Author Description

Login to generate an author description

Ask a Question About This Mathematician

Self-supervised learning has become increasingly important to leverage the abundance of unlabeled data available on platforms like YouTube. Whereas most existing approaches learn low-level representations, we propose a joint visual-linguistic … Self-supervised learning has become increasingly important to leverage the abundance of unlabeled data available on platforms like YouTube. Whereas most existing approaches learn low-level representations, we propose a joint visual-linguistic model to learn high-level features without any explicit supervision. In particular, inspired by its recent success in language modeling, we build upon the BERT model to learn bidirectional joint distributions over sequences of visual and linguistic tokens, derived from vector quantization of video data and off-the-shelf speech recognition outputs, respectively. We use VideoBERT in numerous tasks, including action classification and video captioning. We show that it can be applied directly to open-vocabulary classification, and confirm that large amounts of training data and cross-modal information are critical to performance. Furthermore, we outperform the state-of-the-art on video captioning, and quantitative results verify that the model learns high-level semantic features.
We present the Moments in Time Dataset, a large-scale human-annotated collection of one million short videos corresponding to dynamic events unfolding within three seconds. Modeling the spatial-audio-temporal dynamics even for … We present the Moments in Time Dataset, a large-scale human-annotated collection of one million short videos corresponding to dynamic events unfolding within three seconds. Modeling the spatial-audio-temporal dynamics even for actions occurring in 3 second videos poses many challenges: meaningful events do not include only people, but also objects, animals, and natural phenomena; visual and auditory events can be symmetrical in time ("opening" is "closing" in reverse), and either transient or sustained. We describe the annotation process of our dataset (each video is tagged with one action or activity label among 339 different classes), analyze its scale and diversity in comparison to other large-scale video datasets for action recognition, and report results of several baseline models addressing separately, and jointly, three modalities: spatial, temporal and auditory. The Moments in Time dataset, designed to have a large coverage and diversity of events in both visual and auditory modalities, can serve as a new challenge to develop models that scale to the level of complexity and abstract reasoning that a human processes on a daily basis.
We introduce Zero-1-to-3, a framework for changing the camera viewpoint of an object given just a single RGB image. To perform novel view synthesis in this under-constrained setting, we capitalize … We introduce Zero-1-to-3, a framework for changing the camera viewpoint of an object given just a single RGB image. To perform novel view synthesis in this under-constrained setting, we capitalize on the geometric priors that large-scale diffusion models learn about natural images. Our conditional diffusion model uses a synthetic dataset to learn controls of the relative camera viewpoint, which allow new images to be generated of the same object under a specified camera transformation. Even though it is trained on a synthetic dataset, our model retains a strong zero-shot generalization ability to out-of-distribution datasets as well as in-the-wild images, including impressionist paintings. Our viewpoint-conditioned diffusion approach can further be used for the task of 3D reconstruction from a single image. Qualitative and quantitative experiments show that our method significantly outperforms state-of-the-art single-view 3D reconstruction and novel view synthesis models by leveraging Internet-scale pre-training.
Answering visual queries is a complex task that requires both visual processing and reasoning. End-to-end models, the dominant approach for this task, do not explicitly differentiate between the two, limiting … Answering visual queries is a complex task that requires both visual processing and reasoning. End-to-end models, the dominant approach for this task, do not explicitly differentiate between the two, limiting interpretability and generalization. Learning modular programs presents a promising alternative, but has proven challenging due to the difficulty of learning both the programs and modules simultaneously. We introduce ${\color{green}{\text{ViperGPT}}}$, a framework that leverages code-generation models to compose vision-and-language models into subroutines to produce a result for any query. ${\color{green}{\text{ViperGPT}}}$ utilizes a provided API to access the available modules, and composes them by generating Python code that is later executed. This simple approach requires no further training, and achieves state-of-the-art results across various complex visual tasks.
Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack … Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack causes the internal representation to shift closer to the "false" class. Motivated by this observation, we propose to regularize the representation space under attack with metric learning to produce more robust classifiers. By carefully sampling examples for metric learning, our learned representation not only increases robustness, but also detects previously unseen adversarial samples. Quantitative experiments show improvement of robustness accuracy by up to 4% and detection efficiency by up to 6% according to Area Under Curve score over prior work. The code of our work is available at https://github.com/columbia/Metric_Learning_Adversarial_Robustness.
From just a short glance at a video, we can often tell whether a person's action is intentional or not. Can we train a model to recognize this? We introduce … From just a short glance at a video, we can often tell whether a person's action is intentional or not. Can we train a model to recognize this? We introduce a dataset of in-the-wild videos of unintentional action, as well as a suite of tasks for recognizing, localizing, and anticipating its onset. We train a supervised neural network as a baseline and analyze its performance compared to human consistency on the tasks. We also investigate self-supervised representations that leverage natural signals in our dataset, and show the effectiveness of an approach that uses the intrinsic speed of video to perform competitively with highly-supervised pretraining. However, a significant gap between machine and human performance remains.
We address the problem of phrase grounding by learning a multi-level common semantic space shared by the textual and visual modalities. We exploit multiple levels of feature maps of a … We address the problem of phrase grounding by learning a multi-level common semantic space shared by the textual and visual modalities. We exploit multiple levels of feature maps of a Deep Convolutional Neural Network, as well as contextualized word and sentence embeddings extracted from a character-based language model. Following dedicated non-linear mappings for visual features at each level, word, and sentence embeddings, we obtain multiple instantiations of our common semantic space in which comparisons between any target text and the visual content is performed with cosine similarity. We guide the model by a multi-level multimodal attention mechanism which outputs attended visual features at each level. The best level is chosen to be compared with text content for maximizing the pertinence scores of image-sentence pairs of the ground truth. Experiments conducted on three publicly available datasets show significant performance gains (20%-60% relative) over the state-of-the-art in phrase localization and set a new performance record on those datasets. We provide a detailed ablation study to show the contribution of each element of our approach and release our code on GitHub.
We introduce a framework for learning from unlabeled video what is predictable in the future. Instead of committing up front to features to predict, our approach learns from data which … We introduce a framework for learning from unlabeled video what is predictable in the future. Instead of committing up front to features to predict, our approach learns from data which features are predictable. Based on the observation that hyperbolic geometry naturally and compactly encodes hierarchical structure, we propose a predictive model in hyperbolic space. When the model is most confident, it will predict at a concrete level of the hierarchy, but when the model is not confident, it learns to automatically select a higher level of abstraction. Experiments on two established datasets show the key role of hierarchical representations for action prediction. Although our representation is trained with unlabeled video, visualizations show that action hierarchies emerge in the representation.
We introduce a framework for learning robust visual representations that generalize to new viewpoints, backgrounds, and scene contexts. Discriminative models often learn naturally occurring spurious correlations, which cause them to … We introduce a framework for learning robust visual representations that generalize to new viewpoints, backgrounds, and scene contexts. Discriminative models often learn naturally occurring spurious correlations, which cause them to fail on images outside of the training distribution. In this paper, we show that we can steer generative models to manufacture interventions on features caused by confounding factors. Experiments, visualizations, and theoretical results show this method learns robust representations more consistent with the underlying causal relationships. Our approach improves performance on multiple datasets demanding out-of-distribution generalization, and we demonstrate state-of-the-art performance generalizing from ImageNet to ObjectNet dataset.
We find that images contain intrinsic structure that enables the reversal of many adversarial attacks. Attack vectors cause not only image classifiers to fail, but also collaterally disrupt incidental structure … We find that images contain intrinsic structure that enables the reversal of many adversarial attacks. Attack vectors cause not only image classifiers to fail, but also collaterally disrupt incidental structure in the image. We demonstrate that modifying the attacked image to restore the natural structure will reverse many types of attacks, providing a defense. Experiments demonstrate significantly improved robustness for several state-of-the-art models across the CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets. Our results show that our defense is still effective even if the attacker is aware of the defense mechanism. Since our defense is deployed during inference instead of training, it is compatible with pre-trained networks as well as most other defenses. Our results suggest deep networks are vulnerable to adversarial examples partly because their representations do not enforce the natural structure of images.
We present an approach for recommending a music track for a given video, and vice versa, based on both their temporal alignment and their correspondence at an artistic level. We … We present an approach for recommending a music track for a given video, and vice versa, based on both their temporal alignment and their correspondence at an artistic level. We propose a self-supervised approach that learns this correspondence directly from data, without any need of human annotations. In order to capture the high-level concepts that are required to solve the task, we propose modeling the long-term temporal context of both the video and the music signals, using Transformer networks for each modality. Experiments show that this approach strongly outperforms alternatives that do not exploit the temporal context. The combination of our contributions improve retrieval accuracy up to 10× over prior state of the art. This strong improvement allows us to introduce a wide range of analyses and applications. For instance, we can condition music retrieval based on visually defined attributes.
Visual representations underlie object recognition tasks, but they often contain both robust and non-robust features. Our main observation is that image classifiers may perform poorly on out-of-distribution samples because spurious … Visual representations underlie object recognition tasks, but they often contain both robust and non-robust features. Our main observation is that image classifiers may perform poorly on out-of-distribution samples because spurious correlations between non-robust features and labels can be changed in a new environment. By analyzing procedures for out-of-distribution generalization with a causal graph, we show that standard classifiers fail because the association between images and labels is not transportable across settings. However, we then show that the causal effect, which severs all sources of confounding, remains invariant across domains. This motivates us to develop an algorithm to estimate the causal effect for image classification, which is transportable (i.e., invariant) across source and target environments. Without observing additional variables, we show that we can derive an estimand for the causal effect under empirical assumptions using representations in deep models as proxies. Theoretical analysis, empirical results, and visualizations show that our approach captures causal invariances and improves overall generalization.
We introduce a deep learning model for speech denoising, a long-standing challenge in audio analysis arising in numerous applications. Our approach is based on a key observation about human speech: … We introduce a deep learning model for speech denoising, a long-standing challenge in audio analysis arising in numerous applications. Our approach is based on a key observation about human speech: there is often a short pause between each sentence or word. In a recorded speech signal, those pauses introduce a series of time periods during which only noise is present. We leverage these incidental silent intervals to learn a model for automatic speech denoising given only mono-channel audio. Detected silent intervals over time expose not just pure noise but its time-varying features, allowing the model to learn noise dynamics and suppress it from the speech signal. Experiments on multiple datasets confirm the pivotal role of silent interval detection for speech denoising, and our method outperforms several state-of-the-art denoising methods, including those that accept only audio input (like ours) and those that denoise based on audiovisual input (and hence require more information). We also show that our method enjoys excellent generalization properties, such as denoising spoken languages not seen during training.
Synthesizing 3D human avatars interacting realistically with a scene is an important problem with applications in AR/VR, video games, and robotics. Towards this goal, we address the task of generating … Synthesizing 3D human avatars interacting realistically with a scene is an important problem with applications in AR/VR, video games, and robotics. Towards this goal, we address the task of generating a virtual human – hands and full body – grasping everyday objects. Existing methods approach this problem by collecting a 3D dataset of humans interacting with objects and training on this data. However, 1) these methods do not generalize to different object positions and orientations or to the presence of furniture in the scene, and 2) the diversity of their generated full-body poses is very limited. In this work, we address all the above challenges to generate realistic, diverse full-body grasps in everyday scenes without requiring any 3D full-body grasping data. Our key insight is to leverage the existence of both full-body pose and hand-grasping priors, composing them using 3D geometrical constraints to obtain full-body grasps. We empirically validate that these constraints can generate a variety of feasible human grasps that are superior to baselines both quantitatively and qualitatively. See our webpage for more details: flex.cs.columbia.edu.
