Iraklis Anagnostopoulos

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Leveraging Highly Approximated Multipliers in DNN Inference 2024 Georgios Zervakis
Fabio Frustaci
Ourania Spantidi
Iraklis Anagnostopoulos
Hussam Amrouch
Henkel Jorg
+ PDF Chat RankMap: Priority-Aware Multi-DNN Manager for Heterogeneous Embedded Devices 2024 Ανδρέας Καρατζάς
Dimitrios Stamoulis
Iraklis Anagnostopoulos
+ PDF Chat Less is More: Optimizing Function Calling for LLM Execution on Edge Devices 2024 Varatheepan Paramanayakam
Ανδρέας Καρατζάς
Iraklis Anagnostopoulos
Dimitrios Stamoulis
+ PDF Chat LLM-dCache: Improving Tool-Augmented LLMs with GPT-Driven Localized Data Caching 2024 Simranjit Singh
Michael Fore
Ανδρέας Καρατζάς
Chaehong Lee
Yanan Jian
Longfei Shangguan
Fuxun Yu
Iraklis Anagnostopoulos
Dimitrios Stamoulis
+ PDF Chat An LLM-Tool Compiler for Fused Parallel Function Calling 2024 Simranjit Singh
Ανδρέας Καρατζάς
Michael Fore
Iraklis Anagnostopoulos
Dimitrios Stamoulis
+ PDF Chat Hardware-Aware DNN Compression via Diverse Pruning and Mixed-Precision Quantization 2024 Konstantinos Balaskas
Ανδρέας Καρατζάς
Christos Sad
Kostas Siozios
Iraklis Anagnostopoulos
Georgios Zervakis
Jörg Henkel
+ PDF Chat OmniBoost: Boosting Throughput of Heterogeneous Embedded Devices under Multi-DNN Workload 2023 Ανδρέας Καρατζάς
Iraklis Anagnostopoulos
+ OmniBoost: Boosting Throughput of Heterogeneous Embedded Devices under Multi-DNN Workload 2023 Ανδρέας Καρατζάς
Iraklis Anagnostopoulos
+ PDF Chat Energy-Efficient DNN Inference on Approximate Accelerators Through Formal Property Exploration 2022 Ourania Spantidi
Georgios Zervakis
Iraklis Anagnostopoulos
Jörg Henkel
+ Energy-efficient DNN Inference on Approximate Accelerators Through Formal Property Exploration 2022 Ourania Spantidi
Georgios Zervakis
Iraklis Anagnostopoulos
Jörg Henkel
+ PDF Chat Control Variate Approximation for DNN Accelerators 2021 Georgios Zervakis
Ourania Spantidi
Iraklis Anagnostopoulos
Hussam Amrouch
Jörg Henkel
+ PDF Chat Positive/Negative Approximate Multipliers for DNN Accelerators 2021 Ourania Spantidi
Georgios Zervakis
Iraklis Anagnostopoulos
Hussam Amrouch
Jörg Henkel
+ Reliability-Aware Quantization for Anti-Aging NPUs 2021 Sami Salamin
Georgios Zervakis
Ourania Spantidi
Iraklis Anagnostopoulos
Jörg Henkel
Hussam Amrouch
+ Control Variate Approximation for DNN Accelerators 2021 Georgios Zervakis
Ourania Spantidi
Iraklis Anagnostopoulos
Hussam Amrouch
Jörg Henkel
+ PDF Chat Reliability-Aware Quantization for Anti-Aging NPUs 2021 Sami Salamin
Georgios Zervakis
Ourania Spantidi
Iraklis Anagnostopoulos
Jörg Henkel
Hussam Amrouch
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat ALWANN: Automatic Layer-Wise Approximation of Deep Neural Network Accelerators without Retraining 2019 Vojtěch Mrázek
Zdeněk Vašíček
Lukáš Sekanina
Muhammad Abdullah Hanif
Muhammad Shafique
6
+ In-Datacenter Performance Analysis of a Tensor Processing Unit 2017 Norman P. Jouppi
Cliff Young
Nishant Patil
David A. Patterson
Gaurav Agrawal
Raminder Bajwa
S. C. Bates
Suresh Bhatia
Nan Boden
Al Borchers
6
+ PDF Chat Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference 2018 Benoit Jacob
Skirmantas Kligys
Bo Chen
Menglong Zhu
Matthew F. Tang
Andrew Howard
Hartwig Adam
Dmitry Kalenichenko
4
+ PDF Chat In-Datacenter Performance Analysis of a Tensor Processing Unit 2017 Norman P. Jouppi
