Marián Rynik

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Effective Approaches to Attention-based Neural Machine Translation 2015 Thang Luong
Hieu Pham
Christopher D. Manning
1
+ PDF Chat Projector augmented-wave method 1994 Peter E. Blöchl
1
+ PDF Chat Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons 2010 Albert P. Bartók
M. C. Payne
Risi Kondor
Gábor Cśanyi
1
+ PDF Chat Quantum-chemical insights from deep tensor neural networks 2017 Kristof T. Schütt
Farhad Arbabzadah
Stefan Chmiela
K. Müller
Alexandre Tkatchenko
1
+ PDF Chat ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost 2017 Justin S. Smith
Olexandr Isayev
Adrián E. Roitberg
1
+ PDF Chat Machine learning of accurate energy-conserving molecular force fields 2017 Stefan Chmiela
Alexandre Tkatchenko
Huziel E. Sauceda
Igor Poltavsky
Kristof T. Schütt
Klaus‐Robert Müller
1
+ PDF Chat Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials 2014 Aidan P. Thompson
Laura Swiler
Christian Robert Trott
Stephen M. Foiles
Garritt J. Tucker
1
+ PDF Chat Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics 2018 Linfeng Zhang
Jiequn Han
Han Wang
Roberto Car
E Weinan
1
+ DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics 2018 Han Wang
Linfeng Zhang
Jiequn Han
E Weinan
1
+ PDF Chat wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials 2018 Michael Gastegger
Ludwig Schwiedrzik
Marius R. Bittermann
Florian Berzsenyi
Philipp Marquetand
1
+ PDF Chat SchNet – A deep learning architecture for molecules and materials 2018 Kristof T. Schütt
Huziel E. Sauceda
Pieter-Jan Kindermans
Alexandre Tkatchenko
K. Müller
1
+ i-PI 2.0: A universal force engine for advanced molecular simulations 2018 Venkat Kapil
Mariana Rossi
Ondřej Maršálek
Riccardo Petraglia
Yair Litman
Thomas Spura
Bingqing Cheng
Alice Cuzzocrea
Robert H. Meißner
David M. Wilkins
1
+ PDF Chat SchNetPack: A Deep Learning Toolbox For Atomistic Systems 2018 Kristof T. Schütt
Pan Kessel
Michael Gastegger
Kim A. Nicoli
Alexandre Tkatchenko
K. Müller
1
+ PDF Chat Silicon Liquid Structure and Crystal Nucleation from <i>Ab Initio</i> Deep Metadynamics 2018 Luigi Bonati
Michele Parrinello
1
+ sGDML: Constructing accurate and data efficient molecular force fields using machine learning 2019 Stefan Chmiela
Huziel E. Sauceda
Igor Poltavsky
Klaus‐Robert Müller
Alexandre Tkatchenko
1
+ PDF Chat PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges 2019 Oliver T. Unke
Markus Meuwly
1
+ PDF Chat Large-scale ab initio simulations based on systematically improvable atomic basis 2015 Pengfei Li
Xiaohui Liu
Mohan Chen
Peize Lin
Xinguo Ren
Lin Lin
Chao Yang
Lixin He
1
+ PDF Chat Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation 2019 Yaolong Zhang
Ce Hu
Bin Jiang
1
+ PDF Chat Isotope effects in liquid water via deep potential molecular dynamics 2019 Hsin-Yu Ko
Linfeng Zhang
Biswajit Santra
Han Wang
E Weinan
Robert A. DiStasio
Roberto Car
1
+ PDF Chat 86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy 2020 Denghui Lu
Han Wang
Mohan Chen
Lin Lin
Roberto Car
E Weinan
Weile Jia
Linfeng Zhang
1
+ A unified deep neural network potential capable of predicting thermal conductivity of silicon in different phases 2020 Ruiyang Li
Eungkyu Lee
Tengfei Luo
1
+ PDF Chat Deep neural network for the dielectric response of insulators 2020 Linfeng Zhang
Mohan Chen
Xifan Wu
Han Wang
E Weinan
Roberto Car
1
+ PDF Chat DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models 2020 Yuzhi Zhang
Haidi Wang
Weijie Chen
Jinzhe Zeng
Linfeng Zhang
Han Wang
E Weinan
1
+ PDF Chat Isotope effects in x-ray absorption spectra of liquid water 2020 Chunyi Zhang
Linfeng Zhang
Jianhang Xu
Fujie Tang
Biswajit Santra
Xifan Wu
1
+ PDF Chat Open Catalyst 2020 (OC20) Dataset and Community Challenges 2021 Lowik Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
Morgane Rivière
Kevin Tran
Javier Heras‐Domingo
Caleb Ho
Weihua Hu
1
+ PDF Chat Machine Learning for Molecular Simulation 2020 Frank Noé