Many visual recognition models are evaluated only on their classification accuracy, a metric for which they obtain strong performance. In this paper, we investigate whether computer vision models can also … Many visual recognition models are evaluated only on their classification accuracy, a metric for which they obtain strong performance. In this paper, we investigate whether computer vision models can also provide correct rationales for their predictions. We propose a "doubly right" object recognition benchmark, where the metric requires the model to simultaneously produce both the right labels as well as the right rationales. We find that state-of-the-art visual models, such as CLIP, often provide incorrect rationales for their categorical predictions. However, by transferring the rationales from language models into visual representations through a tailored dataset, we show that we can learn a "why prompt," which adapts large visual representations to produce correct rationales. Visualizations and empirical experiments show that our prompts significantly improve performance on doubly right object recognition, in addition to zero-shot transfer to unseen tasks and datasets.
Machine translation in a multi-language scenario requires large-scale parallel corpora for every language pair. Unsupervised translation is challenging because there is no explicit connection between languages, and the existing methods … Machine translation in a multi-language scenario requires large-scale parallel corpora for every language pair. Unsupervised translation is challenging because there is no explicit connection between languages, and the existing methods have to rely on topological properties of the language representations. We introduce a framework that leverages visual similarity to align multiple languages, using images as the bridge between them. We estimate the cross-modal alignment between language and images, and use this estimate to guide the learning of cross-lingual representations. Our language representations are trained jointly in one model with a single stage. Experiments with fifty-two languages show that our method outperforms prior work on unsupervised word-level and sentence-level translation using retrieval.
For computer vision systems to operate in dynamic situations, they need to be able to represent and reason about object permanence. We introduce a framework for learning to estimate 4D … For computer vision systems to operate in dynamic situations, they need to be able to represent and reason about object permanence. We introduce a framework for learning to estimate 4D visual representations from monocular RGB-D video, which is able to persist objects, even once they become obstructed by occlusions. Unlike traditional video representations, we encode point clouds into a continuous representation, which permits the model to attend across the spatiotemporal context to resolve occlusions. On two large video datasets that we release along with this paper, our experiments show that the representation is able to successfully reveal occlusions for several tasks, without any architectural changes. Visualizations show that the attention mechanism automatically learns to follow occluded objects. Since our approach can be trained end-to-end and is easily adaptable, we believe it will be useful for handling occlusions in many video understanding tasks. Data, code, and models are available at occ1usions. cs. co1umbia. edu.
Although deep networks achieve strong accuracy on a range of computer vision benchmarks, they remain vulnerable to adversarial attacks, where imperceptible input perturbations fool the network. We present both theoretical … Although deep networks achieve strong accuracy on a range of computer vision benchmarks, they remain vulnerable to adversarial attacks, where imperceptible input perturbations fool the network. We present both theoretical and empirical analyses that connect the adversarial robustness of a model to the number of tasks that it is trained on. Experiments on two datasets show that attack difficulty increases as the number of target tasks increase. Moreover, our results suggest that when models are trained on multiple tasks at once, they become more robust to adversarial attacks on individual tasks. While adversarial defense remains an open challenge, our results suggest that deep networks are vulnerable partly because they are trained on too few tasks.
Machine translation between many languages at once is highly challenging, since training with ground truth re-quires supervision between all language pairs, which is dif-ficult to obtain. Our key insight is … Machine translation between many languages at once is highly challenging, since training with ground truth re-quires supervision between all language pairs, which is dif-ficult to obtain. Our key insight is that, while languages may vary drastically, the underlying visual appearance of the world remains consistent. We introduce a method that uses visual observations to bridge the gap between languages, rather than relying on parallel corpora or topo-logical properties of the representations. We train a model that aligns segments of text from different languages if and only if the images associated with them are similar and each image in turn is well-aligned with its textual description. We train our model from scratch on a new dataset of text in over fifty languages with accompanying images. Experiments show that our method outperforms previous work on unsupervised word and sentence translation using retrieval. Code, models and data are available on globetrotter.cs.columbia.edu
Our lives can be seen as a complex weaving of activities; we switch from one activity to another, to maximise our achievements or in reaction to demands placed upon us. … Our lives can be seen as a complex weaving of activities; we switch from one activity to another, to maximise our achievements or in reaction to demands placed upon us. Observing a video of unscripted daily activities, we parse the video into its constituent activity threads through a process we call unweaving. To accomplish this, we introduce a video representation explicitly capturing activity threads called a thread bank, along with a neural controller capable of detecting goal changes and resuming of past activities, together forming UnweaveNet. We train and evaluate UnweaveNet on sequences from the unscripted egocentric dataset EPIC-KITCHENS. We propose and showcase the efficacy of pretraining UnweaveNet in a self-supervised manner.
The relatively hot temperature of the human body causes people to turn into long-wave infrared light sources. Since this emitted light has a larger wavelength than visible light, many surfaces … The relatively hot temperature of the human body causes people to turn into long-wave infrared light sources. Since this emitted light has a larger wavelength than visible light, many surfaces in typical scenes act as infrared mirrors with strong specular reflections. We exploit the thermal reflections of a person onto objects in order to locate their position and reconstruct their pose, even if they are not visible to a normal camera. We propose an analysis-by-synthesis framework that jointly models the objects, people, and their thermal reflections, which combines generative models with differentiable rendering of reflections. Quantitative and qualitative experiments show our approach works in highly challenging cases, such as with curved mirrors or when the person is completely unseen by a normal camera.
Synthesizing novel 3D models that resemble the input example has long been pursued by graphics artists and machine learning researchers. In this paper, we present Sin3DM, a diffusion model that … Synthesizing novel 3D models that resemble the input example has long been pursued by graphics artists and machine learning researchers. In this paper, we present Sin3DM, a diffusion model that learns the internal patch distribution from a single 3D textured shape and generates high-quality variations with fine geometry and texture details. Training a diffusion model directly in 3D would induce large memory and computational cost. Therefore, we first compress the input into a lower-dimensional latent space and then train a diffusion model on it. Specifically, we encode the input 3D textured shape into triplane feature maps that represent the signed distance and texture fields of the input. The denoising network of our diffusion model has a limited receptive field to avoid overfitting, and uses triplane-aware 2D convolution blocks to improve the result quality. Aside from randomly generating new samples, our model also facilitates applications such as retargeting, outpainting and local editing. Through extensive qualitative and quantitative evaluation, we show that our method outperforms prior methods in generation quality of 3D shapes.
Tracking objects with persistence in cluttered and dynamic environments remains a difficult challenge for computer vision systems. In this paper, we introduce TCOW, a new benchmark and model for visual … Tracking objects with persistence in cluttered and dynamic environments remains a difficult challenge for computer vision systems. In this paper, we introduce TCOW, a new benchmark and model for visual tracking through heavy occlusion and containment. We set up a task where the goal is to, given a video sequence, segment both the projected extent of the target object, as well as the surrounding container or occluder whenever one exists. To study this task, we create a mixture of synthetic and annotated real datasets to support both supervised learning and structured evaluation of model performance under various forms of task variation, such as moving or nested containment. We evaluate two recent transformer-based video models and find that while they can be surprisingly capable of tracking targets under certain settings of task variation, there remains a considerable performance gap before we can claim a tracking model to have acquired a true notion of object permanence.
From just a short glance at a video, we can often tell whether a person's action is intentional or not. Can we train a model to recognize this? We introduce … From just a short glance at a video, we can often tell whether a person's action is intentional or not. Can we train a model to recognize this? We introduce a dataset of in-the-wild videos of unintentional action, as well as a suite of tasks for recognizing, localizing, and anticipating its onset. We train a supervised neural network as a baseline and analyze its performance compared to human consistency on the tasks. We also investigate self-supervised representations that leverage natural signals in our dataset, and show the effectiveness of an approach that uses the intrinsic speed of video to perform competitively with highly-supervised pretraining. However, a significant gap between machine and human performance remains. The project website is available at this https URL
Interacting with bins and containers is a fundamental task in robotics, making state estimation of the objects inside the bin critical. While robots often use cameras for state estimation, the … Interacting with bins and containers is a fundamental task in robotics, making state estimation of the objects inside the bin critical. While robots often use cameras for state estimation, the visual modality is not always ideal due to occlusions and poor illumination. We introduce The Boombox, a container that uses sound to estimate the state of the contents inside a box. Based on the observation that the collision between objects and its containers will cause an acoustic vibration, we present a convolutional network for learning to reconstruct visual scenes. Although we use low-cost and low-power contact microphones to detect the vibrations, our results show that learning from multimodal data enables state estimation from affordable audio sensors. Due to the many ways that robots use containers, we believe the box will have a number of applications in robotics. Our project website is at: boombox.cs.columbia.edu
We introduce a video framework for modeling the association between verbal and non-verbal communication during dyadic conversation. Given the input speech of a speaker, our approach retrieves a video of … We introduce a video framework for modeling the association between verbal and non-verbal communication during dyadic conversation. Given the input speech of a speaker, our approach retrieves a video of a listener, who has facial expressions that would be socially appropriate given the context. Our approach further allows the listener to be conditioned on their own goals, personalities, or backgrounds. Our approach models conversations through a composition of large language models and vision-language models, creating internal representations that are interpretable and controllable. To study multimodal communication, we propose a new video dataset of unscripted conversations covering diverse topics and demographics. Experiments and visualizations show our approach is able to output listeners that are significantly more socially appropriate than baselines. However, many challenges remain, and we release our dataset publicly to spur further progress. See our website for video results, data, and code: https://realtalk.cs.columbia.edu.
Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, … Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, these methods often involve gradient descent through a highly non-convex loss landscape, causing the optimization process to be unstable and slow. We introduce a method that learns a loss landscape where gradient descent is efficient, bringing massive improvement and acceleration to the inversion process. We demonstrate this advantage on a number of methods for both generative and discriminative tasks, including GAN inversion, adversarial defense, and 3D human pose reconstruction.
We train embodied agents to play Visual Hide and Seek where a prey must navigate in a simulated environment in order to avoid capture from a predator. We place a … We train embodied agents to play Visual Hide and Seek where a prey must navigate in a simulated environment in order to avoid capture from a predator. We place a variety of obstacles in the environment for the prey to hide behind, and we only give the agents partial observations of their environment using an egocentric perspective. Although we train the model to play this game from scratch, experiments and visualizations suggest that the agent learns to predict its own visibility in the environment. Furthermore, we quantitatively analyze how agent weaknesses, such as slower speed, effect the learned policy. Our results suggest that, although agent weaknesses make the learning problem more challenging, they also cause more useful features to be learned. Our project website is available at: this http URL ~bchen/visualhideseek/.
