Phaedon‐Stelios Koutsourelakis

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Quantification of model error for inverse problems in the Weak Neural Variational Inference framework 2025 Vincent C. Scholz
Phaedon‐Stelios Koutsourelakis
+ Weak neural variational inference for solving Bayesian inverse problems without forward models: Applications in elastography 2024 Vincent C. Scholz
Yaohua Zang
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Embedded Model Bias Quantification with Measurement Noise for Bayesian Model Calibration 2024 Daniel Andrés Arcones
Martin Weiser
Phaedon‐Stelios Koutsourelakis
Jörg F. Unger
+ Model Bias Identification for Bayesian Calibration of Stochastic Digital Twins of Bridges 2024 Daniel Andrés Arcones
Martin Weiser
Phaedon‐Stelios Koutsourelakis
Jörg F. Unger
+ PDF Chat PSP-GEN: Stochastic inversion of the Process-Structure-Property chain in materials design through deep, generative probabilistic modeling 2024 Yaohua Zang
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Weak neural variational inference for solving Bayesian inverse problems without forward models: applications in elastography 2024 Vincent C. Scholz
Yaohua Zang
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media 2024 Matthaios Chatzopoulos
Phaedon‐Stelios Koutsourelakis
+ A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty 2024 Atul Agrawal
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Physics-Aware Neural Implicit Solvers for Multiscale, Parametric Pdes with Applications in Heterogeneous Media 2024 Matthaios Chatzopoulos
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Weak Neural Variational Inference for Solving Bayesian Inverse Problems Without Forward Models: Applications in Elastography 2024 Vincent C. Scholz
Yaohua Zang
Phaedon‐Stelios Koutsourelakis
+ From concrete mixture to structural design—a holistic optimization procedure in the presence of uncertainties 2024 Atul Agrawal
Erik Tamsen
Jörg F. Unger
Phaedon‐Stelios Koutsourelakis
+ Interpretable reduced-order modeling with time-scale separation 2023 Sebastian Kaltenbach
Phaedon‐Stelios Koutsourelakis
Petros Koumoutsakos
+ A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty 2023 Atul Agrawal
Phaedon‐Stelios Koutsourelakis
+ Physics-Informed Tensor Basis Neural Network for Turbulence Closure Modeling 2023 Leon Riccius
Atul Agrawal
Phaedon‐Stelios Koutsourelakis
+ Multi-fidelity Constrained Optimization for Stochastic Black Box Simulators 2023 Atul Agrawal
Kislaya Ravi
Phaedon‐Stelios Koutsourelakis
Hans–Joachim Bungartz
+ Model bias identification for Bayesian calibration of stochastic digital twins of bridges 2023 Daniel Andrés Arcones
Martin Weiser
Phaedon‐Stelios Koutsourelakis
Jörg F. Unger
+ From concrete mixture to structural design -- a holistic optimization procedure in the presence of uncertainties 2023 Atul Agrawal
Erik Tamsen
Phaedon‐Stelios Koutsourelakis
J. Unger
+ Semi-supervised Invertible Neural Operators for Bayesian Inverse Problems 2022 Sebastian Kaltenbach
Paris Perdikaris
Phaedon‐Stelios Koutsourelakis
+ Physics-enhanced Neural Networks in the Small Data Regime 2021 Jonas Eichelsdörfer
Sebastian Kaltenbach
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Physics-enhanced Neural Networks in the Small Data Regime 2021 Jonas Eichelsdörfer
Sebastian Kaltenbach
Phaedon‐Stelios Koutsourelakis
+ PDF Chat A probabilistic generative model for semi-supervised training of coarse-grained surrogates and enforcing physical constraints through virtual observables 2021 Maximilian Rixner
Phaedon‐Stelios Koutsourelakis
+ Physics-aware, deep probabilistic modeling of multiscale dynamics in the Small Data regime. 2021 Sebastian Kaltenbach
Phaedon‐Stelios Koutsourelakis
+ Physics-aware, probabilistic model order reduction with guaranteed stability 2021 Sebastian Kaltenbach
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Physics-Aware, Deep Probabilistic Modeling of Multiscale Dynamics in the Small Data Regime 2021 Sebastian Kaltenbach
Phaedon‐Stelios Koutsourelakis
