Sascha Ranftl

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Geometric Uncertainty of Patient-Specific Blood Vessels and its Impact on Aortic Hemodynamics 2024 Domagoj BoĆĄnjak
Richard Schussnig
Sascha Ranftl
Gerhard A. Holzapfel
Thomas‐Peter Fries
+ PDF Chat Robust Bayesian target value optimization 2023 Johannes G. Hoffer
Sascha Ranftl
Bernhard C. Geiger
+ Robust Bayesian Target Value Optimization 2023 Johannes G. Hoffer
Sascha Ranftl
Bernhard C. Geiger
+ A Connection between Probability, Physics and Neural Networks 2022 Sascha Ranftl
+ Stochastic modeling of inhomogeneities in the aortic wall and uncertainty quantification using a Bayesian encoder–decoder surrogate 2022 Sascha Ranftl
Malte Rolf‐Pissarczyk
Gloria Wolkerstorfer
Antonio Pepe
Jan Egger
Wolfgang von der Linden
Gerhard A. Holzapfel
+ Stochastic Modeling of Inhomogeneities in the Aortic Wall and Uncertainty Quantification using a Bayesian Encoder-Decoder Surrogate 2022 Sascha Ranftl
Malte Rolf‐Pissarczyk
Gloria Wolkerstorfer
Antonio Pepe
Jan Egger
Wolfgang von der Linden
Gerhard A. Holzapfel
+ A connection between probability, physics and neural networks 2022 Sascha Ranftl
+ Bayesian Surrogate Analysis and Uncertainty Propagation 2021 Sascha Ranftl
Wolfgang von der Linden
+ Bayesian Surrogate Analysis and Uncertainty Propagation with Explicit Surrogate Uncertainties and Implicit Spatio-temporal Correlations 2021 Sascha Ranftl
Wolfgang von der Linden
+ Bayesian Surrogate Analysis and Uncertainty Propagation 2021 Sascha Ranftl
Wolfgang von der Linden
+ Bayesian Surrogate Analysis and Uncertainty Propagation 2021 Sascha Ranftl
Wolfgang von der Linden
+ PDF Chat Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra with Fluctuating Laser Intensities 2019 Pascal Heim
Michael Rumetshofer
Sascha Ranftl
Bernhard Thaler
Wolfgang Ernst
Markus Koch
Wolfgang von der Linden
+ PDF Chat Femtosecond photoexcitation dynamics inside a quantum solvent 2018 Bernhard Thaler
Sascha Ranftl
Pascal Heim
Stefan Cesnik
Leonhard Treiber
Ralf Meyer
Andreas Hauser
Wolfgang Ernst
Markus Koch
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Coordinate transformation and Polynomial Chaos for the Bayesian inference of a Gaussian process with parametrized prior covariance function 2015 Ihab Sraj
Olivier Le Maı̂tre
Omar Knio
Ibrahim Hoteit
3
+ Bayesian Surrogate Analysis and Uncertainty Propagation 2021 Sascha Ranftl
Wolfgang von der Linden
3
+ PDF Chat Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems 2014 Fei Lu
Matthias Morzfeld
Xuemin Tu
Alexandre J. Chorin
3
+ PDF Chat Polynomial chaos expansions for dependent random variables 2019 John Jakeman
Fabian Franzelin
Akil Narayan
Michael Eldred
Dirk PlfĂŒger
2
+ High-Order Collocation Methods for Differential Equations with Random Inputs 2005 Dongbin Xiu
Jan S. Hesthaven
2
+ PDF Chat A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas 2018 Emiliano Torre
Stefano Marelli
Paul Embrechts
Bruno Sudret
2
+ PDF Chat Photoionisaton of pure and doped helium nanodroplets 2014 M. Mudrich
F. Stienkemeier
1
+ PDF Chat Consistent application of maximum entropy to quantum Monte Carlo data 1996 Wolfgang von der Linden
R. Preuss
W. Hanke
1
+ PDF Chat Nested sampling for general Bayesian computation 2006 John Skilling
1
+ PDF Chat Freezing of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mmultiscripts><mml:mi mathvariant="normal">He</mml:mi><mml:mprescripts /><mml:none /><mml:mn>4</mml:mn></mml:mmultiscripts></mml:math>and its liquid-solid interface from density functional theory 2005 Francesco Ancilotto
M. Barranco
Frédéric Caupin
R. Mayol
M. PĂ­
1
+ PDF Chat Linear Latent Force Models Using Gaussian Processes 2013 Mauricio A. Álvarez
David Luengo
Neil D. Lawrence
1
+ Statistical Challenges in Modern Astronomy 1992 Eric D. Feigelson
G. Jogesh Babu
1
+ Preconditioned Krylov Subspace Methods for Sampling Multivariate Gaussian Distributions 2014 Edmond Chow
Yousef Saad
1
+ A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning 2010 Eric Brochu
Vlad M. Cora
Nando de Freitas
1
+ A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications 2015 Vinzenz Gregor Eck
Wouter P. Donders
Jacob Sturdy
Jonathan Feinberg
Tammo Delhaas
Leif Rune Hellevik
Wouter Huberts
1
+ PDF Chat Bayesian inference in physics 2011 U. von Toussaint
1
+ PDF Chat Structural and dynamical properties of superfluid helium: A density-functional approach 1995 F. Dalfovo
A. Lastri
L. Pricaupenko
S. Stringari
J. Treiner
1
+ Background estimation in experimental spectra 2000 R. Fischer
K. M. Hanson
V. Dose
Wolfgang von der Linden
1
+ PDF Chat Fast Sampling of Gaussian Markov Random Fields 2001 HĂ„vard Rue
