Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Yura Perov
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
Learning medical triage from clinicians using Deep Q-Learning.
2020
Albert Buchard
Baptiste Bouvier
Giulia Prando
Rory Beard
Michail Livieratos
Dan Busbridge
Daniel H. Thompson
Jonathan G. Richens
Yuanzhao Zhang
Adam Baker
+
Learning medical triage from clinicians using Deep Q-Learning
2020
Albert Buchard
Baptiste Bouvier
Giulia Prando
Rory Beard
Michail Livieratos
Dan Busbridge
Daniel B. Thompson
Jonathan G. Richens
Yuanzhao Zhang
Adam Baker
+
Universal Marginaliser for Deep Amortised Inference for Probabilistic Programs
2019
Robert Walecki
Kostis Gourgoulias
Adam Baker
Chris Hart
Chris Lucas
Max Zwiessele
Albert Buchard
María Lomelí
Yura Perov
Saurabh Johri
+
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming
2019
Yura Perov
Logan Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Lee
Adam Baker
Saurabh Johri
+
A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis
2018
Salman Razzaki
Adam Baker
Yura Perov
Katherine Middleton
Janie Baxter
Daniel Mullarkey
Davinder Sangar
Michael Taliercio
Mobasher Butt
Azeem Majeed
+
Inference Over Programs That Make Predictions
2018
Yura Perov
+
Universal Marginalizer for Amortised Inference and Embedding of Generative Models
2018
Robert Walecki
Albert Buchard
Kostis Gourgoulias
Chris Hart
María Lomelí
Alexandre K. W. Navarro
Max Zwiessele
Yura Perov
Saurabh Johri
+
A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis
2018
Salman Razzaki
Adam Baker
Yura Perov
Katherine Middleton
Janie Baxter
Daniel J. Mullarkey
Davinder Sangar
Michael Taliercio
Mobasher Butt
Azeem Majeed
+
A Universal Marginalizer for Amortized Inference in Generative Models.
2017
Laura Douglas
Iliyan Zarov
Konstantinos Gourgoulias
Chris Lucas
Chris Hart
Adam Baker
Maneesh Sahani
Yura Perov
Saurabh Johri
+
A Universal Marginalizer for Amortized Inference in Generative Models
2017
Laura Douglas
Iliyan Zarov
Konstantinos Gourgoulias
Chris Lucas
Chris Hart
Adam Baker
Maneesh Sahani
Yura Perov
Saurabh Johri
+
Bachelor's thesis on generative probabilistic programming (in Russian language, June 2014)
2016
Yura Perov
+
Applications of Probabilistic Programming (Master's thesis, 2015)
2016
Yura Perov
+
Spreadsheet Probabilistic Programming
2016
Mike Wu
Yura Perov
Frank Wood
Hongseok Yang
+
Bachelor's thesis on generative probabilistic programming (in Russian language, June 2014)
2016
Yura Perov
+
Data-driven Sequential Monte Carlo in Probabilistic Programming
2015
Yura Perov
Tuan Anh Le
Frank Wood
+
Data-driven Sequential Monte Carlo in Probabilistic Programming
2015
Yura Perov
Tuan Anh Le
Frank Wood
+
Learning Probabilistic Programs.