+ Self-supervised optimization of random material microstructures in the small-data regime 2021 Maximilian Rixner
Phaedon‐Stelios Koutsourelakis
+ Physics-aware, deep probabilistic modeling of multiscale dynamics in the Small Data regime 2021 Sebastian Kaltenbach
Phaedon‐Stelios Koutsourelakis
+ Physics-enhanced Neural Networks in the Small Data Regime 2021 Jonas Eichelsdörfer
Sebastian Kaltenbach
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Incorporating physical constraints in a deep probabilistic machine learning framework for coarse-graining dynamical systems 2020 Sebastian Kaltenbach
Phaedon‐Stelios Koutsourelakis
+ A Generalized Probabilistic Learning Approach for Multi-Fidelity Uncertainty Propagation in Complex Physical Simulations. 2020 Jonas Nitzler
Jonas Biehler
Niklas Fehn
Phaedon‐Stelios Koutsourelakis
Wolfgang A. Wall
+ Embedded-physics machine learning for coarse-graining and collective variable discovery without data 2020 Markus Schöberl
Nicholas Zabaras
Phaedon‐Stelios Koutsourelakis
+ A Generalized Probabilistic Learning Approach for Multi-Fidelity Uncertainty Propagation in Complex Physical Simulations 2020 Jonas Nitzler
Jonas Biehler
Niklas Fehn
Phaedon‐Stelios Koutsourelakis
Wolfgang A. Wall
+ PDF Chat A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regime 2019 Constantin Grigo
Phaedon‐Stelios Koutsourelakis
+ Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data 2019 Yinhao Zhu
Nicholas Zabaras
Phaedon‐Stelios Koutsourelakis
Paris Perdikaris
+ PDF Chat Predictive collective variable discovery with deep Bayesian models 2019 Markus Schöberl
Nicholas Zabaras
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Bayesian Model and Dimension Reduction for Uncertainty Propagation: Applications in Random Media 2019 Constantin Grigo
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Physics-Constrained, Data-Driven Discovery of Coarse-Grained Dynamics 2019 Lukas Felsberger
Phaedon‐Stelios Koutsourelakis
+ PDF Chat A data‐driven model order reduction approach for Stokes flow through random porous media 2018 Constantin Grigo
Phaedon‐Stelios Koutsourelakis
+ Beyond black-boxes in Bayesian inverse problems and model validation: applications in solid mechanics of elastography 2018 Lukas Bruder
Phaedon‐Stelios Koutsourelakis
+ Physics-constrained, data-driven discovery of coarse-grained dynamics 2018 Lukas Felsberger
Phaedon‐Stelios Koutsourelakis
+ PDF Chat BEYOND BLACK-BOXES IN BAYESIAN INVERSE PROBLEMS AND MODEL VALIDATION: APPLICATIONS IN SOLID MECHANICS OF ELASTOGRAPHY 2018 Lukas Bruder
Phaedon‐Stelios Koutsourelakis
+ Beyond black-boxes in Bayesian inverse problems and model validation: applications in solid mechanics of elastography 2018 Lukas Bruder
Phaedon‐Stelios Koutsourelakis
+ PROBABILISTIC REDUCED-ORDER MODELING FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 2017 Constantin Grigo
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Predictive coarse-graining 2016 Markus Schöberl
Nicholas Zabaras
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Multimodal, high-dimensional, model-based, Bayesian inverse problems with applications in biomechanics 2016 Isabell M. Franck
Phaedon‐Stelios Koutsourelakis
+ PDF Chat Variational Bayesian strategies for high-dimensional, stochastic design problems 2015 Phaedon‐Stelios Koutsourelakis
+ PDF Chat Sparse Variational Bayesian approximations for nonlinear inverse problems: Applications in nonlinear elastography 2015 Isabell M. Franck
Phaedon‐Stelios Koutsourelakis
+ Multimodal, high-dimensional, model-based, Bayesian inverse problems with applications in biomechanics 2015 Isabell M. Franck
Phaedon‐Stelios Koutsourelakis
+ Variational Bayesian Formulations for High-Dimensional Inverse Problems 2015 Isabell M. Franck
Phaedon‐Stelios Koutsourelakis
+ Sparse Variational Bayesian Approximations for Nonlinear Inverse Problems: applications in nonlinear elastography 2014 Isabell M. Franck
Phaedon‐Stelios Koutsourelakis
