David Madras

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Auto-Evaluation with Few Labels through Post-hoc Regression 2024 Benjamin Eyre
David Madras
+ PDF Chat Generalized People Diversity: Learning a Human Perception-Aligned Diversity Representation for People Images 2024 Hansa Srinivasan
Candice Schumann
Aradhana Sinha
David Madras
Gbolahan O. Olanubi
Alex Beutel
Susanna Ricco
Jilin Chen
+ PDF Chat Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context 2024 Gemini Team
Machel Reid
Nikolay Savinov
Denis Teplyashin
Dmitry
Lepikhin
Timothy Lillicrap
Jean-baptiste Alayrac
Radu Soricut
Angeliki Lazaridou
+ Generalized People Diversity: Learning a Human Perception-Aligned Diversity Representation for People Images 2024 Hansa Srinivasan
Candice Schumann
Aradhana Sinha
David Madras
Gbolahan O. Olanubi
Alex Beutel
Susanna Ricco
Jilin Chen
+ Gemini: A Family of Highly Capable Multimodal Models 2023 Gemini Team
Rohan Anil
Sebastian Borgeaud
Jean-Baptiste Alayrac
Jiahui Yu
Radu Soricut
Johan Schalkwyk
Andrew M. Dai
Anja Hauth
Katie Millican
+ Learning and Forgetting Unsafe Examples in Large Language Models 2023 Jiachen Zhao
Zhun Deng
David Madras
James Zou
Mengye Ren
+ Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift 2023 Benjamin Eyre
Elliot Creager
David Madras
Vardan Papyan
Richard S. Zemel
+ Identifying and Benchmarking Natural Out-of-Context Prediction Problems 2021 David Madras
Richard S. Zemel
+ Identifying and Benchmarking Natural Out-of-Context Prediction Problems 2021 David Madras
Richard S. Zemel
+ Identifying and Benchmarking Natural Out-of-Context Prediction Problems 2021 David Madras
Richard S. Zemel
+ Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification 2020 Robert Adragna
Elliot Creager
David Madras
Richard S. Zemel
+ Causal Modeling for Fairness In Dynamical Systems 2020 Elliot Creager
David Madras
Toniann Pitassi
Richard S. Zemel
+ Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification 2020 Robert Adragna
Elliot Creager
David Madras
Richard S. Zemel
+ Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data 2020 Sindy Löwe
David Madras
Richard S. Zemel
Max Welling
+ Detecting Extrapolation with Local Ensembles 2019 David Madras
James Atwood
Alex D’Amour
+ Fairness through Causal Awareness 2019 David Madras
Elliot Creager
Toniann Pitassi
Richard S. Zemel
+ Flexibly Fair Representation Learning by Disentanglement 2019 Elliot Creager
David Madras
Jörn-Henrik Jacobsen
Marissa A. Weis
Kevin Swersky
Toniann Pitassi
Richard S. Zemel
+ Causal Modeling for Fairness in Dynamical Systems 2019 Elliot Creager
David Madras
Toniann Pitassi
Richard S. Zemel
+ Detecting Underspecification with Local Ensembles 2019 David Madras
James Atwood
Alex D’Amour
+ Fairness Through Causal Awareness: Learning Latent-Variable Models for Biased Data. 2018 David Madras
Elliot Creager
Toniann Pitassi
Richard S. Zemel
+ Learning Adversarially Fair and Transferable Representations 2018 David Madras
Elliot Creager
Toniann Pitassi
Richard S. Zemel
+ Predict Responsibly: Increasing Fairness by Learning to Defer 2018 David Madras
Toniann Pitassi
Richard S. Zemel
+ Learning Adversarially Fair and Transferable Representations 2018 David Madras
Elliot Creager
Toniann Pitassi
Richard S. Zemel
+ Fairness Through Causal Awareness: Learning Latent-Variable Models for Biased Data 2018 David Madras
Elliot Creager
Toniann Pitassi
Richard S. Zemel
+ Predict Responsibly: Increasing Fairness by Learning To Defer 2017 David Madras
Toniann Pitassi
Richard S. Zemel
+ Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer 2017 David Madras
Toniann Pitassi
Richard S. Zemel
+ Change-point Detection Methods for Body-Worn Video 2016 Stephanie Allen
David Madras
Ye Ye
Greg Zanotti
+ Change-point Detection Methods for Body-Worn Video 2016 Stephanie Allen
David Madras
Ye Ye
Greg Zanotti
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Counterfactual Fairness 2017 Matt J. Kusner
Joshua R. Loftus
Chris Russell
Ricardo Silva
4
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
4
+ Equality of Opportunity in Supervised Learning 2016 Moritz Hardt
Eric Price
Nathan Srebro
3
+ Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments 2017 Alexandra Chouldechova
3
+ PDF Chat Fair Inference on Outcomes 2018 Razieh Nabi
Ilya Shpitser
3
+ PDF Chat Fairness through awareness 2012 Cynthia Dwork
Moritz Hardt
Toniann Pitassi
Omer Reingold
Richard S. Zemel
3
+ Causal Inference Using Potential Outcomes 2005 Donald B. Rubin
3
+ Avoiding Discrimination through Causal Reasoning 2017 Niki Kilbertus
Mateo Rojas-Carulla
Giambattista Parascandolo
Moritz Hardt
Dominik Janzing