The elementary operation of cropping underpins nearly every computer vision system, ranging from data augmentation and translation invariance to computational photography and representation learning. This paper investigates the subtle traces … The elementary operation of cropping underpins nearly every computer vision system, ranging from data augmentation and translation invariance to computational photography and representation learning. This paper investigates the subtle traces introduced by this operation. For example, despite refinements to camera optics, lenses will leave behind certain clues, notably chromatic aberration and vignetting. Photographers also leave behind other clues relating to image aesthetics and scene composition. We study how to detect these traces, and investigate the impact that cropping has on the image distribution. While our aim is to dissect the fundamental impact of spatial crops, there are also a number of practical implications to our work, such as revealing faulty photojournalism and equipping neural network researchers with a better understanding of shortcut learning. Code is available at https://github.com/basilevh/dissecting-image-crops.
We introduce a framework for learning from unlabeled video what is predictable in the future. Instead of committing up front to features to predict, our approach learns from data which … We introduce a framework for learning from unlabeled video what is predictable in the future. Instead of committing up front to features to predict, our approach learns from data which features are predictable. Based on the observation that hyperbolic geometry naturally and compactly encodes hierarchical structure, we propose a predictive model in hyperbolic space. When the model is most confident, it will predict at a concrete level of the hierarchy, but when the model is not confident, it learns to automatically select a higher level of abstraction. Experiments on two established datasets show the key role of hierarchical representations for action prediction. Although our representation is trained with unlabeled video, visualizations show that action hierarchies emerge in the representation.
We find that large language models (LLMs) are more likely to modify human-written text than AI-generated text when tasked with rewriting. This tendency arises because LLMs often perceive AI-generated text … We find that large language models (LLMs) are more likely to modify human-written text than AI-generated text when tasked with rewriting. This tendency arises because LLMs often perceive AI-generated text as high-quality, leading to fewer modifications. We introduce a method to detect AI-generated content by prompting LLMs to rewrite text and calculating the editing distance of the output. We dubbed our geneRative AI Detection viA Rewriting method Raidar. Raidar significantly improves the F1 detection scores of existing AI content detection models -- both academic and commercial -- across various domains, including News, creative writing, student essays, code, Yelp reviews, and arXiv papers, with gains of up to 29 points. Operating solely on word symbols without high-dimensional features, our method is compatible with black box LLMs, and is inherently robust on new content. Our results illustrate the unique imprint of machine-generated text through the lens of the machines themselves.
How do large language models (LLMs) obtain their answers? The ability to explain and control an LLM's reasoning process is key for reliability, transparency, and future model developments. We propose … How do large language models (LLMs) obtain their answers? The ability to explain and control an LLM's reasoning process is key for reliability, transparency, and future model developments. We propose SelfIE (Self-Interpretation of Embeddings), a framework that enables LLMs to interpret their own embeddings in natural language by leveraging their ability to respond inquiry about a given passage. Capable of interpreting open-world concepts in the hidden embeddings, SelfIE reveals LLM internal reasoning in cases such as making ethical decisions, internalizing prompt injection, and recalling harmful knowledge. SelfIE's text descriptions on hidden embeddings also open up new avenues to control LLM reasoning. We propose Supervised Control, which allows editing open-ended concepts while only requiring gradient computation of individual layer. We extend RLHF to hidden embeddings and propose Reinforcement Control that erases harmful knowledge in LLM without supervision targets.
Language acquisition is the process of learning words from the surrounding scene. We introduce a meta-learning framework that learns how to learn word representations from unconstrained scenes. We leverage the … Language acquisition is the process of learning words from the surrounding scene. We introduce a meta-learning framework that learns how to learn word representations from unconstrained scenes. We leverage the natural compositional structure of language to create training episodes that cause a meta-learner to learn strong policies for language acquisition. Experiments on two datasets show that our approach is able to more rapidly acquire novel words as well as more robustly generalize to unseen compositions, significantly outperforming established baselines. A key advantage of our approach is that it is data efficient, allowing representations to be learned from scratch without language pre-training. Visualizations and analysis suggest visual information helps our approach learn a rich cross-modal representation from minimal examples. Project webpage is available at this https URL
Modeling the mechanics of fluid in complex scenes is vital to applications in design, graphics, and robotics. Learning-based methods provide fast and differentiable fluid simulators, however most prior work is … Modeling the mechanics of fluid in complex scenes is vital to applications in design, graphics, and robotics. Learning-based methods provide fast and differentiable fluid simulators, however most prior work is unable to accurately model how fluids interact with genuinely novel surfaces not seen during training. We introduce SurfsUp, a framework that represents objects implicitly using signed distance functions (SDFs), rather than an explicit representation of meshes or particles. This continuous representation of geometry enables more accurate simulation of fluid-object interactions over long time periods while simultaneously making computation more efficient. Moreover, SurfsUp trained on simple shape primitives generalizes considerably out-of-distribution, even to complex real-world scenes and objects. Finally, we show we can invert our model to design simple objects to manipulate fluid flow.
Paper is a cheap, recyclable, and clean material that is often used to make practical tools. Traditional tool design either relies on simulation or physical analysis, which is often inaccurate … Paper is a cheap, recyclable, and clean material that is often used to make practical tools. Traditional tool design either relies on simulation or physical analysis, which is often inaccurate and time-consuming. In this paper, we propose PaperBot, an approach that directly learns to design and use a tool in the real world using paper without human intervention. We demonstrated the effectiveness and efficiency of PaperBot on two tool design tasks: 1. learning to fold and throw paper airplanes for maximum travel distance 2. learning to cut paper into grippers that exert maximum gripping force. We present a self-supervised learning framework that learns to perform a sequence of folding, cutting, and dynamic manipulation actions in order to optimize the design and use of a tool. We deploy our system to a real-world two-arm robotic system to solve challenging design tasks that involve aerodynamics (paper airplane) and friction (paper gripper) that are impossible to simulate accurately.
Identifying common patterns among events is a key ability in human and machine perception, as it underlies intelligent decision making. We propose an approach for learning semantic relational set abstractions … Identifying common patterns among events is a key ability in human and machine perception, as it underlies intelligent decision making. We propose an approach for learning semantic relational set abstractions on videos, inspired by human learning. We combine visual features with natural language supervision to generate high-level representations of similarities across a set of videos. This allows our model to perform cognitive tasks such as set abstraction (which general concept is in common among a set of videos?), set completion (which new video goes well with the set?), and odd one out detection (which video does not belong to the set?). Experiments on two video benchmarks, Kinetics and Multi-Moments in Time, show that robust and versatile representations emerge when learning to recognize commonalities among sets. We compare our model to several baseline algorithms and show that significant improvements result from explicitly learning relational abstractions with semantic supervision.
We introduce a framework that predicts the goals behind observable human action in video. Motivated by evidence in developmental psychology, we leverage video of unintentional action to learn video representations … We introduce a framework that predicts the goals behind observable human action in video. Motivated by evidence in developmental psychology, we leverage video of unintentional action to learn video representations of goals without direct supervision. Our approach models videos as contextual trajectories that represent both low-level motion and high-level action features. Experiments and visualizations show our trained model is able to predict the underlying goals in video of unintentional action. We also propose a method to "automatically correct" unintentional action by leveraging gradient signals of our model to adjust latent trajectories. Although the model is trained with minimal supervision, it is competitive with or outperforms baselines trained on large (supervised) datasets of successfully executed goals, showing that observing unintentional action is crucial to learning about goals in video. Project page: https://aha.cs.columbia.edu/
We find that images contain intrinsic structure that enables the reversal of many adversarial attacks. Attack vectors cause not only image classifiers to fail, but also collaterally disrupt incidental structure … We find that images contain intrinsic structure that enables the reversal of many adversarial attacks. Attack vectors cause not only image classifiers to fail, but also collaterally disrupt incidental structure in the image. We demonstrate that modifying the attacked image to restore the natural structure will reverse many types of attacks, providing a defense. Experiments demonstrate significantly improved robustness for several state-of-the-art models across the CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets. Our results show that our defense is still effective even if the attacker is aware of the defense mechanism. Since our defense is deployed during inference instead of training, it is compatible with pre-trained networks as well as most other defenses. Our results suggest deep networks are vulnerable to adversarial examples partly because their representations do not enforce the natural structure of images.
Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to plan and control their actions. These "self-models" allow robots to consider outcomes of … Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to plan and control their actions. These "self-models" allow robots to consider outcomes of multiple possible future actions, without trying them out in physical reality. Recent progress in fully data-driven self-modeling has enabled machines to learn their own forward kinematics directly from task-agnostic interaction data. However, forward-kinema\-tics models can only predict limited aspects of the morphology, such as the position of end effectors or velocity of joints and masses. A key challenge is to model the entire morphology and kinematics, without prior knowledge of what aspects of the morphology will be relevant to future tasks. Here, we propose that instead of directly modeling forward-kinematics, a more useful form of self-modeling is one that could answer space occupancy queries, conditioned on the robot's state. Such query-driven self models are continuous in the spatial domain, memory efficient, fully differentiable and kinematic aware. In physical experiments, we demonstrate how a visual self-model is accurate to about one percent of the workspace, enabling the robot to perform various motion planning and control tasks. Visual self-modeling can also allow the robot to detect, localize and recover from real-world damage, leading to improved machine resiliency. Our project website is at: https://robot-morphology.cs.columbia.edu/
Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to plan and control their actions. These "self-models" allow robots to consider outcomes of … Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to plan and control their actions. These "self-models" allow robots to consider outcomes of multiple possible future actions, without trying them out in physical reality. Recent progress in fully data-driven self-modeling has enabled machines to learn their own forward kinematics directly from task-agnostic interaction data. However, forward-kinema\-tics models can only predict limited aspects of the morphology, such as the position of end effectors or velocity of joints and masses. A key challenge is to model the entire morphology and kinematics, without prior knowledge of what aspects of the morphology will be relevant to future tasks. Here, we propose that instead of directly modeling forward-kinematics, a more useful form of self-modeling is one that could answer space occupancy queries, conditioned on the robot's state. Such query-driven self models are continuous in the spatial domain, memory efficient, fully differentiable and kinematic aware. In physical experiments, we demonstrate how a visual self-model is accurate to about one percent of the workspace, enabling the robot to perform various motion planning and control tasks. Visual self-modeling can also allow the robot to detect, localize and recover from real-world damage, leading to improved machine resiliency. Our project website is at: https://robot-morphology.cs.columbia.edu/
Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, … Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, these methods often involve gradient descent through a highly non-convex loss landscape, causing the optimization process to be unstable and slow. We introduce a method that learns a loss landscape where gradient descent is efficient, bringing massive improvement and acceleration to the inversion process. We demonstrate this advantage on a number of methods for both generative and discriminative tasks, including GAN inversion, adversarial defense, and 3D human pose reconstruction.
We train embodied agents to play Visual Hide and Seek where a prey must navigate in a simulated environment in order to avoid capture from a predator. We place a … We train embodied agents to play Visual Hide and Seek where a prey must navigate in a simulated environment in order to avoid capture from a predator. We place a variety of obstacles in the environment for the prey to hide behind, and we only give the agents partial observations of their environment using an egocentric perspective. Although we train the model to play this game from scratch, experiments and visualizations suggest that the agent learns to predict its own visibility in the environment. Furthermore, we quantitatively analyze how agent weaknesses, such as slower speed, effect the learned policy. Our results suggest that, although agent weaknesses make the learning problem more challenging, they also cause more useful features to be learned. Our project website is available at: http://www.cs.columbia.edu/ ~bchen/visualhideseek/.
