Yura Perov

Follow

Generating author description...

All published works
Action Title Year Authors
+ Learning medical triage from clinicians using Deep Q-Learning. 2020 Albert Buchard
Baptiste Bouvier
Giulia Prando
Rory Beard
Michail Livieratos
Dan Busbridge
Daniel H. Thompson
Jonathan G. Richens
Yuanzhao Zhang
Adam Baker
+ Learning medical triage from clinicians using Deep Q-Learning 2020 Albert Buchard
Baptiste Bouvier
Giulia Prando
Rory Beard
Michail Livieratos
Dan Busbridge
Daniel B. Thompson
Jonathan G. Richens
Yuanzhao Zhang
Adam Baker
+ Universal Marginaliser for Deep Amortised Inference for Probabilistic Programs 2019 Robert Walecki
Kostis Gourgoulias
Adam Baker
Chris Hart
Chris Lucas
Max Zwiessele
Albert Buchard
María Lomelí
Yura Perov
Saurabh Johri
+ MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming 2019 Yura Perov
Logan Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Lee
Adam Baker
Saurabh Johri
+ A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis 2018 Salman Razzaki
Adam Baker
Yura Perov
Katherine Middleton
Janie Baxter
Daniel Mullarkey
Davinder Sangar
Michael Taliercio
Mobasher Butt
Azeem Majeed
+ Inference Over Programs That Make Predictions 2018 Yura Perov
+ Universal Marginalizer for Amortised Inference and Embedding of Generative Models 2018 Robert Walecki
Albert Buchard
Kostis Gourgoulias
Chris Hart
María Lomelí
Alexandre K. W. Navarro
Max Zwiessele
Yura Perov
Saurabh Johri
+ A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis 2018 Salman Razzaki
Adam Baker
Yura Perov
Katherine Middleton
Janie Baxter
Daniel J. Mullarkey
Davinder Sangar
Michael Taliercio
Mobasher Butt
Azeem Majeed
+ A Universal Marginalizer for Amortized Inference in Generative Models. 2017 Laura Douglas
Iliyan Zarov
Konstantinos Gourgoulias
Chris Lucas
Chris Hart
Adam Baker
Maneesh Sahani
Yura Perov
Saurabh Johri
+ A Universal Marginalizer for Amortized Inference in Generative Models 2017 Laura Douglas
Iliyan Zarov
Konstantinos Gourgoulias
Chris Lucas
Chris Hart
Adam Baker
Maneesh Sahani
Yura Perov
Saurabh Johri
+ Bachelor's thesis on generative probabilistic programming (in Russian language, June 2014) 2016 Yura Perov
+ Applications of Probabilistic Programming (Master's thesis, 2015) 2016 Yura Perov
+ Spreadsheet Probabilistic Programming 2016 Mike Wu
Yura Perov
Frank Wood
Hongseok Yang
+ Bachelor's thesis on generative probabilistic programming (in Russian language, June 2014) 2016 Yura Perov
+ Data-driven Sequential Monte Carlo in Probabilistic Programming 2015 Yura Perov
Tuan Anh Le
Frank Wood
+ Data-driven Sequential Monte Carlo in Probabilistic Programming 2015 Yura Perov
Tuan Anh Le
Frank Wood
+ Learning Probabilistic Programs. 2014 Yura Perov
Frank Wood
+ Venture: a higher-order probabilistic programming platform with programmable inference 2014 Vikash K. Mansinghka
Daniel Selsam
Yura Perov
+ Learning Probabilistic Programs 2014 Yura Perov
Frank Wood
+ Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs 2013 Vikash K. Mansinghka
Tejas D. Kulkarni
Yura Perov
Joshua B. Tenenbaum
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ A Compilation Target for Probabilistic Programming Languages 2014 Brooks Paige
Frank Wood
4
+ Venture: a higher-order probabilistic programming platform with programmable inference 2014 Vikash K. Mansinghka
Daniel Selsam
Yura Perov
4
+ Data-driven Sequential Monte Carlo in Probabilistic Programming 2015 Yura Perov
Tuan Anh Le
Frank Wood
3
+ Probabilistic Programming in Anglican 2015 David Tolpin
Jan-Willem van de Meent
Frank Wood
3
+ PDF Chat Particle Markov Chain Monte Carlo Methods 2010 Christophe Andrieu
Arnaud Doucet
Roman Holenstein
3
+ PDF Chat Using synthetic data to train neural networks is model-based reasoning 2017 Tuan Anh Le
Atılım Güneş Baydin
Robert Zinkov
Frank Wood
3
+ Automated Variational Inference in Probabilistic Programming 2013 David Wingate
Théophane Weber
3
+ Deep Amortized Inference for Probabilistic Programs 2016 Daniel Ritchie
Paul Horsfall
Noah D. Goodman
3
+ Exploiting compositionality to explore a large space of model structures 2012 Roger Grosse
Ruslan Salakhutdinov
William T. Freeman
Joshua B. Tenenbaum
3
+ Inference Compilation and Universal Probabilistic Programming 2016 Tuan Anh Le
Atılım Güneş Baydin
Frank Wood
3
+ A New Approach to Probabilistic Programming Inference 2014 Frank Wood
Jan-Willem van de Meent
Vikash K. Mansinghka
3
+ Church: a language for generative models 2012 Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
Joshua B. Tenenbaum
2
+ Inducing Probabilistic Programs by Bayesian Program Merging 2011 Irvin Hwang
Andreas Stuhlmüller
Noah D. Goodman
2
+ Structured Priors for Structure Learning 2012 Vikash K. Mansinghka