Bernhard Schölkopf
3
+ Equality of Opportunity in Classification: A Causal Approach 2018 Junzhe Zhang
Elias Bareinboim
2
+ On the (im)possibility of fairness 2016 Sorelle A. Friedler
Carlos Scheidegger
Suresh Venkatasubramanian
2
+ PDF Chat To Predict and Serve? 2016 Kristian Lum
William Isaac
2
+ Stochastic Backpropagation and Approximate Inference in Deep Generative Models 2014 Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
2
+ Censoring Representations with an Adversary 2015 Harrison Edwards
Amos Storkey
2
+ PDF Chat Inherent Tradeoffs in the Fair Determination of Risk Scores 2023 Manish Raghavan
2
+ Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls 2009 Jonathan A C Sterne
Ian R. White
John B. Carlin
Michael Spratt
Patrick Royston
Michael G. Kenward
Angela Wood
James R. Carpenter
2
+ Inference and missing data 1976 Donald B. Rubin
2
+ Bayesian Nonparametric Modeling for Causal Inference 2010 Jennifer Hill
2
+ Towards a Neural Statistician 2016 Harrison Edwards
Amos Storkey
2
+ Semi-Amortized Variational Autoencoders 2018 Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
2
+ Flexible Imputation of Missing Data 2012 Stef van Buuren
2
+ On the Causal Interpretation of Race in Regressions Adjusting for Confounding and Mediating Variables 2014 Tyler J. VanderWeele
Whitney R. Robinson
2
+ Learning Representations for Counterfactual Inference 2016 Fredrik Johansson
Uri Shalit
David Sontag
2
+ On Fairness and Calibration 2017 Geoff Pleiss
Manish Raghavan
Felix Wu
Jon Kleinberg
Kilian Q. Weinberger
2
+ Fairness Without Demographics in Repeated Loss Minimization 2018 Tatsunori Hashimoto
Megha Srivastava
Hongseok Namkoong
Percy Liang
2
+ PDF Chat The Selective Labels Problem 2017 Himabindu Lakkaraju
Jon Kleinberg
Jure Leskovec
Jens Ludwig
Sendhil Mullainathan
2
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
2
+ Statistics and Causal Inference 1986 Paul W. Holland
2
+ Equality of Opportunity in Supervised Learning 2016 Moritz Hardt
Eric Price
Nathan Srebro
2
+ Doubly Robust Estimation in Missing Data and Causal Inference Models 2005 Heejung Bang
James M. Robins
1
+ PDF Chat Max-Sum diversification, monotone submodular functions and dynamic updates 2012 Allan Borodin
Hyun Chul Lee
Yuli Ye
1
+ PDF Chat Learning Fine-Grained Image Similarity with Deep Ranking 2014 Jiang Wang
Yang Song
Thomas Leung
Chuck Rosenberg
Jingbin Wang
James Philbin
Bo Chen
Ying Wu
1
+ Semi-supervised Learning with Deep Generative Models 2014 Diederik P. Kingma
Shakir Mohamed
Danilo Jimenez Rezende
Max Welling
1
+ On the Consistency Rule in Causal Inference 2010 Judea Pearl
1
+ Identifiability and Exchangeability for Direct and Indirect Effects 1992 James M. Robins
Sander Greenland
1
+ Domain-Adversarial Neural Networks 2014 Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
Mario Marchand
1
+ Avoiding Discrimination through Causal Reasoning 2017 Niki Kilbertus
Mateo Rojas-Carulla
Giambattista Parascandolo
Moritz Hardt
Dominik Janzing
Bernhard Schölkopf
1
+ Optimized Data Pre-Processing for Discrimination Prevention 2017 Flávio P. Calmon
Dennis Wei
Karthikeyan Natesan Ramamurthy
Kush R. Varshney
1
+ PDF Chat Deep learning in neural networks: An overview 2014 Jürgen Schmidhuber
1
+ PDF Chat Deep Learning Face Attributes in the Wild 2015 Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
1
+ An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process 1972 Leonard E. Baum
1
+ Semantic Segmentation using Adversarial Networks 2016 Pauline Luc
Camille Couprie
Soumith Chintala
Jakob Verbeek
1
+ Fair prediction with disparate impact: A study of bias in recidivism prediction instruments 2016 Alexandra Chouldechova
1
+ Model Criticism for Bayesian Causal Inference 2016 Dustin Tran
Francisco J. R. Ruiz
Susan Athey
David M. Blei
1
+ Doubly Robust Policy Evaluation and Learning 2011 Miroslav Dudík
John Langford
Lihong Li
1
+ PDF Chat Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment 2017 Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez-Rodriguez
Krishna P. Gummadi
1
+ Understanding Black-box Predictions via Influence Functions 2017 Pang Wei Koh
Percy Liang
1
+ PDF Chat Least angle regression 2004 Bradley Efron
Trevor Hastie
Iain M. Johnstone
Robert Tibshirani
1
+ Causal Effect Inference with Deep Latent-Variable Models 2017 Christos Louizos
Uri Shalit
Joris M. Mooij
David Sontag
Richard S. Zemel
Max Welling
1
+ PDF Chat Domain-Adversarial Training of Neural Networks 2017 Yaroslav Ganin
Evgeniya Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
Mario Marchand
Victor Lempitsky
1
+ Deep Learning using Linear Support Vector Machines 2013 Yichuan Tang
1