Jason Rute

Follow

Generating author description...

All published works
Action Title Year Authors
+ Graph2Tac: Learning Hierarchical Representations of Math Concepts in Theorem proving 2024 Jason Rute
Miroslav Olšák
Lasse Blaauwbroek
Fidel I. Schaposnik Massolo
Jelle Piepenbrock
Vasily Pestun
+ Proof Artifact Co-training for Theorem Proving with Language Models. 2021 Jesse Michael Han
Jason Rute
Yuhuai Wu
Edward W. Ayers
Stanislas Polu
+ PDF Chat Computable Measure Theory and Algorithmic Randomness 2021 Mathieu Hoyrup
Jason Rute
+ Proof Artifact Co-training for Theorem Proving with Language Models 2021 Jesse Michael Han
Jason Rute
Yuhuai Wu
Edward W. Ayers
Stanislas Polu
+ Algorithmic randomness and constructive/computable measure theory 2020 Jason Rute
+ PDF Chat Algorithmic Randomness and Fourier Analysis 2018 Johanna N. Y. Franklin
Timothy H. McNicholl
Jason Rute
+ Energy randomness 2018 Joseph S. Miller
Jason Rute
+ On the computability of graphons 2018 Nathanael Ackerman
Jeremy Avigad
Cameron E. Freer
Daniel M. Roy
Jason Rute
+ On the close interaction between algorithmic randomness and constructive/computable measure theory 2018 Jason Rute
+ Schnorr randomness for noncomputable measures 2017 Jason Rute
+ PDF Chat A FORMAL PROOF OF THE KEPLER CONJECTURE 2017 Thomas Hales
Mark Adams
Gertrud Bauer
TAT DAT DANG
John Harrison
Hoang Le Truong
Cezary Kaliszyk
Victor Magron
Sean McLaughlin
TAT THANG NGUYEN
+ PDF Chat Computable randomness and betting for computable probability spaces 2016 Jason Rute
+ Schnorr randomness for noncomputable measures 2016 Jason Rute
+ When does randomness come from randomness? 2016 Jason Rute
+ Algorithmic randomness and Fourier analysis 2016 Johanna N. Y. Franklin
Timothy H. McNicholl
Jason Rute
+ Algorithmic randomness and Fourier analysis 2016 Johanna N. Y. Franklin
Timothy H. McNicholl
Jason Rute
+ Schnorr randomness for noncomputable measures 2016 Jason Rute
+ When does randomness come from randomness 2015 Jason Rute
+ A formal proof of the Kepler conjecture 2015 Thomas Hales
Mark Adams
Gertrud Bauer
Dat Tat Dang
John Harrison
Hoang Le Truong
Cezary Kaliszyk
Victor Magron
Sean McLaughlin
Thang Tat Nguyen
+ When does randomness come from randomness? 2015 Jason Rute
+ A formal proof of the Kepler conjecture 2015 Thomas Hales
Mark Raymond Adams
Gertrud Bauer
Dat Tat Dang
John Harrison
Hoang Le Truong
Cezary Kaliszyk
Victor Magron
S. McLaughlin
Thang Tat Nguyen
+ Energy randomness 2015 Joseph S. Miller
Jason Rute
+ PDF Chat Algorithmic randomness for Doob's martingale convergence theorem in continuous time 2014 Bjørn Kjos-Hanssen
Paul Kim Long V. Nguyen
Jason Rute
+ PDF Chat Oscillation and the mean ergodic theorem for uniformly convex Banach spaces 2014 Jeremy Avigad
Jason Rute
+ PDF Chat Van Lambalgen's theorem for uniformly relative Schnorr and computable randomness 2013 Kenshi Miyabe
Jason Rute
+ Topics in algorithmic randomness and computable analysis 2013 Jason Rute
+ Algorithmic randomness, reverse mathematics, and the dominated convergence theorem 2012 Jeremy Avigad
E.T.R. Dean
Jason Rute
+ Computable randomness and betting for computable probability spaces 2012 Jason Rute
+ Oscillation and the mean ergodic theorem 2012 Jeremy Avigad
Jason Rute
+ Van Lambalgen's Theorem for uniformly relative Schnorr and computable randomness 2012 Kenshi Miyabe
Jason Rute
+ Computable randomness and betting for computable probability spaces 2012 Jason Rute
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Truth-table Schnorr randomness and truth-table reducible randomness 2011 Kenshi Miyabe
11
+ L1-Computability, Layerwise Computability and Solovay Reducibility 2013 Kenshi Miyabe
10
+ PDF Chat Computability of probability measures and Martin-Löf randomness over metric spaces 2009 Mathieu Hoyrup
CristĂłbal Rojas
9
+ PDF Chat Algorithmic tests and randomness with respect to a class of measures 2011 Laurent Bienvenu
Péter Gács
Mathieu Hoyrup
CristĂłbal Rojas
Alexander Shen
9
+ PDF Chat Randomness on Computable Probability Spaces—A Dynamical Point of View 2010 Péter Gács
Mathieu Hoyrup
CristĂłbal Rojas
8
+ Admissible representations for probability measures 2007 Matthias Schröder
7
+ Topics in algorithmic randomness and computable analysis 2013 Jason Rute
7