Charles Kemp
Joshua B. Tenenbaum
Thomas L. Griffiths
2
+ MADE: Masked Autoencoder for Distribution Estimation 2015 Mathieu Germain
Karol Gregor
Iain Murray
Hugo Larochelle
2
+ Universal Marginalizer for Amortised Inference and Embedding of Generative Models 2018 Robert Walecki
Albert Buchard
Kostis Gourgoulias
Chris Hart
María Lomelí
Alexandre K. W. Navarro
Max Zwiessele
Yura Perov
Saurabh Johri
2
+ Particle Gibbs with Ancestor Sampling for Probabilistic Programs 2015 Jan-Willem van de Meent
Hongseok Yang
Vikash K. Mansinghka
Frank Wood
2
+ Pyro: Deep Universal Probabilistic Programming 2018 Eli Bingham
Jonathan P. Chen
Martin Jankowiak
Fritz Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul Szerlip
Paul Horsfall
Noah D. Goodman
2
+ Applications of Probabilistic Programming (Master's thesis, 2015) 2016 Yura Perov
2
+ Structure Discovery in Nonparametric Regression through Compositional Kernel Search 2013 David Duvenaud
James Robert Lloyd
Roger Grosse
Joshua B. Tenenbaum
Zoubin Ghahramani
2
+ PDF Chat AIS-BN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks 2000 J.-J. Cheng
Marek J. Drużdżel
2
+ Novel approach to nonlinear/non-Gaussian Bayesian state estimation 1993 Neil Gordon
David Salmond
A. F. M. Smith
1
+ Image segmentation by data-driven markov chain monte carlo 2002 Zhuowen Tu
Song-Chun Zhu
1
+ Using the Propensity Score Method to Estimate Causal Effects 2012 Mingxiang Li
1
+ The BUGS project: Evolution, critique and future directions 2009 David J. Lunn
David J. Spiegelhalter
Andrew C. Thomas
Nicky Best
1
+ PDF Chat Approximate Bayesian computational methods 2011 Jean‐Michel Marin
Pierre Pudlo
Christian P. Robert
Robin Ryder
1
+ Particle gibbs with ancestor sampling 2014 Fredrik Lindsten
Michael I. Jordan
Thomas B. Schön
1
+ Structure Discovery in Nonparametric Regression through Compositional Kernel Search 2013 David Duvenaud
James Robert Lloyd
Roger Grosse
Joshua B. Tenenbaum
Zoubin Ghahramani
1
+ Any reasonable cost function can be used for a posteriori probability approximation 2002 Marco Saerens
Patrice Latinne
Christine Decaestecker
1
+ PDF Chat Sequential Monte Carlo Samplers 2006 Pierre Del Moral
Arnaud Doucet
Ajay Jasra
1
+ PDF Chat Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems 2008 Tina Toni
David Welch
Natalja Strelkowa
Andreas Ipsen
Michael P. H. Stumpf
1
+ Black Box Variational Inference 2013 Rajesh Ranganath
Sean Gerrish
David M. Blei
1
+ PDF Chat The informed sampler: A discriminative approach to Bayesian inference in generative computer vision models 2015 Varun Jampani
Sebastian Nowozin
Matthew Loper
Peter Gehler
1
+ Probability: Theory and Examples. 1992 Kathryn Prewitt
Richard Durrett
1
+ PDF Chat Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs 2015 David Tolpin
Jan-Willem van de Meent
Brooks Paige
Frank Wood
1
+ Generalized Polya Urn for Time-varying Dirichlet Process Mixtures 2012 François Caron
Manuel Davy
Arnaud Doucet
1
+ Gibbs Sampling in Open-Universe Stochastic Languages 2012 Nimar S. Arora
Rodrigo de Salvo Braz
Erik B. Sudderth
Stuart Russell
1
+ Counterfactual Fairness 2017 Matt J. Kusner
Joshua R. Loftus
Chris Russell
Ricardo Silva
1
+ A Universal Marginalizer for Amortized Inference in Generative Models. 2017 Laura Douglas
Iliyan Zarov
Konstantinos Gourgoulias
Chris Lucas
Chris Hart
Adam Baker
Maneesh Sahani
Yura Perov
Saurabh Johri
1
+ Reliable Decision Support using Counterfactual Models 2017 Peter Schulam
Suchi Saria
1
+ Nesting Probabilistic Programs 2018 Tom Rainforth
1
+ Local Rule-Based Explanations of Black Box Decision Systems. 2018 Riccardo Guidotti
Anna Monreale
Salvatore Ruggieri
Dino Pedreschi
Franco Turini
Fosca Giannotti
1
+ An Introduction to Probabilistic Programming 2018 Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
1
+ Simple, Distributed, and Accelerated Probabilistic Programming 2018 Dustin Tran
Matthew D. Hoffman
Dave Moore
Christopher Suter
Vasudevan Srinivas
Alexey Radul
Matthew Johnson
Rif A. Saurous
1
+ Learning about an exponential amount of conditional distributions 2019 Mohamed Ishmael Belghazi
Maxime Oquab
Yann LeCun
David López-Paz
1
+ Counterfactual Risk Minimization: Learning from Logged Bandit Feedback 2015 Adith Swaminathan
Thorsten Joachims
1
+ Efficient Estimation of Word Representations in Vector Space 2013 Tomáš Mikolov
Kai Chen
Greg S. Corrado
Jay B. Dean
1
+ Design and Implementation of Probabilistic Programming Language Anglican 2016 David Tolpin
Jan Willem van de Meent
Hongseok Yang
Frank Wood
1
+ Neural Adaptive Sequential Monte Carlo 2015 Shixiang Gu
Zoubin Ghahramani
Richard E. Turner
1
+ MADE: Masked Autoencoder for Distribution Estimation 2015 Mathieu Germain
Karol Gregor
Iain Murray
Hugo Larochelle
1