Cliff Young
Nishant Patil
David A. Patterson
Gaurav Agrawal
Raminder Bajwa
S. C. Bates
Suresh Bhatia
Nan Boden
Al Borchers
4
+ PDF Chat TFApprox: Towards a Fast Emulation of DNN Approximate Hardware Accelerators on GPU 2020 Filip Vaverka
Vojtěch Mrázek
Zdeněk Vašíček
Lukáš Sekanina
3
+ PDF Chat Control Variate Approximation for DNN Accelerators 2021 Georgios Zervakis
Ourania Spantidi
Iraklis Anagnostopoulos
Hussam Amrouch
Jörg Henkel
3
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 2017 Andrew Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
Marco Andreetto
Hartwig Adam
2
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
2
+ PDF Chat Rethinking the Inception Architecture for Computer Vision 2016 Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jon Shlens
Zbigniew Wojna
2
+ PDF Chat ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices 2018 Xiangyu Zhang
Xinyu Zhou
Mengxiao Lin
Jian Sun
2
+ PDF Chat MobileNetV2: Inverted Residuals and Linear Bottlenecks 2018 Mark Sandler
Andrew Howard
Menglong Zhu
Andrey Zhmoginov
Liang-Chieh Chen
2
+ Quantizing deep convolutional networks for efficient inference: A whitepaper 2018 Raghuraman Krishnamoorthi
2
+ PDF Chat Going deeper with convolutions 2015 Christian Szegedy
Wei Liu
Yangqing Jia
Pierre Sermanet
Scott Reed
Dragomir Anguelov
Dumitru Erhan
Vincent Vanhoucke
Andrew Rabinovich
2
+ SCALE-Sim: Systolic CNN Accelerator Simulator 2018 Ananda Samajdar
Yuhao Zhu
Paul N. Whatmough
Matthew Mattina
Tushar Krishna
2
+ PDF Chat APQ: Joint Search for Network Architecture, Pruning and Quantization Policy 2020 Tianzhe Wang
Kuan Wang
Han Cai
Ji Lin
Zhijian Liu
Hanrui Wang
Yujun Lin
Song Han
1
+ PDF Chat Differentiable Joint Pruning and Quantization for Hardware Efficiency 2020 Ying Wang
Yadong Lu
Tijmen Blankevoort
1
+ PDF Chat Mining parametric temporal logic properties in model-based design for cyber-physical systems 2017 Bardh Hoxha
Adel Dokhanchi
Georgios Fainekos
1
+ PDF Chat Using Libraries of Approximate Circuits in Design of Hardware Accelerators of Deep Neural Networks 2020 Vojtěch Mrázek
Lukáš Sekanina
Zdeněk Vašíček
1
+ Position-based Scaled Gradient for Model Quantization and Pruning 2020 Jangho Kim
KiYoon Yoo
Nojun Kwak
1
+ PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with Pattern-based Weight Pruning 2020 Wei Niu
Xiaolong Ma
Sheng Lin
Shihao Wang
Xuehai Qian
Xue Lin
Yanzhi Wang
Bin Ren
1
+ VecQ: Minimal Loss DNN Model Compression With Vectorized Weight Quantization 2020 Cheng Gong
Yao Chen
Ye Lu
Tao Li
Cong Hao
Deming Chen
1
+ Non-Structured DNN Weight Pruning—Is It Beneficial in Any Platform? 2021 Xiaolong Ma
Sheng Lin
Shaokai Ye
Zhezhi He
Linfeng Zhang
Geng Yuan
Sia Huat Tan
Zhengang Li
Deliang Fan
Xuehai Qian
1
+ PDF Chat Heterogeneous Dataflow Accelerators for Multi-DNN Workloads 2021 Hyoukjun Kwon
Liangzhen Lai
Michael Pellauer
Tushar Krishna
Yu‐Hsin Chen
Vikas Chandra
1
+ PDF Chat OPQ: Compressing Deep Neural Networks with One-shot Pruning-Quantization 2021 Peng Hu
Xi Peng
Hongyuan Zhu
Mohamed M. Sabry Aly
Jie Lin
1
+ PDF Chat Positive/Negative Approximate Multipliers for DNN Accelerators 2021 Ourania Spantidi
Georgios Zervakis
Iraklis Anagnostopoulos
Hussam Amrouch
Jörg Henkel
1
+ PDF Chat PQK: Model Compression via Pruning, Quantization, and Knowledge Distillation 2021 Jangho Kim
Simyung Chang
Nojun Kwak
1