1
+ PDF Chat Numerical Simulation of Non‐Gaussian Random Fields with Prescribed Marginal Distributions and Cross‐Correlation Structure. II. Multivariate Random Fields 2002 R. Vio
P. Andreani
Luis Tenorio
W. Wamsteker
1
+ Fully Convolutional Networks for Semantic Segmentation 2016 Evan Shelhamer
Jonathan Long
Trevor Darrell
1
+ PDF Chat The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation 2017 Simon JĂ©gou
Michal Drozdzal
David VĂĄzquez
Adriana Romero
Yoshua Bengio
1
+ PDF Chat Machine learning of linear differential equations using Gaussian processes 2017 Maziar Raissi
Paris Perdikaris
George Em Karniadakis
1
+ PDF Chat Deep learning for computational chemistry 2017 Garrett B. Goh
Nathan O. Hodas
Abhinav Vishnu
1
+ PDF Chat Laser-Induced Rotation of Iodine Molecules in Helium Nanodroplets: Revivals and Breaking Free 2017 Benjamin Shepperson
Anders A. SĂžndergaard
Lars Christiansen
Jan Kaczmarczyk
Robert E. Zillich
Mikhail Lemeshko
Henrik Stapelfeldt
1
+ PDF Chat Density functional theory of doped superfluid liquid helium and nanodroplets 2017 Francesco Ancilotto
M. Barranco
François Coppens
Jussi Eloranta
Nadine Halberstadt
Alberto Hernando
David Mateo
M. PĂ­
1
+ PDF Chat Analysis of femtosecond pump-probe photoelectron-photoion coincidence measurements applying Bayesian probability theory 2018 Michael Rumetshofer
Pascal Heim
Bernhard Thaler
Wolfgang Ernst
Markus Koch
Wolfgang von der Linden
1
+ Deep Neural Networks as Gaussian Processes 2017 Jaehoon Lee
Yasaman Bahri
Roman Novak
Samuel S. Schoenholz
Jeffrey Pennington
Jascha Sohl‐Dickstein
1
+ PDF Chat Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification 2018 Yinhao Zhu
Nicholas Zabaras
1
+ Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations 2018 Maziar Raissi
1
+ PDF Chat Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification 2018 Rohit Tripathy
Ilias Bilionis
1
+ PDF Chat Bayesian Optimization with Expensive Integrands 2022 Saul Toscano-Palmerin
Peter I. Frazier
1
+ Proceedings of the 25th international conference on Machine learning 2008 William W. Cohen
Andrew McCallum
Sam T. Roweis
1
+ Adversarially Robust Optimization with Gaussian Processes 2018 Ilija Bogunovic
Jonathan Scarlett
Stefanie Jegelka
Volkan Cevher
1
+ PDF Chat Does non-stationary spatial data always require non-stationary random fields? 2015 Geir‐Arne Fuglstad
Daniel Simpson
Finn Lindgren
HĂ„vard Rue
1
+ PDF Chat Geodesic Convolutional Neural Networks on Riemannian Manifolds 2015 Jonathan Masci
Davide Boscaini
Michael M. Bronstein
Pierre Vandergheynst
1
+ PDF Chat Physically-Inspired Gaussian Process Models for Post-Transcriptional Regulation in Drosophila 2019 Andrés F. López-Lopera
Nicolas Durrande
Mauricio A. Álvarez
1
+ Constrained Bayesian Optimization with Noisy Experiments 2018 Benjamin Letham
Brian Karrer
Guilherme Ottoni
Eytan Bakshy
1
+ PDF Chat POLYNOMIAL-CHAOS-BASED KRIGING 2015 Roland Schöbi
Bruno Sudret
Joe Wiart
1
+ PDF Chat Exploring a New Class of Non-stationary Spatial Gaussian Random Fields with Varying Local Anisotropy 2014 Geir‐Arne Fuglstad
Finn Lindgren
Daniel Simpson
HĂ„vard Rue
1
+ PDF Chat Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation 2020 Nima Tajbakhsh
Laura Jeyaseelan
Qian Li
Jeffrey N. Chiang
Zhihao Wu
Xiaowei Ding
1
+ PDF Chat Simulation of hyperelastic materials in real-time using deep learning 2019 Andrea MendizĂĄbal
Pablo MĂĄrquez-Neila
Stéphane Cotin
1
+ Gaussian Processes for Data Fulfilling Linear Differential Equations 2019 Christopher G. Albert
1
+ PDF Chat When Gaussian Process Meets Big Data: A Review of Scalable GPs 2020 Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
1
+ PDF Chat A review of deep learning with special emphasis on architectures, applications and recent trends 2020 Saptarshi Sengupta
Sanchita Basak
Pallabi Saikia
Sayak Paul
Vasilios Tsalavoutis
Frederick Ditliac Atiah
Vadlamani Ravi
Alan Peters
1
+ PDF Chat A survey on modern trainable activation functions 2021 Andrea Apicella
Francesco Donnarumma
Francesco IsgrĂČ
Roberto Prevete
1
+ PDF Chat A SURVEY OF CONSTRAINED GAUSSIAN PROCESS REGRESSION: APPROACHES AND IMPLEMENTATION CHALLENGES 2020 Laura Swiler
Mamikon Gulian
Ari Frankel
Cosmin Safta
John Jakeman
1
+ PDF Chat 3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network 2018 Hongming Shan
Yi Zhang
Qingsong Yang
Uwe KrĂŒger
Mannudeep K. Kalra
Ling Sun
Wenxiang Cong
Ge Wang
1
+ PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain 2020 Han Gao
Luning Sun
Jianxun Wang
1
+ PDF Chat nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation 2020 Fabian Isensee
Paul F. Jaeger
Simon Kohl
Jens Petersen
Klaus H. Maier‐Hein
1