2014
Yura Perov
Frank Wood
+
Venture: a higher-order probabilistic programming platform with programmable inference
2014
Vikash K. Mansinghka
Daniel Selsam
Yura Perov
+
Learning Probabilistic Programs
2014
Yura Perov
Frank Wood
+
Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs
2013
Vikash K. Mansinghka
Tejas D. Kulkarni
Yura Perov
Joshua B. Tenenbaum
Common Coauthors
Coauthor
Papers Together
Saurabh Johri
9
Adam Baker
5
Kostis Gourgoulias
5
Albert Buchard
4
Frank Wood
4
Adam Baker
3
Jonathan G. Richens
3
Chris Hart
3
Iliyan Zarov
2
Maneesh Sahani
2
Michail Livieratos
2
Azeem Majeed
2
María Lomelí
2
Michael Taliercio
2
Megan Mahoney
2
Baptiste Bouvier
2
Yuanzhao Zhang
2
Katherine Middleton
2
Max Zwiessele
2
Laura Douglas
2
Davinder Sangar
2
Dan Busbridge
2
Janie Baxter
2
Rory Beard
2
Robert Walecki
2
Konstantinos Gourgoulias
2
Vikash K. Mansinghka
2
Arnold DoRosario
2
Tuan Anh Le
2
Chris Lucas
2
Giulia Prando
2
Mike Wu
1
Tejas D. Kulkarni
1
Frank Wood
1
Chris Hart
1
Joshua B. Tenenbaum
1
Mobasher Butt
1
Salman Razzaki
1
Logan Graham
1
Daniel Mullarkey
1
Ciarán M. Lee
1
Daniel B. Thompson
1
Salman Razzaki
1
Hongseok Yang
1
Alexandre K. W. Navarro
1
Daniel J. Mullarkey
1
Daniel H. Thompson
1
Chris Lucas
1
Daniel Selsam
1
Mobasher Butt
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
A Compilation Target for Probabilistic Programming Languages
2014
Brooks Paige
Frank Wood
4
+
Venture: a higher-order probabilistic programming platform with programmable inference
2014
Vikash K. Mansinghka
Daniel Selsam
Yura Perov
4
+
Data-driven Sequential Monte Carlo in Probabilistic Programming
2015
Yura Perov
Tuan Anh Le
Frank Wood
3
+
Probabilistic Programming in Anglican
2015
David Tolpin
Jan-Willem van de Meent
Frank Wood
3
+
PDF
Chat
Particle Markov Chain Monte Carlo Methods
2010
Christophe Andrieu
Arnaud Doucet
Roman Holenstein
3
+
PDF
Chat
Using synthetic data to train neural networks is model-based reasoning
2017
Tuan Anh Le
Atılım Güneş Baydin
Robert Zinkov
Frank Wood
3
+
Automated Variational Inference in Probabilistic Programming
2013
David Wingate
Théophane Weber
3
+
Deep Amortized Inference for Probabilistic Programs
2016
Daniel Ritchie
Paul Horsfall
Noah D. Goodman
3
+
Exploiting compositionality to explore a large space of model structures
2012
Roger Grosse
Ruslan Salakhutdinov
William T. Freeman
Joshua B. Tenenbaum
3
+
Inference Compilation and Universal Probabilistic Programming
2016
Tuan Anh Le
Atılım Güneş Baydin
Frank Wood
3
+
A New Approach to Probabilistic Programming Inference
2014
Frank Wood
Jan-Willem van de Meent
Vikash K. Mansinghka
3
+
Church: a language for generative models
2012
Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
Joshua B. Tenenbaum
2
+
Inducing Probabilistic Programs by Bayesian Program Merging
2011
Irvin Hwang
Andreas Stuhlmüller
Noah D. Goodman
2
+
Structured Priors for Structure Learning
2012
Vikash K. Mansinghka
Charles Kemp
Joshua B. Tenenbaum
Thomas L. Griffiths
2
+
MADE: Masked Autoencoder for Distribution Estimation
2015
Mathieu Germain
Karol Gregor
Iain Murray
Hugo Larochelle
2
+
Universal Marginalizer for Amortised Inference and Embedding of Generative Models
2018
Robert Walecki
Albert Buchard
Kostis Gourgoulias
Chris Hart
María Lomelí
Alexandre K. W. Navarro
Max Zwiessele
Yura Perov
Saurabh Johri
2
+
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
2015
Jan-Willem van de Meent
Hongseok Yang
Vikash K. Mansinghka
Frank Wood
2
+
Pyro: Deep Universal Probabilistic Programming
2018
Eli Bingham
Jonathan P. Chen
Martin Jankowiak
Fritz Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul Szerlip
Paul Horsfall
Noah D. Goodman
2
+
Applications of Probabilistic Programming (Master's thesis, 2015)
2016
Yura Perov
2
+
Structure Discovery in Nonparametric Regression through Compositional Kernel Search