+ A full-stack search technique for domain optimized deep learning accelerators 2022 Dan Zhang
Safeen Huda
Ebrahim M. Songhori
Kartik Prabhu
Quoc V. Le
Anna Goldie
Azalia Mirhoseini
1
+ PDF Chat Hardware Approximate Techniques for Deep Neural Network Accelerators: A Survey 2022 Giorgos Armeniakos
Georgios Zervakis
Dimitrios Soudris
Jörg Henkel
1
+ PDF Chat Monte Carlo Tree Search: a review of recent modifications and applications 2022 Maciej Świechowski
Konrad Godlewski
Bartosz Sawicki
Jacek Mańdziuk
1
+ Loss Aware Post-training Quantization 2019 Yury Nahshan
Brian Chmiel
Chaim Baskin
Evgenii Zheltonozhskii
Ron Banner
Alex Bronstein
Avi Mendelson
1
+ Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning 2022 Elias Frantar
Dan Alistarh
1
+ Distributed Representations of Words and Phrases and their Compositionality 2013 Tomáš Mikolov
Ilya Sutskever
Kai Chen
Greg S. Corrado
Jeffrey Dean
1
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James T. Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+ PDF Chat Real-Time Scheduling of Machine Learning Operations on Heterogeneous Neuromorphic SoC 2022 Anup Das
1
+ A Survey and Empirical Evaluation of Parallel Deep Learning Frameworks 2021 Daniel Nichols
Siddharth Singh
Shu-Huai Lin
Abhinav Bhatelé
1
+ PDF Chat Designing Energy-Efficient Convolutional Neural Networks Using Energy-Aware Pruning 2017 Tien-Ju Yang
Yu‐Hsin Chen
Vivienne Sze
1
+ PDF Chat Rainbow: Combining Improvements in Deep Reinforcement Learning 2018 Matteo Hessel
Joseph Modayil
Hado van Hasselt
Tom Schaul
Georg Ostrovski
Will Dabney
Dan Horgan
Bilal Piot
Mohammad Gheshlaghi Azar
David Silver
1
+ PDF Chat AMC: AutoML for Model Compression and Acceleration on Mobile Devices 2018 Yihui He
Ji Lin
Zhijian Liu
Hanrui Wang
Li-Jia Li
Song Han
1
+ Gaussian Error Linear Units (GELUs) 2016 Dan Hendrycks
Kevin Gimpel
1
+ PDF Chat High-Throughput CNN Inference on Embedded ARM Big.LITTLE Multicore Processors 2019 Siqi Wang
Gayathri Ananthanarayanan
Yifan Zeng
Neeraj Goel
Anuj Pathania
Tulika Mitra
1
+ PDF Chat NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications 2018 Tien-Ju Yang
Andrew Howard
Bo Chen
Xiao Zhang
Alec Go
Mark Sandler
Vivienne Sze
Hartwig Adam
1
+ PDF Chat Channel Pruning for Accelerating Very Deep Neural Networks 2017 Yihui He
Xiangyu Zhang
Jian Sun
1
+ PDF Chat Learning Transferable Architectures for Scalable Image Recognition 2018 Barret Zoph
Vijay Vasudevan
Jonathon Shlens
Quoc V. Le
1
+ PDF Chat Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 2017 Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
1
+ PDF Chat HAQ: Hardware-Aware Automated Quantization With Mixed Precision 2019 Kuan Wang
Zhijian Liu
Yujun Lin
Ji Lin
Song Han
1
+ Loss Aware Post-training Quantization 2019 Yury Nahshan
Brian Chmiel
Chaim Baskin
Evgenii Zheltonozhskii
Ron Banner
Alex Bronstein
Avi Mendelson
1
+ Bayesian Bits: Unifying Quantization and Pruning 2020 Mart van Baalen
Christos Louizos
Markus Nagel
Rana Ali Amjad
Ying Wang
Tijmen Blankevoort
Max Welling
1
+ PDF Chat Structured Compression by Weight Encryption for Unstructured Pruning and Quantization 2020 Se Jung Kwon
Dongsoo Lee
Byeongwook Kim
Parichay Kapoor
Baeseong Park
Gu-Yeon Wei
1
+ PDF Chat Automatic Neural Network Compression by Sparsity-Quantization Joint Learning: A Constrained Optimization-Based Approach 2020 Haichuan Yang
Shupeng Gui
Yuhao Zhu
Ji Liu
1