A key challenge in manipulation is learning a policy that can robustly generalize to diverse visual environments. A promising mechanism for learning robust policies is to leverage video generative models, … A key challenge in manipulation is learning a policy that can robustly generalize to diverse visual environments. A promising mechanism for learning robust policies is to leverage video generative models, which are pretrained on large-scale datasets of internet videos. In this paper, we propose a visuomotor policy learning framework that fine-tunes a video diffusion model on human demonstrations of a given task. At test time, we generate an example of an execution of the task conditioned on images of a novel scene, and use this synthesized execution directly to control the robot. Our key insight is that using common tools allows us to effortlessly bridge the embodiment gap between the human hand and the robot manipulator. We evaluate our approach on four tasks of increasing complexity and demonstrate that harnessing internet-scale generative models allows the learned policy to achieve a significantly higher degree of generalization than existing behavior cloning approaches.
Humans naturally build mental models of object interactions and dynamics, allowing them to imagine how their surroundings will change if they take a certain action. While generative models today have … Humans naturally build mental models of object interactions and dynamics, allowing them to imagine how their surroundings will change if they take a certain action. While generative models today have shown impressive results on generating/editing images unconditionally or conditioned on text, current methods do not provide the ability to perform object manipulation conditioned on actions, an important tool for world modeling and action planning. Therefore, we propose to learn an action-conditional generative models by learning from unlabeled videos of human hands interacting with objects. The vast quantity of such data on the internet allows for efficient scaling which can enable high-performing action-conditional models. Given an image, and the shape/location of a desired hand interaction, CosHand, synthesizes an image of a future after the interaction has occurred. Experiments show that the resulting model can predict the effects of hand-object interactions well, with strong generalization particularly to translation, stretching, and squeezing interactions of unseen objects in unseen environments. Further, CosHand can be sampled many times to predict multiple possible effects, modeling the uncertainty of forces in the interaction/environment. Finally, method generalizes to different embodiments, including non-human hands, i.e. robot hands, suggesting that generative video models can be powerful models for robotics.
In medical reporting, the accuracy of radiological reports, whether generated by humans or machine learning algorithms, is critical. We tackle a new task in this paper: image-conditioned autocorrection of inaccuracies … In medical reporting, the accuracy of radiological reports, whether generated by humans or machine learning algorithms, is critical. We tackle a new task in this paper: image-conditioned autocorrection of inaccuracies within these reports. Using the MIMIC-CXR dataset, we first intentionally introduce a diverse range of errors into reports. Subsequently, we propose a two-stage framework capable of pinpointing these errors and then making corrections, simulating an \textit{autocorrection} process. This method aims to address the shortcomings of existing automated medical reporting systems, like factual errors and incorrect conclusions, enhancing report reliability in vital healthcare applications. Importantly, our approach could serve as a guardrail, ensuring the accuracy and trustworthiness of automated report generation. Experiments on established datasets and state of the art report generation models validate this method's potential in correcting medical reporting errors.
In medical reporting, the accuracy of radiological reports, whether generated by humans or machine learning algorithms, is critical. We tackle a new task in this paper: image-conditioned autocorrection of inaccuracies … In medical reporting, the accuracy of radiological reports, whether generated by humans or machine learning algorithms, is critical. We tackle a new task in this paper: image-conditioned autocorrection of inaccuracies within these reports. Using the MIMIC-CXR dataset, we first intentionally introduce a diverse range of errors into reports. Subsequently, we propose a two-stage framework capable of pinpointing these errors and then making corrections, simulating an \textit{autocorrection} process. This method aims to address the shortcomings of existing automated medical reporting systems, like factual errors and incorrect conclusions, enhancing report reliability in vital healthcare applications. Importantly, our approach could serve as a guardrail, ensuring the accuracy and trustworthiness of automated report generation. Experiments on established datasets and state of the art report generation models validate this method's potential in correcting medical reporting errors.
Humans naturally build mental models of object interactions and dynamics, allowing them to imagine how their surroundings will change if they take a certain action. While generative models today have … Humans naturally build mental models of object interactions and dynamics, allowing them to imagine how their surroundings will change if they take a certain action. While generative models today have shown impressive results on generating/editing images unconditionally or conditioned on text, current methods do not provide the ability to perform object manipulation conditioned on actions, an important tool for world modeling and action planning. Therefore, we propose to learn an action-conditional generative models by learning from unlabeled videos of human hands interacting with objects. The vast quantity of such data on the internet allows for efficient scaling which can enable high-performing action-conditional models. Given an image, and the shape/location of a desired hand interaction, CosHand, synthesizes an image of a future after the interaction has occurred. Experiments show that the resulting model can predict the effects of hand-object interactions well, with strong generalization particularly to translation, stretching, and squeezing interactions of unseen objects in unseen environments. Further, CosHand can be sampled many times to predict multiple possible effects, modeling the uncertainty of forces in the interaction/environment. Finally, method generalizes to different embodiments, including non-human hands, i.e. robot hands, suggesting that generative video models can be powerful models for robotics.
A key challenge in manipulation is learning a policy that can robustly generalize to diverse visual environments. A promising mechanism for learning robust policies is to leverage video generative models, … A key challenge in manipulation is learning a policy that can robustly generalize to diverse visual environments. A promising mechanism for learning robust policies is to leverage video generative models, which are pretrained on large-scale datasets of internet videos. In this paper, we propose a visuomotor policy learning framework that fine-tunes a video diffusion model on human demonstrations of a given task. At test time, we generate an example of an execution of the task conditioned on images of a novel scene, and use this synthesized execution directly to control the robot. Our key insight is that using common tools allows us to effortlessly bridge the embodiment gap between the human hand and the robot manipulator. We evaluate our approach on four tasks of increasing complexity and demonstrate that harnessing internet-scale generative models allows the learned policy to achieve a significantly higher degree of generalization than existing behavior cloning approaches.
How do large language models (LLMs) obtain their answers? The ability to explain and control an LLM's reasoning process is key for reliability, transparency, and future model developments. We propose … How do large language models (LLMs) obtain their answers? The ability to explain and control an LLM's reasoning process is key for reliability, transparency, and future model developments. We propose SelfIE (Self-Interpretation of Embeddings), a framework that enables LLMs to interpret their own embeddings in natural language by leveraging their ability to respond inquiry about a given passage. Capable of interpreting open-world concepts in the hidden embeddings, SelfIE reveals LLM internal reasoning in cases such as making ethical decisions, internalizing prompt injection, and recalling harmful knowledge. SelfIE's text descriptions on hidden embeddings also open up new avenues to control LLM reasoning. We propose Supervised Control, which allows editing open-ended concepts while only requiring gradient computation of individual layer. We extend RLHF to hidden embeddings and propose Reinforcement Control that erases harmful knowledge in LLM without supervision targets.
Paper is a cheap, recyclable, and clean material that is often used to make practical tools. Traditional tool design either relies on simulation or physical analysis, which is often inaccurate … Paper is a cheap, recyclable, and clean material that is often used to make practical tools. Traditional tool design either relies on simulation or physical analysis, which is often inaccurate and time-consuming. In this paper, we propose PaperBot, an approach that directly learns to design and use a tool in the real world using paper without human intervention. We demonstrated the effectiveness and efficiency of PaperBot on two tool design tasks: 1. learning to fold and throw paper airplanes for maximum travel distance 2. learning to cut paper into grippers that exert maximum gripping force. We present a self-supervised learning framework that learns to perform a sequence of folding, cutting, and dynamic manipulation actions in order to optimize the design and use of a tool. We deploy our system to a real-world two-arm robotic system to solve challenging design tasks that involve aerodynamics (paper airplane) and friction (paper gripper) that are impossible to simulate accurately.
We find that large language models (LLMs) are more likely to modify human-written text than AI-generated text when tasked with rewriting. This tendency arises because LLMs often perceive AI-generated text … We find that large language models (LLMs) are more likely to modify human-written text than AI-generated text when tasked with rewriting. This tendency arises because LLMs often perceive AI-generated text as high-quality, leading to fewer modifications. We introduce a method to detect AI-generated content by prompting LLMs to rewrite text and calculating the editing distance of the output. We dubbed our geneRative AI Detection viA Rewriting method Raidar. Raidar significantly improves the F1 detection scores of existing AI content detection models -- both academic and commercial -- across various domains, including News, creative writing, student essays, code, Yelp reviews, and arXiv papers, with gains of up to 29 points. Operating solely on word symbols without high-dimensional features, our method is compatible with black box LLMs, and is inherently robust on new content. Our results illustrate the unique imprint of machine-generated text through the lens of the machines themselves.
Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, … Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, these methods often involve gradient descent through a highly non-convex loss landscape, causing the optimization process to be unstable and slow. We introduce a method that learns a loss landscape where gradient descent is efficient, bringing massive improvement and acceleration to the inversion process. We demonstrate this advantage on a number of methods for both generative and discriminative tasks, including GAN inversion, adversarial defense, and 3D human pose reconstruction.
Answering visual queries is a complex task that requires both visual processing and reasoning. End-to-end models, the dominant approach for this task, do not explicitly differentiate between the two, limiting … Answering visual queries is a complex task that requires both visual processing and reasoning. End-to-end models, the dominant approach for this task, do not explicitly differentiate between the two, limiting interpretability and generalization. Learning modular programs presents a promising alternative, but has proven challenging due to the difficulty of learning both the programs and modules simultaneously. We introduce ${\color{green}{\text{ViperGPT}}}$, a framework that leverages code-generation models to compose vision-and-language models into subroutines to produce a result for any query. ${\color{green}{\text{ViperGPT}}}$ utilizes a provided API to access the available modules, and composes them by generating Python code that is later executed. This simple approach requires no further training, and achieves state-of-the-art results across various complex visual tasks.
We introduce Zero-1-to-3, a framework for changing the camera viewpoint of an object given just a single RGB image. To perform novel view synthesis in this under-constrained setting, we capitalize … We introduce Zero-1-to-3, a framework for changing the camera viewpoint of an object given just a single RGB image. To perform novel view synthesis in this under-constrained setting, we capitalize on the geometric priors that large-scale diffusion models learn about natural images. Our conditional diffusion model uses a synthetic dataset to learn controls of the relative camera viewpoint, which allow new images to be generated of the same object under a specified camera transformation. Even though it is trained on a synthetic dataset, our model retains a strong zero-shot generalization ability to out-of-distribution datasets as well as in-the-wild images, including impressionist paintings. Our viewpoint-conditioned diffusion approach can further be used for the task of 3D reconstruction from a single image. Qualitative and quantitative experiments show that our method significantly outperforms state-of-the-art single-view 3D reconstruction and novel view synthesis models by leveraging Internet-scale pre-training.
Modeling the mechanics of fluid in complex scenes is vital to applications in design, graphics, and robotics. Learning-based methods provide fast and differentiable fluid simulators, however most prior work is … Modeling the mechanics of fluid in complex scenes is vital to applications in design, graphics, and robotics. Learning-based methods provide fast and differentiable fluid simulators, however most prior work is unable to accurately model how fluids interact with genuinely novel surfaces not seen during training. We introduce SurfsUp, a framework that represents objects implicitly using signed distance functions (SDFs), rather than an explicit representation of meshes or particles. This continuous representation of geometry enables more accurate simulation of fluid-object interactions over long time periods while simultaneously making computation more efficient. Moreover, SurfsUp trained on simple shape primitives generalizes considerably out-of-distribution, even to complex real-world scenes and objects. Finally, we show we can invert our model to design simple objects to manipulate fluid flow.