2013
David Duvenaud
James Robert Lloyd
Roger Grosse
Joshua B. Tenenbaum
Zoubin Ghahramani
2
+
PDF
Chat
AIS-BN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks
2000
J.-J. Cheng
Marek J. Drużdżel
2
+
Novel approach to nonlinear/non-Gaussian Bayesian state estimation
1993
Neil Gordon
David Salmond
A. F. M. Smith
1
+
Image segmentation by data-driven markov chain monte carlo
2002
Zhuowen Tu
Song-Chun Zhu
1
+
Using the Propensity Score Method to Estimate Causal Effects
2012
Mingxiang Li
1
+
The BUGS project: Evolution, critique and future directions
2009
David J. Lunn
David J. Spiegelhalter
Andrew C. Thomas
Nicky Best
1
+
PDF
Chat
Approximate Bayesian computational methods
2011
Jean‐Michel Marin
Pierre Pudlo
Christian P. Robert
Robin Ryder
1
+
Particle gibbs with ancestor sampling
2014
Fredrik Lindsten
Michael I. Jordan
Thomas B. Schön
1
+
Structure Discovery in Nonparametric Regression through Compositional Kernel Search
2013
David Duvenaud
James Robert Lloyd
Roger Grosse
Joshua B. Tenenbaum
Zoubin Ghahramani
1
+
Any reasonable cost function can be used for a posteriori probability approximation
2002
Marco Saerens
Patrice Latinne
Christine Decaestecker
1
+
PDF
Chat
Sequential Monte Carlo Samplers
2006
Pierre Del Moral
Arnaud Doucet
Ajay Jasra
1
+
PDF
Chat
Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
2008
Tina Toni
David Welch
Natalja Strelkowa
Andreas Ipsen
Michael P. H. Stumpf
1
+
Black Box Variational Inference
2013
Rajesh Ranganath
Sean Gerrish
David M. Blei
1
+
PDF
Chat
The informed sampler: A discriminative approach to Bayesian inference in generative computer vision models
2015
Varun Jampani
Sebastian Nowozin
Matthew Loper
Peter Gehler
1
+
Probability: Theory and Examples.
1992
Kathryn Prewitt
Richard Durrett
1
+
PDF
Chat
Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs
2015
David Tolpin
Jan-Willem van de Meent
Brooks Paige
Frank Wood
1
+
Generalized Polya Urn for Time-varying Dirichlet Process Mixtures
2012
François Caron
Manuel Davy
Arnaud Doucet
1
+
Gibbs Sampling in Open-Universe Stochastic Languages
2012
Nimar S. Arora
Rodrigo de Salvo Braz
Erik B. Sudderth
Stuart Russell
1
+
Counterfactual Fairness
2017
Matt J. Kusner
Joshua R. Loftus
Chris Russell
Ricardo Silva
1
+
A Universal Marginalizer for Amortized Inference in Generative Models.
2017
Laura Douglas
Iliyan Zarov
Konstantinos Gourgoulias
Chris Lucas
Chris Hart
Adam Baker
Maneesh Sahani
Yura Perov
Saurabh Johri
1
+
Reliable Decision Support using Counterfactual Models
2017
Peter Schulam
Suchi Saria
1
+
Nesting Probabilistic Programs
2018
Tom Rainforth
1
+
Local Rule-Based Explanations of Black Box Decision Systems.
2018
Riccardo Guidotti
Anna Monreale
Salvatore Ruggieri
Dino Pedreschi
Franco Turini
Fosca Giannotti
1
+
An Introduction to Probabilistic Programming
2018
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
1
+
Simple, Distributed, and Accelerated Probabilistic Programming
2018
Dustin Tran
Matthew D. Hoffman
Dave Moore
Christopher Suter
Vasudevan Srinivas
Alexey Radul
Matthew Johnson
Rif A. Saurous
1
+
Learning about an exponential amount of conditional distributions
2019
Mohamed Ishmael Belghazi
Maxime Oquab
Yann LeCun
David López-Paz
1
+
Counterfactual Risk Minimization: Learning from Logged Bandit Feedback
2015
Adith Swaminathan
Thorsten Joachims
1
+
Efficient Estimation of Word Representations in Vector Space
2013
Tomáš Mikolov
Kai Chen
Greg S. Corrado
Jay B. Dean
1
+
Design and Implementation of Probabilistic Programming Language Anglican
2016
David Tolpin
Jan Willem van de Meent
Hongseok Yang
Frank Wood
1
+
Neural Adaptive Sequential Monte Carlo
2015
Shixiang Gu
Zoubin Ghahramani
Richard E. Turner
1
+
MADE: Masked Autoencoder for Distribution Estimation
2015
Mathieu Germain
Karol Gregor
Iain Murray
Hugo Larochelle
1