Alexandre Tkatchenko
Klaus‐Robert Müller
Cecilia Clementi
1
+ Active learning of uniformly accurate interatomic potentials for materials simulation 2019 Linfeng Zhang
De-Ye Lin
Han Wang
Roberto Car
E Weinan
1
+ PyXtal_FF: a python library for automated force field generation 2020 Howard Yanxon
David Zagaceta
Binh Tang
David S. Matteson
Qiang Zhu
1
+ PDF Chat Array programming with NumPy 2020 C. R. Harris
K. Jarrod Millman
Stéfan van der Walt
Ralf Gommers
Pauli Virtanen
David Cournapeau
Eric Wieser
Julian Taylor
Sebastian Berg
Nathaniel J. Smith
1
+ PDF Chat The MLIP package: moment tensor potentials with MPI and active learning 2020 Ivan S. Novikov
Konstantin Gubaev
Evgeny V. Podryabinkin
Alexander V. Shapeev
1
+ PDF Chat Raman spectrum and polarizability of liquid water from deep neural networks 2020 Grace M. Sommers
Marcos F. Calegari Andrade
Linfeng Zhang
Han Wang
Roberto Car
1
+ PDF Chat Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation 2020 Jinzhe Zeng
Liqun Cao
Mingyuan Xu
Tong Zhu
John Z. H. Zhang
1
+ PDF Chat Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics 2020 Yuzhi Zhang
Chang Gao
Qianrui Liu
Linfeng Zhang
Han Wang
Mohan Chen
1
+ Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the SCAN functional 2020 Jianhang Xu
Chunyi Zhang
Linfeng Zhang
Mohan Chen
Biswajit Santra
Xifan Wu
1
+ PDF Chat DeePKS-kit: A package for developing machine learning-based chemically accurate energy and density functional models 2022 Yixiao Chen
Linfeng Zhang
Han Wang
E Weinan
1
+ Phase Diagram of a Deep Potential Water Model 2021 Linfeng Zhang
Han Wang
Roberto Car
E Weinan
1
+ Machine Learning Force Fields 2021 Oliver T. Unke
Stefan Chmiela
Huziel E. Sauceda
Michael Gastegger
Igor Poltavsky
Kristof T. Schütt
Alexandre Tkatchenko
Klaus‐Robert Müller
1
+ PDF Chat Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water 2021 Manyi Yang
Luigi Bonati
Daniela Polino
Michele Parrinello
1
+ PDF Chat NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces 2022 Mojtaba Haghighatlari
Jie Li
Xingyi Guan
Oufan Zhang
Akshaya Kumar Das
Christopher J. Stein
Farnaz Heidar‐Zadeh
Meili Liu
Martin Head‐Gordon
Luke W. Bertels
1
+ Heat transport in liquid water from first-principles and deep neural network simulations 2021 Davide Tisi
Linfeng Zhang
Riccardo Bertossa
Han Wang
Roberto Car
Stefano Baroni
1
+ PDF Chat Learning intermolecular forces at liquid–vapor interfaces 2021 Samuel P. Niblett
Mirza Galib
David T. Limmer
1
+ PDF Chat Dissolving salt is not equivalent to applying a pressure on water 2022 Chunyi Zhang
Shuwen Yue
Athanassios Z. Panagiotopoulos
Michael L. Klein
Xifan Wu
1
+ PDF Chat REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems 2022 Yaolong Zhang
Junfan Xia
Bin Jiang
1
+ PDF Chat A deep potential model with long-range electrostatic interactions 2022 Linfeng Zhang
Han Wang
Maria Carolina Muniz
Athanassios Z. Panagiotopoulos
Roberto Car
E Weinan
1
+ PDF Chat E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials 2022 Simon Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
Jonathan P. Mailoa
Mordechai Kornbluth
Nicola Molinari
Tess Smidt
Boris Kozinsky
1
+ PDF Chat A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment 2022 Xiaoyang Wang
Yinan Wang
Linfeng Zhang
Fu‐Zhi Dai
Han Wang
1
+ PDF Chat Deep potentials for materials science 2022 Tongqi Wen
Linfeng Zhang
Han Wang
E Weinan
David J. Srolovitz
1
+ PDF Chat GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations 2022 Zheyong Fan
Yanzhou Wang
Penghua Ying
Keke Song
Junjie Wang
Yong Wang
Zezhu Zeng
Ke Xu
Eric Lindgren
J. Magnus Rahm
1
+ PDF Chat Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements 2022 So Takamoto
Chikashi Shinagawa
D. Motoki
Kosuke Nakago
Wenwen Li
Iori Kurata
Taku Watanabe
Yoshihiro Yayama
Hiroki Iriguchi
Yusuke Asano
1
+ Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation 2022 He Li
Zun Wang
Nianlong Zou
Meng Ye
Runzhang Xu
Xiaoxun Gong
Wenhui Duan
Yong Xu
1