Many visual recognition models are evaluated only on their classification accuracy, a metric for which they obtain strong performance. In this paper, we investigate whether computer vision models can also … Many visual recognition models are evaluated only on their classification accuracy, a metric for which they obtain strong performance. In this paper, we investigate whether computer vision models can also provide correct rationales for their predictions. We propose a "doubly right" object recognition benchmark, where the metric requires the model to simultaneously produce both the right labels as well as the right rationales. We find that state-of-the-art visual models, such as CLIP, often provide incorrect rationales for their categorical predictions. However, by transferring the rationales from language models into visual representations through a tailored dataset, we show that we can learn a "why prompt," which adapts large visual representations to produce correct rationales. Visualizations and empirical experiments show that our prompts significantly improve performance on doubly right object recognition, in addition to zero-shot transfer to unseen tasks and datasets.
The relatively hot temperature of the human body causes people to turn into long-wave infrared light sources. Since this emitted light has a larger wavelength than visible light, many surfaces … The relatively hot temperature of the human body causes people to turn into long-wave infrared light sources. Since this emitted light has a larger wavelength than visible light, many surfaces in typical scenes act as infrared mirrors with strong specular reflections. We exploit the thermal reflections of a person onto objects in order to locate their position and reconstruct their pose, even if they are not visible to a normal camera. We propose an analysis-by-synthesis framework that jointly models the objects, people, and their thermal reflections, which combines generative models with differentiable rendering of reflections. Quantitative and qualitative experiments show our approach works in highly challenging cases, such as with curved mirrors or when the person is completely unseen by a normal camera.
Tracking objects with persistence in cluttered and dynamic environments remains a difficult challenge for computer vision systems. In this paper, we introduce TCOW, a new benchmark and model for visual … Tracking objects with persistence in cluttered and dynamic environments remains a difficult challenge for computer vision systems. In this paper, we introduce TCOW, a new benchmark and model for visual tracking through heavy occlusion and containment. We set up a task where the goal is to, given a video sequence, segment both the projected extent of the target object, as well as the surrounding container or occluder whenever one exists. To study this task, we create a mixture of synthetic and annotated real datasets to support both supervised learning and structured evaluation of model performance under various forms of task variation, such as moving or nested containment. We evaluate two recent transformer-based video models and find that while they can be surprisingly capable of tracking targets under certain settings of task variation, there remains a considerable performance gap before we can claim a tracking model to have acquired a true notion of object permanence.
Synthesizing 3D human avatars interacting realistically with a scene is an important problem with applications in AR/VR, video games, and robotics. Towards this goal, we address the task of generating … Synthesizing 3D human avatars interacting realistically with a scene is an important problem with applications in AR/VR, video games, and robotics. Towards this goal, we address the task of generating a virtual human – hands and full body – grasping everyday objects. Existing methods approach this problem by collecting a 3D dataset of humans interacting with objects and training on this data. However, 1) these methods do not generalize to different object positions and orientations or to the presence of furniture in the scene, and 2) the diversity of their generated full-body poses is very limited. In this work, we address all the above challenges to generate realistic, diverse full-body grasps in everyday scenes without requiring any 3D full-body grasping data. Our key insight is to leverage the existence of both full-body pose and hand-grasping priors, composing them using 3D geometrical constraints to obtain full-body grasps. We empirically validate that these constraints can generate a variety of feasible human grasps that are superior to baselines both quantitatively and qualitatively. See our webpage for more details: flex.cs.columbia.edu.
We introduce a video framework for modeling the association between verbal and non-verbal communication during dyadic conversation. Given the input speech of a speaker, our approach retrieves a video of … We introduce a video framework for modeling the association between verbal and non-verbal communication during dyadic conversation. Given the input speech of a speaker, our approach retrieves a video of a listener, who has facial expressions that would be socially appropriate given the context. Our approach further allows the listener to be conditioned on their own goals, personalities, or backgrounds. Our approach models conversations through a composition of large language models and vision-language models, creating internal representations that are interpretable and controllable. To study multimodal communication, we propose a new video dataset of unscripted conversations covering diverse topics and demographics. Experiments and visualizations show our approach is able to output listeners that are significantly more socially appropriate than baselines. However, many challenges remain, and we release our dataset publicly to spur further progress. See our website for video results, data, and code: https://realtalk.cs.columbia.edu.
Synthesizing novel 3D models that resemble the input example has long been pursued by graphics artists and machine learning researchers. In this paper, we present Sin3DM, a diffusion model that … Synthesizing novel 3D models that resemble the input example has long been pursued by graphics artists and machine learning researchers. In this paper, we present Sin3DM, a diffusion model that learns the internal patch distribution from a single 3D textured shape and generates high-quality variations with fine geometry and texture details. Training a diffusion model directly in 3D would induce large memory and computational cost. Therefore, we first compress the input into a lower-dimensional latent space and then train a diffusion model on it. Specifically, we encode the input 3D textured shape into triplane feature maps that represent the signed distance and texture fields of the input. The denoising network of our diffusion model has a limited receptive field to avoid overfitting, and uses triplane-aware 2D convolution blocks to improve the result quality. Aside from randomly generating new samples, our model also facilitates applications such as retargeting, outpainting and local editing. Through extensive qualitative and quantitative evaluation, we show that our method outperforms prior methods in generation quality of 3D shapes.
Visual representations underlie object recognition tasks, but they often contain both robust and non-robust features. Our main observation is that image classifiers may perform poorly on out-of-distribution samples because spurious … Visual representations underlie object recognition tasks, but they often contain both robust and non-robust features. Our main observation is that image classifiers may perform poorly on out-of-distribution samples because spurious correlations between non-robust features and labels can be changed in a new environment. By analyzing procedures for out-of-distribution generalization with a causal graph, we show that standard classifiers fail because the association between images and labels is not transportable across settings. However, we then show that the causal effect, which severs all sources of confounding, remains invariant across domains. This motivates us to develop an algorithm to estimate the causal effect for image classification, which is transportable (i.e., invariant) across source and target environments. Without observing additional variables, we show that we can derive an estimand for the causal effect under empirical assumptions using representations in deep models as proxies. Theoretical analysis, empirical results, and visualizations show that our approach captures causal invariances and improves overall generalization.
We present an approach for recommending a music track for a given video, and vice versa, based on both their temporal alignment and their correspondence at an artistic level. We … We present an approach for recommending a music track for a given video, and vice versa, based on both their temporal alignment and their correspondence at an artistic level. We propose a self-supervised approach that learns this correspondence directly from data, without any need of human annotations. In order to capture the high-level concepts that are required to solve the task, we propose modeling the long-term temporal context of both the video and the music signals, using Transformer networks for each modality. Experiments show that this approach strongly outperforms alternatives that do not exploit the temporal context. The combination of our contributions improve retrieval accuracy up to 10× over prior state of the art. This strong improvement allows us to introduce a wide range of analyses and applications. For instance, we can condition music retrieval based on visually defined attributes.
Machine translation between many languages at once is highly challenging, since training with ground truth re-quires supervision between all language pairs, which is dif-ficult to obtain. Our key insight is … Machine translation between many languages at once is highly challenging, since training with ground truth re-quires supervision between all language pairs, which is dif-ficult to obtain. Our key insight is that, while languages may vary drastically, the underlying visual appearance of the world remains consistent. We introduce a method that uses visual observations to bridge the gap between languages, rather than relying on parallel corpora or topo-logical properties of the representations. We train a model that aligns segments of text from different languages if and only if the images associated with them are similar and each image in turn is well-aligned with its textual description. We train our model from scratch on a new dataset of text in over fifty languages with accompanying images. Experiments show that our method outperforms previous work on unsupervised word and sentence translation using retrieval. Code, models and data are available on globetrotter.cs.columbia.edu
For computer vision systems to operate in dynamic situations, they need to be able to represent and reason about object permanence. We introduce a framework for learning to estimate 4D … For computer vision systems to operate in dynamic situations, they need to be able to represent and reason about object permanence. We introduce a framework for learning to estimate 4D visual representations from monocular RGB-D video, which is able to persist objects, even once they become obstructed by occlusions. Unlike traditional video representations, we encode point clouds into a continuous representation, which permits the model to attend across the spatiotemporal context to resolve occlusions. On two large video datasets that we release along with this paper, our experiments show that the representation is able to successfully reveal occlusions for several tasks, without any architectural changes. Visualizations show that the attention mechanism automatically learns to follow occluded objects. Since our approach can be trained end-to-end and is easily adaptable, we believe it will be useful for handling occlusions in many video understanding tasks. Data, code, and models are available at occ1usions. cs. co1umbia. edu.
Our lives can be seen as a complex weaving of activities; we switch from one activity to another, to maximise our achievements or in reaction to demands placed upon us. … Our lives can be seen as a complex weaving of activities; we switch from one activity to another, to maximise our achievements or in reaction to demands placed upon us. Observing a video of unscripted daily activities, we parse the video into its constituent activity threads through a process we call unweaving. To accomplish this, we introduce a video representation explicitly capturing activity threads called a thread bank, along with a neural controller capable of detecting goal changes and resuming of past activities, together forming UnweaveNet. We train and evaluate UnweaveNet on sequences from the unscripted egocentric dataset EPIC-KITCHENS. We propose and showcase the efficacy of pretraining UnweaveNet in a self-supervised manner.
Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, … Many machine learning methods operate by inverting a neural network at inference time, which has become a popular technique for solving inverse problems in computer vision, robotics, and graphics. However, these methods often involve gradient descent through a highly non-convex loss landscape, causing the optimization process to be unstable and slow. We introduce a method that learns a loss landscape where gradient descent is efficient, bringing massive improvement and acceleration to the inversion process. We demonstrate this advantage on a number of methods for both generative and discriminative tasks, including GAN inversion, adversarial defense, and 3D human pose reconstruction.
Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to plan and control their actions. These "self-models" allow robots to consider outcomes of … Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to plan and control their actions. These "self-models" allow robots to consider outcomes of multiple possible future actions, without trying them out in physical reality. Recent progress in fully data-driven self-modeling has enabled machines to learn their own forward kinematics directly from task-agnostic interaction data. However, forward-kinema\-tics models can only predict limited aspects of the morphology, such as the position of end effectors or velocity of joints and masses. A key challenge is to model the entire morphology and kinematics, without prior knowledge of what aspects of the morphology will be relevant to future tasks. Here, we propose that instead of directly modeling forward-kinematics, a more useful form of self-modeling is one that could answer space occupancy queries, conditioned on the robot's state. Such query-driven self models are continuous in the spatial domain, memory efficient, fully differentiable and kinematic aware. In physical experiments, we demonstrate how a visual self-model is accurate to about one percent of the workspace, enabling the robot to perform various motion planning and control tasks. Visual self-modeling can also allow the robot to detect, localize and recover from real-world damage, leading to improved machine resiliency. Our project website is at: https://robot-morphology.cs.columbia.edu/
We find that images contain intrinsic structure that enables the reversal of many adversarial attacks. Attack vectors cause not only image classifiers to fail, but also collaterally disrupt incidental structure … We find that images contain intrinsic structure that enables the reversal of many adversarial attacks. Attack vectors cause not only image classifiers to fail, but also collaterally disrupt incidental structure in the image. We demonstrate that modifying the attacked image to restore the natural structure will reverse many types of attacks, providing a defense. Experiments demonstrate significantly improved robustness for several state-of-the-art models across the CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets. Our results show that our defense is still effective even if the attacker is aware of the defense mechanism. Since our defense is deployed during inference instead of training, it is compatible with pre-trained networks as well as most other defenses. Our results suggest deep networks are vulnerable to adversarial examples partly because their representations do not enforce the natural structure of images.