+ Simulation-based, high-dimensional stochastic optimization: application in robust topology optimization under large material uncertainties 2014 Phaedon‐Stelios Koutsourelakis
+ PDF Chat A novel Bayesian strategy for the identification of spatially varying material properties and model validation: an application to static elastography 2012 Phaedon‐Stelios Koutsourelakis
+ PDF Chat Free energy computations by minimization of Kullback–Leibler divergence: An efficient adaptive biasing potential method for sparse representations 2012 Ilias Bilionis
Phaedon‐Stelios Koutsourelakis
+ Bayesian reduced-order models for multiscale dynamical systems 2010 Phaedon‐Stelios Koutsourelakis
Elias Bilionis
+ Scalable Bayesian reduced-order models for high-dimensional multiscale dynamical systems 2010 Phaedon‐Stelios Koutsourelakis
Elias Bilionis
+ Free energy computations by minimization of Kullback-Leibler divergence: an efficient adaptive biasing potential method for sparse representations 2010 Ilias Bilionis
Phaedon‐Stelios Koutsourelakis
+ PDF Chat A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters 2009 Phaedon‐Stelios Koutsourelakis
+ Uncertainty quantification in complex systems using approximate solvers 2008 Phaedon‐Stelios Koutsourelakis
+ Probabilistic characterization and simulation of multi-phase random media 2005 Phaedon‐Stelios Koutsourelakis
+ A critical appraisal of reliability estimation procedures for high dimensions 2004 G.I. Schuëller
H.J. Pradlwarter
Phaedon‐Stelios Koutsourelakis
+ Reliability of structures in high dimensions. Part II. Theoretical validation 2004 Phaedon‐Stelios Koutsourelakis
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants 1998 Radford M. Neal
Geoffrey E. Hinton
11
+ Stochastic Variational Inference 2012 Matt Hoffman
David M. Blei
Chong Wang
John Paisley
10
+ Pattern Recognition and Machine Learning 2007 Christopher Bishop
10
+ Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm 1977 A. P. Dempster
N. M. Laird
Donald B. Rubin
9
+ PDF Chat Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification 2018 Yinhao Zhu
Nicholas Zabaras
8
+ PDF Chat Incorporating physical constraints in a deep probabilistic machine learning framework for coarse-graining dynamical systems 2020 Sebastian Kaltenbach
Phaedon‐Stelios Koutsourelakis
8
+ Variational Relevance Vector Machines 2013 Chris Bishop
Michael E. Tipping
7
+ Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data 2019 Yinhao Zhu
Nicholas Zabaras
Phaedon‐Stelios Koutsourelakis
Paris Perdikaris
7
+ Stochastic variational inference 2013 Matthew D. Hoffman
David M. Blei
Chong Wang
John Paisley
7
+ PDF Chat Monte Carlo Statistical Methods 2000 Hoon Kim
Christian P. Robert
George Casella
7
+ PDF Chat Bayesian Model and Dimension Reduction for Uncertainty Propagation: Applications in Random Media 2019 Constantin Grigo
Phaedon‐Stelios Koutsourelakis
6
+ PDF Chat Sequential Monte Carlo Samplers 2006 Pierre Del Moral
Arnaud Doucet
Ajay Jasra
6
+ PDF Chat Predictive coarse-graining 2016 Markus Schöberl
Nicholas Zabaras
Phaedon‐Stelios Koutsourelakis
6
+ Solution of inverse problems with limited forward solver evaluations: a Bayesian perspective 2013 Ilias Bilionis
Nicholas Zabaras
6
+ Deep Convolutional Encoder‐Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media 2018 Shaoxing Mo
Yinhao Zhu
Nicholas Zabaras
Xiaoqing Shi
Jichun Wu
6
+ PDF Chat A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters 2009 Phaedon‐Stelios Koutsourelakis
6
+ Discovering governing equations from data by sparse identification of nonlinear dynamical systems 2016 Steven L. Brunton
Joshua L. Proctor
J. Nathan Kutz
5
+ PDF Chat Gaussian Markov random field priors for inverse problems 2013 Johnathan M. Bardsley
5
+ Adjoint‐weighted variational formulation for the direct solution of inverse problems of general linear elasticity with full interior data 2009 Paul E. Barbone
Carlos E. Rivas
Isaac Harari
Uri Albocher
Assad A. Oberai
Yixiao Zhang
5
+ PDF Chat Inducing features of random fields 1997 S. Della Pietra
V. Della Pietra
John Lafferty
5
