation and learning mixtures of spherical gaussians 2018 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
15
+ PDF Chat On the Risk of Histograms for Estimating Decreasing Densities 1987 Lucien Birgé
15
+ Learning from untrusted data 2017 Moses Charikar
Jacob Steinhardt
Gregory Valiant
15
+ PDF Chat The fourier transform of poisson multinomial distributions and its algorithmic applications 2016 Ilias Diakonikolas
Daniel M. Kane
Alistair Stewart
15
+ Mixture models, robustness, and sum of squares proofs 2018 Samuel B. Hopkins
Jerry Li
14
+ Being Robust (in High Dimensions) Can Be Practical 2017 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
14
+ Optimal Testing for Properties of Distributions 2015 Jayadev Acharya
Constantinos Daskalakis
Gautam Kamath
14
+ Polynomial Learning of Distribution Families 2010 Mikhail Belkin
K. P. Sinha
14
+ Sample-Optimal Density Estimation in Nearly-Linear Time 2017 Jayadev Acharya
Ilias Diakonikolas
Jerry Li
Ludwig Schmidt
14
+ Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers 2018 Jacob Steinhardt
Moses Charikar
Gregory Valiant
14
+ PDF Chat Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency 2009 Lutz DĂĽmbgen
Kaspar Rufibach
13
+ Estimation of a unimodal density 1969 Prakasa Rao
13
+ Testing Shape Restrictions of Discrete Distributions 2016 Clément L. Canonne
Ilias Diakonikolas
Themistoklis Gouleakis
Ronitt Rubinfeld
13
+ PDF Chat Testing Closeness of Discrete Distributions 2013 TuÄźkan Batu
Lance Fortnow
Ronitt Rubinfeld
Warren D. Smith
Patrick White
13
+ PDF Chat On oblivious PTAS's for nash equilibrium 2009 Constantinos Daskalakis
Christos H. Papadimitriou
12
+ On Spectral Learning of Mixtures of Distributions 2005 Dimitris Achlioptas
Frank McSherry
12
+ PDF Chat Harmonic Analysis of Polynomial Threshold Functions 1990 Jehoshua Bruck
12
+ Estimating a monotone density 1984 Piet Groeneboom
12
+ PDF Chat Nearly Optimal Solutions for the Chow Parameters Problem and Low-Weight Approximation of Halfspaces 2014 Anindya De
Ilias Diakonikolas
Vitaly Feldman
Rocco A. Servedio
12
+ Being Robust (in High Dimensions) Can Be Practical 2017 Ilias Diakonikolas
Gautam Kamath
Daniel M. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
12
+ PDF Chat Tight Bounds for Learning a Mixture of Two Gaussians 2015 Moritz Hardt
Eric Price
11
+ Nonparametric Density Estimation: The L 1 View. 1987 James R. Thompson
Luc Devroye
László Györfi
11
+ Near-Optimal Density Estimation in Near-Linear Time Using Variable-Width Histograms 2014 Siu-On Chan
Ilias Diakonikolas
Rocco A. Servedio
Xiaorui Sun
11
+ Near-optimal-sample estimators for spherical Gaussian mixtures 2014 Jayadev Acharya
Ashkan Jafarpour
Alon Orlitsky
Ananda Theertha Suresh
11
+ Optimal testing for properties of distributions 2015 Jayadev Acharya
Constantinos Daskalakis
Gautam Kamath
11
+ Improved Approximation of Linear Threshold Functions 2009 Ilias Diakonikolas
Rocco A. Servedio
11
+ Collision-based Testers are Optimal for Uniformity and Closeness 2016 Ilias Diakonikolas
Themis Gouleakis
John Peebles
Eric Price
11
+ The Spectral Method for General Mixture Models 2008 Ravindran Kannan
Hadi Salmasian
Santosh Vempala
11
+ PDF Chat Polynomial Learning of Distribution Families 2010 Mikhail Belkin
K. P. Sinha
11