We introduce a framework for learning from unlabeled video what is predictable in the future. Instead of committing up front to features to predict, our approach learns from data which … We introduce a framework for learning from unlabeled video what is predictable in the future. Instead of committing up front to features to predict, our approach learns from data which features are predictable. Based on the observation that hyperbolic geometry naturally and compactly encodes hierarchical structure, we propose a predictive model in hyperbolic space. When the model is most confident, it will predict at a concrete level of the hierarchy, but when the model is not confident, it learns to automatically select a higher level of abstraction. Experiments on two established datasets show the key role of hierarchical representations for action prediction. Although our representation is trained with unlabeled video, visualizations show that action hierarchies emerge in the representation.
We introduce a framework for learning robust visual representations that generalize to new viewpoints, backgrounds, and scene contexts. Discriminative models often learn naturally occurring spurious correlations, which cause them to … We introduce a framework for learning robust visual representations that generalize to new viewpoints, backgrounds, and scene contexts. Discriminative models often learn naturally occurring spurious correlations, which cause them to fail on images outside of the training distribution. In this paper, we show that we can steer generative models to manufacture interventions on features caused by confounding factors. Experiments, visualizations, and theoretical results show this method learns robust representations more consistent with the underlying causal relationships. Our approach improves performance on multiple datasets demanding out-of-distribution generalization, and we demonstrate state-of-the-art performance generalizing from ImageNet to ObjectNet dataset.
Machine translation in a multi-language scenario requires large-scale parallel corpora for every language pair. Unsupervised translation is challenging because there is no explicit connection between languages, and the existing methods … Machine translation in a multi-language scenario requires large-scale parallel corpora for every language pair. Unsupervised translation is challenging because there is no explicit connection between languages, and the existing methods have to rely on topological properties of the language representations. We introduce a framework that leverages visual similarity to align multiple languages, using images as the bridge between them. We estimate the cross-modal alignment between language and images, and use this estimate to guide the learning of cross-lingual representations. Our language representations are trained jointly in one model with a single stage. Experiments with fifty-two languages show that our method outperforms prior work on unsupervised word-level and sentence-level translation using retrieval.
We introduce a framework for learning from unlabeled video what is predictable in the future. Instead of committing up front to features to predict, our approach learns from data which … We introduce a framework for learning from unlabeled video what is predictable in the future. Instead of committing up front to features to predict, our approach learns from data which features are predictable. Based on the observation that hyperbolic geometry naturally and compactly encodes hierarchical structure, we propose a predictive model in hyperbolic space. When the model is most confident, it will predict at a concrete level of the hierarchy, but when the model is not confident, it learns to automatically select a higher level of abstraction. Experiments on two established datasets show the key role of hierarchical representations for action prediction. Although our representation is trained with unlabeled video, visualizations show that action hierarchies emerge in the representation.
Interacting with bins and containers is a fundamental task in robotics, making state estimation of the objects inside the bin critical. While robots often use cameras for state estimation, the … Interacting with bins and containers is a fundamental task in robotics, making state estimation of the objects inside the bin critical. While robots often use cameras for state estimation, the visual modality is not always ideal due to occlusions and poor illumination. We introduce The Boombox, a container that uses sound to estimate the state of the contents inside a box. Based on the observation that the collision between objects and its containers will cause an acoustic vibration, we present a convolutional network for learning to reconstruct visual scenes. Although we use low-cost and low-power contact microphones to detect the vibrations, our results show that learning from multimodal data enables state estimation from affordable audio sensors. Due to the many ways that robots use containers, we believe the box will have a number of applications in robotics. Our project website is at: boombox.cs.columbia.edu
We find that images contain intrinsic structure that enables the reversal of many adversarial attacks. Attack vectors cause not only image classifiers to fail, but also collaterally disrupt incidental structure … We find that images contain intrinsic structure that enables the reversal of many adversarial attacks. Attack vectors cause not only image classifiers to fail, but also collaterally disrupt incidental structure in the image. We demonstrate that modifying the attacked image to restore the natural structure will reverse many types of attacks, providing a defense. Experiments demonstrate significantly improved robustness for several state-of-the-art models across the CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets. Our results show that our defense is still effective even if the attacker is aware of the defense mechanism. Since our defense is deployed during inference instead of training, it is compatible with pre-trained networks as well as most other defenses. Our results suggest deep networks are vulnerable to adversarial examples partly because their representations do not enforce the natural structure of images.
Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to plan and control their actions. These "self-models" allow robots to consider outcomes of … Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to plan and control their actions. These "self-models" allow robots to consider outcomes of multiple possible future actions, without trying them out in physical reality. Recent progress in fully data-driven self-modeling has enabled machines to learn their own forward kinematics directly from task-agnostic interaction data. However, forward-kinema\-tics models can only predict limited aspects of the morphology, such as the position of end effectors or velocity of joints and masses. A key challenge is to model the entire morphology and kinematics, without prior knowledge of what aspects of the morphology will be relevant to future tasks. Here, we propose that instead of directly modeling forward-kinematics, a more useful form of self-modeling is one that could answer space occupancy queries, conditioned on the robot's state. Such query-driven self models are continuous in the spatial domain, memory efficient, fully differentiable and kinematic aware. In physical experiments, we demonstrate how a visual self-model is accurate to about one percent of the workspace, enabling the robot to perform various motion planning and control tasks. Visual self-modeling can also allow the robot to detect, localize and recover from real-world damage, leading to improved machine resiliency. Our project website is at: https://robot-morphology.cs.columbia.edu/
Identifying common patterns among events is a key ability in human and machine perception, as it underlies intelligent decision making. We propose an approach for learning semantic relational set abstractions … Identifying common patterns among events is a key ability in human and machine perception, as it underlies intelligent decision making. We propose an approach for learning semantic relational set abstractions on videos, inspired by human learning. We combine visual features with natural language supervision to generate high-level representations of similarities across a set of videos. This allows our model to perform cognitive tasks such as set abstraction (which general concept is in common among a set of videos?), set completion (which new video goes well with the set?), and odd one out detection (which video does not belong to the set?). Experiments on two video benchmarks, Kinetics and Multi-Moments in Time, show that robust and versatile representations emerge when learning to recognize commonalities among sets. We compare our model to several baseline algorithms and show that significant improvements result from explicitly learning relational abstractions with semantic supervision.
From just a short glance at a video, we can often tell whether a person's action is intentional or not. Can we train a model to recognize this? We introduce … From just a short glance at a video, we can often tell whether a person's action is intentional or not. Can we train a model to recognize this? We introduce a dataset of in-the-wild videos of unintentional action, as well as a suite of tasks for recognizing, localizing, and anticipating its onset. We train a supervised neural network as a baseline and analyze its performance compared to human consistency on the tasks. We also investigate self-supervised representations that leverage natural signals in our dataset, and show the effectiveness of an approach that uses the intrinsic speed of video to perform competitively with highly-supervised pretraining. However, a significant gap between machine and human performance remains.
Although deep networks achieve strong accuracy on a range of computer vision benchmarks, they remain vulnerable to adversarial attacks, where imperceptible input perturbations fool the network. We present both theoretical … Although deep networks achieve strong accuracy on a range of computer vision benchmarks, they remain vulnerable to adversarial attacks, where imperceptible input perturbations fool the network. We present both theoretical and empirical analyses that connect the adversarial robustness of a model to the number of tasks that it is trained on. Experiments on two datasets show that attack difficulty increases as the number of target tasks increase. Moreover, our results suggest that when models are trained on multiple tasks at once, they become more robust to adversarial attacks on individual tasks. While adversarial defense remains an open challenge, our results suggest that deep networks are vulnerable partly because they are trained on too few tasks.
We introduce a deep learning model for speech denoising, a long-standing challenge in audio analysis arising in numerous applications. Our approach is based on a key observation about human speech: … We introduce a deep learning model for speech denoising, a long-standing challenge in audio analysis arising in numerous applications. Our approach is based on a key observation about human speech: there is often a short pause between each sentence or word. In a recorded speech signal, those pauses introduce a series of time periods during which only noise is present. We leverage these incidental silent intervals to learn a model for automatic speech denoising given only mono-channel audio. Detected silent intervals over time expose not just pure noise but its time-varying features, allowing the model to learn noise dynamics and suppress it from the speech signal. Experiments on multiple datasets confirm the pivotal role of silent interval detection for speech denoising, and our method outperforms several state-of-the-art denoising methods, including those that accept only audio input (like ours) and those that denoise based on audiovisual input (and hence require more information). We also show that our method enjoys excellent generalization properties, such as denoising spoken languages not seen during training.
The elementary operation of cropping underpins nearly every computer vision system, ranging from data augmentation and translation invariance to computational photography and representation learning. This paper investigates the subtle traces … The elementary operation of cropping underpins nearly every computer vision system, ranging from data augmentation and translation invariance to computational photography and representation learning. This paper investigates the subtle traces introduced by this operation. For example, despite refinements to camera optics, lenses will leave behind certain clues, notably chromatic aberration and vignetting. Photographers also leave behind other clues relating to image aesthetics and scene composition. We study how to detect these traces, and investigate the impact that cropping has on the image distribution. While our aim is to dissect the fundamental impact of spatial crops, there are also a number of practical implications to our work, such as revealing faulty photojournalism and equipping neural network researchers with a better understanding of shortcut learning. Code is available at https://github.com/basilevh/dissecting-image-crops.