+ PDF Chat Physics-Constrained, Data-Driven Discovery of Coarse-Grained Dynamics 2019 Lukas Felsberger
Phaedon‐Stelios Koutsourelakis
5
+ Variational Bayesian Inference with Stochastic Search 2012 John Paisley
David M. Blei
Michael I. Jordan
5
+ Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations 2017 Maziar Raissi
Paris Perdikaris
George Em Karniadakis
5
+ PDF Chat Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference 2004 Nicolás Chopin
5
+ Hidden physics models: Machine learning of nonlinear partial differential equations 2017 Maziar Raissi
George Em Karniadakis
5
+ PDF Chat A feasible method for optimization with orthogonality constraints 2012 Zaiwen Wen
Wotao Yin
5
+ Hierarchical Bayesian models for inverse problems in heat conduction 2004 Jingbo Wang
Nicholas Zabaras
5
+ Reduced Basis Methods for Partial Differential Equations: An Introduction 2015 Alfio Quarteroni
Andrea Manzoni
Federico Negri
4
+ PDF Chat Simulating normalizing constants: from importance sampling to bridge sampling to path sampling 1998 Andrew Gelman
Xiao‐Li Meng
4
+ The information bottleneck method 2000 Naftali Tishby
Fernando C. N. Pereira
William Bialek
4
+ PDF Chat Extracting macroscopic dynamics: model problems and algorithms 2004 Dror Givon
Raz Kupferman
Andrew M. Stuart
4
+ Escaping free-energy minima 2002 Alessandro Laio
Michele Parrinello
4
+ PDF Chat Bayesian computation: a summary of the current state, and samples backwards and forwards 2015 Peter J. Green
Krzysztof Łatuszyński
Marcelo Pereyra
Christian P. Robert
4
+ PDF Chat Certified Reduced Basis Methods for Parametrized Partial Differential Equations 2015 Jan S. Hesthaven
Gianluigi Rozza
Benjamin Stamm
4
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
4
+ PDF Chat A probabilistic generative model for semi-supervised training of coarse-grained surrogates and enforcing physical constraints through virtual observables 2021 Maximilian Rixner
Phaedon‐Stelios Koutsourelakis
4
+ PDF Chat Free energy methods for Bayesian inference: efficient exploration of univariate Gaussian mixture posteriors 2011 Nicolás Chopin
Tony Lelièvre
Gabriel Stoltz
4
+ PDF Chat Convergence of a stochastic approximation version of the EM algorithm 1999 Bernard Delyon
Marc Lavielle
Éric Moulines
4
+ High-Order Collocation Methods for Differential Equations with Random Inputs 2005 Dongbin Xiu
Jan S. Hesthaven
4
+ PDF Chat Sparse Variational Bayesian approximations for nonlinear inverse problems: Applications in nonlinear elastography 2015 Isabell M. Franck
Phaedon‐Stelios Koutsourelakis
4
+ PDF Chat A novel Bayesian strategy for the identification of spatially varying material properties and model validation: an application to static elastography 2012 Phaedon‐Stelios Koutsourelakis
4
+ PDF Chat A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regime 2019 Constantin Grigo
Phaedon‐Stelios Koutsourelakis
4
+ Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems 2019 Yibo Yang
Paris Perdikaris
4
+ PDF Chat A variational Bayesian method to inverse problems with impulsive noise 2011 Bangti Jin
4
+ Variational Bayesian Inference for a Nonlinear Forward Model 2008 Michael A. Chappell
Adrian R. Groves
Brandon Whitcher
Mark W. Woolrich
3
+ The FEniCS Project Version 1.5 2015 Martin Sandve Alnæs
Jan Blechta
Johan Hake
August Johansson
Benjamin Kehlet
Anders Logg
Chris Richardson
Johannes Ring
Marie E. Rognes
Garth N. Wells
3
+ Extreme-scale UQ for Bayesian inverse problems governed by PDEs 2012 Tan Bui‐Thanh
Carsten Burstedde
Omar Ghattas
James L. Martin
Georg Stadler
Lucas C. Wilcox
3
+ Equation-Free Multiscale Computation: enabling microscopic simulators to perform system-level tasks 2002 Ioannis G. Kevrekidis
C. W. Gear
James M. Hyman
Panagiotis Kevrekidis
Olof Runborg
Constantinos Theodoropoulos
3
+ When Is a Model Good Enough? Deriving the Expected Value of Model Improvement via Specifying Internal Model Discrepancies 2014 Mark Strong
Jeremy E. Oakley
3
+ PDF Chat Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems 1974 C. Antoniak
3