+ Kolmogorov–Loveland randomness and stochasticity 2005 Wolfgang Merkle
Joseph S. Miller
André Nies
Jan Reimann
Frank Stephan
7
+ The Descriptive Complexity of Brownian Motion 2000 Willem L. Fouché
7
+ PDF Chat Uniform test of algorithmic randomness over a general space 2005 Péter Gács
7
+ PDF Chat An Application of Martin-Löf Randomness to Effective Probability Theory 2009 Mathieu Hoyrup
CristĂłbal Rojas
7
+ Schnorr randomness and the Lebesgue differentiation theorem 2013 Noopur Pathak
CristĂłbal Rojas
Stephen G. Simpson
7
+ PDF Chat Van Lambalgen's theorem for uniformly relative Schnorr and computable randomness 2013 Kenshi Miyabe
Jason Rute
7
+ Schnorr trivial sets and truth-table reducibility 2010 Johanna N. Y. Franklin
Frank Stephan
7
+ PDF Chat Computability of the ergodic decomposition 2012 Mathieu Hoyrup
6
+ PDF Chat Uniform distribution and algorithmic randomness 2013 Jeremy Avigad
6
+ Randomness and differentiability 2015 Vasco Brattka
Joseph S. Miller
André Nies
6
+ PDF Chat Computable de Finetti measures 2011 Cameron E. Freer
Daniel M. Roy
6
+ Ergodic theorems for individual random sequences 1998 Vladimir V. V’yugin
6
+ PDF Chat On zeros of Martin-Löf random Brownian motion 2015 Laurent Bienvenu
Kelty Allen
Theodore A. Slaman
6
+ The Kolmogorov-Loveland stochastic sequences are not closed under selecting subsequences 2003 Wolfgang Merkle
5
+ PDF Chat Computing the speed of convergence of ergodic averages and pseudorandom points in computable dynamical systems 2010 Stefano Galatolo
Mathieu Hoyrup
CristĂłbal Rojas
5
+ PDF Chat Algorithmic Aspects of Lipschitz Functions 2014 Cameron E. Freer
Bjø rn Kjos-Hanssen
André Nies
Frank Stephan
5
+ PDF Chat Local stability of ergodic averages 2009 Jeremy Avigad
Philipp Gerhardy
Henry Towsner
5
+ Computable Versions of Baire’s Category Theorem 2001 Vasco Brattka
5
+ The definition of random sequences 1966 Per Martin-Löf
5
+ The probability distribution as a computational resource for randomness testing 2010 Hanssen
5
+ On a definition of random sequences with respect to conditional probability 2008 Hayato Takahashi
5
+ A constructive version of Birkhoffʼs ergodic theorem for Martin-Löf random points 2011 Laurent Bienvenu
Adam R. Day
Mathieu Hoyrup
Ilya Mezhirov
Alexander Shen
4
+ PDF Chat When van Lambalgen’s Theorem fails 2006 Liang Yu
4
+ Mathematical metaphysics of randomness 1998 Andrei A. Muchnik
A. L. Semenov
Vladimir Uspensky
4
+ PDF Chat Algorithmic randomness and monotone complexity on product space 2010 Hayato Takahashi
4
+ PDF Chat Upcrossing inequalities for stationary sequences and applications 2009 Michael Hochman
4
+ PDF Chat Effectively closed sets of measures and randomness 2008 Jan Reimann
4
+ When does randomness come from randomness? 2016 Jason Rute
4
+ PDF Chat Randomness and Non-Ergodic Systems 2014 Johanna N. Y. Franklin
Henry Towsner
4
+ PDF Chat Effective dimension of points visited by Brownian motion 2008 Bjørn Kjos-Hanssen
Anil Nerode
4
+ Strong reductions in effective randomness 2012 Laurent Bienvenu
Christopher P. Porter
4
+ Random elements in effective topological spaces with measure 2003 Peter Hertling
Klaus Weihrauch
4
+ Separations of non-monotonic randomness notions 2010 Laurent Bienvenu
Rupert Hölzl
Thorsten Kräling
Wolfgang Merkle
4
+ Randomness conservation inequalities; information and independence in mathematical theories 1984 Leonid A. Levin
3
+ Measure theory and weak König's lemma 1990 Xiaokang Yu
Stephen G. Simpson
3
+ Effective Convergence in Probability and an Ergodic Theorem forIndividual Random Sequences 1998 Vladimir V. V’yugin
3
+ Lebesgue Convergence Theorems and Reverse Mathematics 1994 Xiaokang Yu
3
+ PDF Chat Noncomputable Conditional Distributions 2011 Nathanael Ackerman
Cameron E. Freer
Daniel M. Roy
3
+ Computability of measurable sets via effective topologies 2005 Yongcheng Wu
Decheng Ding
3
+ Learning-assisted theorem proving with millions of lemmas 2014 Cezary Kaliszyk
Josef Urban
3
+ PDF Chat Why Computational Complexity Requires Stricter Martingales 2005 John M. Hitchcock
Jack H. Lutz
3
+ A computable version of the Daniell–Stone theorem on integration and linear functionals 2006 Yongcheng Wu
Klaus Weihrauch
3
+ PDF Chat Von Neumann's Biased Coin Revisited 2012 Laurent Bienvenu
Benoît Monin
3