We introduce a framework that predicts the goals behind observable human action in video. Motivated by evidence in developmental psychology, we leverage video of unintentional action to learn video representations … We introduce a framework that predicts the goals behind observable human action in video. Motivated by evidence in developmental psychology, we leverage video of unintentional action to learn video representations of goals without direct supervision. Our approach models videos as contextual trajectories that represent both low-level motion and high-level action features. Experiments and visualizations show our trained model is able to predict the underlying goals in video of unintentional action. We also propose a method to "automatically correct" unintentional action by leveraging gradient signals of our model to adjust latent trajectories. Although the model is trained with minimal supervision, it is competitive with or outperforms baselines trained on large (supervised) datasets of successfully executed goals, showing that observing unintentional action is crucial to learning about goals in video. Project page: https://aha.cs.columbia.edu/
From just a short glance at a video, we can often tell whether a person's action is intentional or not. Can we train a model to recognize this? We introduce … From just a short glance at a video, we can often tell whether a person's action is intentional or not. Can we train a model to recognize this? We introduce a dataset of in-the-wild videos of unintentional action, as well as a suite of tasks for recognizing, localizing, and anticipating its onset. We train a supervised neural network as a baseline and analyze its performance compared to human consistency on the tasks. We also investigate self-supervised representations that leverage natural signals in our dataset, and show the effectiveness of an approach that uses the intrinsic speed of video to perform competitively with highly-supervised pretraining. However, a significant gap between machine and human performance remains. The project website is available at this https URL
Language acquisition is the process of learning words from the surrounding scene. We introduce a meta-learning framework that learns how to learn word representations from unconstrained scenes. We leverage the … Language acquisition is the process of learning words from the surrounding scene. We introduce a meta-learning framework that learns how to learn word representations from unconstrained scenes. We leverage the natural compositional structure of language to create training episodes that cause a meta-learner to learn strong policies for language acquisition. Experiments on two datasets show that our approach is able to more rapidly acquire novel words as well as more robustly generalize to unseen compositions, significantly outperforming established baselines. A key advantage of our approach is that it is data efficient, allowing representations to be learned from scratch without language pre-training. Visualizations and analysis suggest visual information helps our approach learn a rich cross-modal representation from minimal examples. Project webpage is available at this https URL
We train embodied agents to play Visual Hide and Seek where a prey must navigate in a simulated environment in order to avoid capture from a predator. We place a … We train embodied agents to play Visual Hide and Seek where a prey must navigate in a simulated environment in order to avoid capture from a predator. We place a variety of obstacles in the environment for the prey to hide behind, and we only give the agents partial observations of their environment using an egocentric perspective. Although we train the model to play this game from scratch, experiments and visualizations suggest that the agent learns to predict its own visibility in the environment. Furthermore, we quantitatively analyze how agent weaknesses, such as slower speed, effect the learned policy. Our results suggest that, although agent weaknesses make the learning problem more challenging, they also cause more useful features to be learned. Our project website is available at: this http URL ~bchen/visualhideseek/.
Self-supervised learning has become increasingly important to leverage the abundance of unlabeled data available on platforms like YouTube. Whereas most existing approaches learn low-level representations, we propose a joint visual-linguistic … Self-supervised learning has become increasingly important to leverage the abundance of unlabeled data available on platforms like YouTube. Whereas most existing approaches learn low-level representations, we propose a joint visual-linguistic model to learn high-level features without any explicit supervision. In particular, inspired by its recent success in language modeling, we build upon the BERT model to learn bidirectional joint distributions over sequences of visual and linguistic tokens, derived from vector quantization of video data and off-the-shelf speech recognition outputs, respectively. We use VideoBERT in numerous tasks, including action classification and video captioning. We show that it can be applied directly to open-vocabulary classification, and confirm that large amounts of training data and cross-modal information are critical to performance. Furthermore, we outperform the state-of-the-art on video captioning, and quantitative results verify that the model learns high-level semantic features.
We address the problem of phrase grounding by learning a multi-level common semantic space shared by the textual and visual modalities. We exploit multiple levels of feature maps of a … We address the problem of phrase grounding by learning a multi-level common semantic space shared by the textual and visual modalities. We exploit multiple levels of feature maps of a Deep Convolutional Neural Network, as well as contextualized word and sentence embeddings extracted from a character-based language model. Following dedicated non-linear mappings for visual features at each level, word, and sentence embeddings, we obtain multiple instantiations of our common semantic space in which comparisons between any target text and the visual content is performed with cosine similarity. We guide the model by a multi-level multimodal attention mechanism which outputs attended visual features at each level. The best level is chosen to be compared with text content for maximizing the pertinence scores of image-sentence pairs of the ground truth. Experiments conducted on three publicly available datasets show significant performance gains (20%-60% relative) over the state-of-the-art in phrase localization and set a new performance record on those datasets. We provide a detailed ablation study to show the contribution of each element of our approach and release our code on GitHub.
We present the Moments in Time Dataset, a large-scale human-annotated collection of one million short videos corresponding to dynamic events unfolding within three seconds. Modeling the spatial-audio-temporal dynamics even for … We present the Moments in Time Dataset, a large-scale human-annotated collection of one million short videos corresponding to dynamic events unfolding within three seconds. Modeling the spatial-audio-temporal dynamics even for actions occurring in 3 second videos poses many challenges: meaningful events do not include only people, but also objects, animals, and natural phenomena; visual and auditory events can be symmetrical in time ("opening" is "closing" in reverse), and either transient or sustained. We describe the annotation process of our dataset (each video is tagged with one action or activity label among 339 different classes), analyze its scale and diversity in comparison to other large-scale video datasets for action recognition, and report results of several baseline models addressing separately, and jointly, three modalities: spatial, temporal and auditory. The Moments in Time dataset, designed to have a large coverage and diversity of events in both visual and auditory modalities, can serve as a new challenge to develop models that scale to the level of complexity and abstract reasoning that a human processes on a daily basis.
Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack … Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack causes the internal representation to shift closer to the "false" class. Motivated by this observation, we propose to regularize the representation space under attack with metric learning to produce more robust classifiers. By carefully sampling examples for metric learning, our learned representation not only increases robustness, but also detects previously unseen adversarial samples. Quantitative experiments show improvement of robustness accuracy by up to 4% and detection efficiency by up to 6% according to Area Under Curve score over prior work. The code of our work is available at https://github.com/columbia/Metric_Learning_Adversarial_Robustness.
We train embodied agents to play Visual Hide and Seek where a prey must navigate in a simulated environment in order to avoid capture from a predator. We place a … We train embodied agents to play Visual Hide and Seek where a prey must navigate in a simulated environment in order to avoid capture from a predator. We place a variety of obstacles in the environment for the prey to hide behind, and we only give the agents partial observations of their environment using an egocentric perspective. Although we train the model to play this game from scratch, experiments and visualizations suggest that the agent learns to predict its own visibility in the environment. Furthermore, we quantitatively analyze how agent weaknesses, such as slower speed, effect the learned policy. Our results suggest that, although agent weaknesses make the learning problem more challenging, they also cause more useful features to be learned. Our project website is available at: http://www.cs.columbia.edu/ ~bchen/visualhideseek/.
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly … Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers - 8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
We describe the DeepMind Kinetics human action video dataset. The dataset contains 400 human action classes, with at least 400 video clips for each action. Each clip lasts around 10s … We describe the DeepMind Kinetics human action video dataset. The dataset contains 400 human action classes, with at least 400 video clips for each action. Each clip lasts around 10s and is taken from a different YouTube video. The actions are human focussed and cover a broad range of classes including human-object interactions such as playing instruments, as well as human-human interactions such as shaking hands. We describe the statistics of the dataset, how it was collected, and give some baseline performance figures for neural network architectures trained and tested for human action classification on this dataset. We also carry out a preliminary analysis of whether imbalance in the dataset leads to bias in the classifiers.
We propose a new self-supervised CNN pre-training technique based on a novel auxiliary task called odd-one-out learning. In this task, the machine is asked to identify the unrelated or odd … We propose a new self-supervised CNN pre-training technique based on a novel auxiliary task called odd-one-out learning. In this task, the machine is asked to identify the unrelated or odd element from a set of otherwise related elements. We apply this technique to self-supervised video representation learning where we sample subsequences from videos and ask the network to learn to predict the odd video subsequence. The odd video subsequence is sampled such that it has wrong temporal order of frames while the even ones have the correct temporal order. Therefore, to generate a odd-one-out question no manual annotation is required. Our learning machine is implemented as multi-stream convolutional neural network, which is learned end-to-end. Using odd-one-out networks, we learn temporal representations for videos that generalizes to other related tasks such as action recognition. On action classification, our method obtains 60.3% on the UCF101 dataset using only UCF101 data for training which is approximately 10% better than current state-of-the-art self-supervised learning methods. Similarly, on HMDB51 dataset we outperform self-supervised state-of-the art methods by 12.7% on action classification task.
This work explores the use of spatial context as a source of free and plentiful supervisory signal for training a rich visual representation. Given only a large, unlabeled image collection, … This work explores the use of spatial context as a source of free and plentiful supervisory signal for training a rich visual representation. Given only a large, unlabeled image collection, we extract random pairs of patches from each image and train a convolutional neural net to predict the position of the second patch relative to the first. We argue that doing well on this task requires the model to learn to recognize objects and their parts. We demonstrate that the feature representation learned using this within-image context indeed captures visual similarity across images. For example, this representation allows us to perform unsupervised visual discovery of objects like cats, people, and even birds from the Pascal VOC 2011 detection dataset. Furthermore, we show that the learned ConvNet can be used in the R-CNN framework [19] and provides a significant boost over a randomly-initialized ConvNet, resulting in state-of-the-art performance among algorithms which use only Pascal-provided training set annotations.
The paucity of videos in current action classification datasets (UCF-101 and HMDB-51) has made it difficult to identify good video architectures, as most methods obtain similar performance on existing small-scale … The paucity of videos in current action classification datasets (UCF-101 and HMDB-51) has made it difficult to identify good video architectures, as most methods obtain similar performance on existing small-scale benchmarks. This paper re-evaluates state-of-the-art architectures in light of the new Kinetics Human Action Video dataset. Kinetics has two orders of magnitude more data, with 400 human action classes and over 400 clips per class, and is collected from realistic, challenging YouTube videos. We provide an analysis on how current architectures fare on the task of action classification on this dataset and how much performance improves on the smaller benchmark datasets after pre-training on Kinetics. We also introduce a new Two-Stream Inflated 3D ConvNet (I3D) that is based on 2D ConvNet inflation: filters and pooling kernels of very deep image classification ConvNets are expanded into 3D, making it possible to learn seamless spatio-temporal feature extractors from video while leveraging successful ImageNet architecture designs and even their parameters. We show that, after pre-training on Kinetics, I3D models considerably improve upon the state-of-the-art in action classification, reaching 80.2% on HMDB-51 and 97.9% on UCF-101.
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In … This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.
The objective of this paper is self-supervised learning of spatio-temporal embeddings from video, suitable for human action recognition. We make three contributions: First, we introduce the Dense Predictive Coding (DPC) … The objective of this paper is self-supervised learning of spatio-temporal embeddings from video, suitable for human action recognition. We make three contributions: First, we introduce the Dense Predictive Coding (DPC) framework for self-supervised representation learning on videos. This learns a dense encoding of spatio-temporal blocks by recurrently predicting future representations; Second, we propose a curriculum training scheme to predict further into the future with progressively less temporal context. This encourages the model to only encode slowly varying spatial-temporal signals, therefore leading to semantic representations; Third, we evaluate the approach by first training the DPC model on the Kinetics-400 dataset with self-supervised learning, and then finetuning the representation on a downstream task, i.e. action recognition. With single stream (RGB only), DPC pretrained representations achieve state-of-the-art self-supervised performance on both UCF101(75.7% top1 acc) and HMDB51(35.7% top1 acc), outperforming all previous learning methods by a significant margin, and approaching the performance of a baseline pre-trained on ImageNet.
Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to adversarial examples: given an input x and any target classification t, it is possible … Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to adversarial examples: given an input x and any target classification t, it is possible to find a new input x' that is similar to x but classified as t. This makes it difficult to apply neural networks in security-critical areas. Defensive distillation is a recently proposed approach that can take an arbitrary neural network, and increase its robustness, reducing the success rate of current attacks' ability to find adversarial examples from 95% to 0.5%. In this paper, we demonstrate that defensive distillation does not significantly increase the robustness of neural networks by introducing three new attack algorithms that are successful on both distilled and undistilled neural networks with 100% probability. Our attacks are tailored to three distance metrics used previously in the literature, and when compared to previous adversarial example generation algorithms, our attacks are often much more effective (and never worse). Furthermore, we propose using high-confidence adversarial examples in a simple transferability test we show can also be used to break defensive distillation. We hope our attacks will be used as a benchmark in future defense attempts to create neural networks that resist adversarial examples.
We investigate architectures of discriminatively trained deep Convolutional Networks (ConvNets) for action recognition in video. The challenge is to capture the complementary information on appearance from still frames and motion … We investigate architectures of discriminatively trained deep Convolutional Networks (ConvNets) for action recognition in video. The challenge is to capture the complementary information on appearance from still frames and motion between frames. We also aim to generalise the best performing hand-crafted features within a data-driven learning framework. Our contribution is three-fold. First, we propose a two-stream ConvNet architecture which incorporates spatial and temporal networks. Second, we demonstrate that a ConvNet trained on multi-frame dense optical flow is able to achieve very good performance in spite of limited training data. Finally, we show that multi-task learning, applied to two different action classification datasets, can be used to increase the amount of training data and improve the performance on both. Our architecture is trained and evaluated on the standard video actions benchmarks of UCF-101 and HMDB-51, where it is competitive with the state of the art. It also exceeds by a large margin previous attempts to use deep nets for video classification.
Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or "temporally deep", are effective for tasks involving sequences, visual … Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or "temporally deep", are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and demonstrate the value of these models on benchmark video recognition tasks, image description and retrieval problems, and video narration challenges. In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent convolutional models are "doubly deep" in that they can be compositional in spatial and temporal "layers". Such models may have advantages when target concepts are complex and/or training data are limited. Learning long-term dependencies is possible when nonlinearities are incorporated into the network state updates. Long-term RNN models are appealing in that they directly can map variable-length inputs (e.g., video frames) to variable length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be optimized with backpropagation. Our recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations. Our results show such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.
Computer graphics, 3D computer vision and robotics communities have produced multiple approaches to representing 3D geometry for rendering and reconstruction. These provide trade-offs across fidelity, efficiency and compression capabilities. In … Computer graphics, 3D computer vision and robotics communities have produced multiple approaches to representing 3D geometry for rendering and reconstruction. These provide trade-offs across fidelity, efficiency and compression capabilities. In this work, we introduce DeepSDF, a learned continuous Signed Distance Function (SDF) representation of a class of shapes that enables high quality shape representation, interpolation and completion from partial and noisy 3D input data. DeepSDF, like its classical counterpart, represents a shape's surface by a continuous volumetric field: the magnitude of a point in the field represents the distance to the surface boundary and the sign indicates whether the region is inside (-) or outside (+) of the shape, hence our representation implicitly encodes a shape's boundary as the zero-level-set of the learned function while explicitly representing the classification of space as being part of the shapes interior or not. While classical SDF's both in analytical or discretized voxel form typically represent the surface of a single shape, DeepSDF can represent an entire class of shapes. Furthermore, we show state-of-the-art performance for learned 3D shape representation and completion while reducing the model size by an order of magnitude compared with previous work.
Anticipating actions and objects before they start or appear is a difficult problem in computer vision with several real-world applications. This task is challenging partly because it requires leveraging extensive … Anticipating actions and objects before they start or appear is a difficult problem in computer vision with several real-world applications. This task is challenging partly because it requires leveraging extensive knowledge of the world that is difficult to write down. We believe that a promising resource for efficiently learning this knowledge is through readily available unlabeled video. We present a framework that capitalizes on temporal structure in unlabeled video to learn to anticipate human actions and objects. The key idea behind our approach is that we can train deep networks to predict the visual representation of images in the future. Visual representations are a promising prediction target because they encode images at a higher semantic level than pixels yet are automatic to compute. We then apply recognition algorithms on our predicted representation to anticipate objects and actions. We experimentally validate this idea on two datasets, anticipating actions one second in the future and objects five seconds in the future.
We propose a simple, yet effective approach for spatiotemporal feature learning using deep 3-dimensional convolutional networks (3D ConvNets) trained on a large scale supervised video dataset. Our findings are three-fold: … We propose a simple, yet effective approach for spatiotemporal feature learning using deep 3-dimensional convolutional networks (3D ConvNets) trained on a large scale supervised video dataset. Our findings are three-fold: 1) 3D ConvNets are more suitable for spatiotemporal feature learning compared to 2D ConvNets, 2) A homogeneous architecture with small 3x3x3 convolution kernels in all layers is among the best performing architectures for 3D ConvNets, and 3) Our learned features, namely C3D (Convolutional 3D), with a simple linear classifier outperform state-of-the-art methods on 4 different benchmarks and are comparable with current best methods on the other 2 benchmarks. In addition, the features are compact: achieving 52.8% accuracy on UCF101 dataset with only 10 dimensions and also very efficient to compute due to the fast inference of ConvNets. Finally, they are conceptually very simple and easy to train and use.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an … The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
We capitalize on large amounts of unlabeled video in order to learn a model of scene dynamics for both video recognition tasks (e.g. action classification) and video generation tasks (e.g. … We capitalize on large amounts of unlabeled video in order to learn a model of scene dynamics for both video recognition tasks (e.g. action classification) and video generation tasks (e.g. future prediction). We propose a generative adversarial network for video with a spatio-temporal convolutional architecture that untangles the scene's foreground from the background. Experiments suggest this model can generate tiny videos up to a second at full frame rate better than simple baselines, and we show its utility at predicting plausible futures of static images. Moreover, experiments and visualizations show the model internally learns useful features for recognizing actions with minimal supervision, suggesting scene dynamics are a promising signal for representation learning. We believe generative video models can impact many applications in video understanding and simulation.
We present an unsupervised representation learning approach using videos without semantic labels. We leverage the temporal coherence as a supervisory signal by formulating representation learning as a sequence sorting task. … We present an unsupervised representation learning approach using videos without semantic labels. We leverage the temporal coherence as a supervisory signal by formulating representation learning as a sequence sorting task. We take temporally shuffled frames (i.e., in non-chronological order) as inputs and train a convolutional neural network to sort the shuffled sequences. Similar to comparison-based sorting algorithms, we propose to extract features from all frame pairs and aggregate them to predict the correct order. As sorting shuffled image sequence requires an understanding of the statistical temporal structure of images, training with such a proxy task allows us to learn rich and generalizable visual representation. We validate the effectiveness of the learned representation using our method as pre-training on high-level recognition problems. The experimental results show that our method compares favorably against state-of-the-art methods on action recognition, image classification, and object detection tasks.
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples—inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some … Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples—inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. Code and pre-trained models are available at this https URL and this https URL.
Objects make distinctive sounds when they are hit or scratched. These sounds reveal aspects of an object's material properties, as well as the actions that produced them. In this paper, … Objects make distinctive sounds when they are hit or scratched. These sounds reveal aspects of an object's material properties, as well as the actions that produced them. In this paper, we propose the task of predicting what sound an object makes when struck as a way of studying physical interactions within a visual scene. We present an algorithm that synthesizes sound from silent videos of people hitting and scratching objects with a drumstick. This algorithm uses a recurrent neural network to predict sound features from videos and then produces a waveform from these features with an example-based synthesis procedure. We show that the sounds predicted by our model are realistic enough to fool participants in a "real or fake" psychophysical experiment, and that they convey significant information about material properties and physical interactions.
Many recent advancements in Computer Vision are attributed to large datasets. Open-source software packages for Machine Learning and inexpensive commodity hardware have reduced the barrier of entry for exploring novel … Many recent advancements in Computer Vision are attributed to large datasets. Open-source software packages for Machine Learning and inexpensive commodity hardware have reduced the barrier of entry for exploring novel approaches at scale. It is possible to train models over millions of examples within a few days. Although large-scale datasets exist for image understanding, such as ImageNet, there are no comparable size video classification datasets. In this paper, we introduce YouTube-8M, the largest multi-label video classification dataset, composed of ~8 million videos (500K hours of video), annotated with a vocabulary of 4800 visual entities. To get the videos and their labels, we used a YouTube video annotation system, which labels videos with their main topics. While the labels are machine-generated, they have high-precision and are derived from a variety of human-based signals including metadata and query click signals. We filtered the video labels (Knowledge Graph entities) using both automated and manual curation strategies, including asking human raters if the labels are visually recognizable. Then, we decoded each video at one-frame-per-second, and used a Deep CNN pre-trained on ImageNet to extract the hidden representation immediately prior to the classification layer. Finally, we compressed the frame features and make both the features and video-level labels available for download. We trained various (modest) classification models on the dataset, evaluated them using popular evaluation metrics, and report them as baselines. Despite the size of the dataset, some of our models train to convergence in less than a day on a single machine using TensorFlow. We plan to release code for training a TensorFlow model and for computing metrics.
We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no changes to the model architecture from a … We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no changes to the model architecture from a standard NMT system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT systems using a single model. On the WMT’14 benchmarks, a single multilingual model achieves comparable performance for English→French and surpasses state-of-theart results for English→German. Similarly, a single multilingual model surpasses state-of-the-art results for French→English and German→English on WMT’14 and WMT’15 benchmarks, respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. Our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and also show some interesting examples when mixing languages.
Is strong supervision necessary for learning a good visual representation? Do we really need millions of semantically-labeled images to train a Convolutional Neural Network (CNN)? In this paper, we present … Is strong supervision necessary for learning a good visual representation? Do we really need millions of semantically-labeled images to train a Convolutional Neural Network (CNN)? In this paper, we present a simple yet surprisingly powerful approach for unsupervised learning of CNN. Specifically, we use hundreds of thousands of unlabeled videos from the web to learn visual representations. Our key idea is that visual tracking provides the supervision. That is, two patches connected by a track should have similar visual representation in deep feature space since they probably belong to same object or object part. We design a Siamese-triplet network with a ranking loss function to train this CNN representation. Without using a single image from ImageNet, just using 100K unlabeled videos and the VOC 2012 dataset, we train an ensemble of unsupervised networks that achieves 52% mAP (no bounding box regression). This performance comes tantalizingly close to its ImageNet-supervised counterpart, an ensemble which achieves a mAP of 54.4%. We also show that our unsupervised network can perform competitively in other tasks such as surface-normal estimation.
We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, … We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we decompose the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provide a differentiable upper bound using the theory of classification-calibrated loss, which is shown to be the tightest possible upper bound uniform over all probability distributions and measurable predictors. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by $11.41\%$ in terms of mean $\ell_2$ perturbation distance.
Deep neural networks are vulnerable to adversarial examples, which poses security concerns on these algorithms due to the potentially severe consequences. Adversarial attacks serve as an important surrogate to evaluate … Deep neural networks are vulnerable to adversarial examples, which poses security concerns on these algorithms due to the potentially severe consequences. Adversarial attacks serve as an important surrogate to evaluate the robustness of deep learning models before they are deployed. However, most of existing adversarial attacks can only fool a black-box model with a low success rate. To address this issue, we propose a broad class of momentum-based iterative algorithms to boost adversarial attacks. By integrating the momentum term into the iterative process for attacks, our methods can stabilize update directions and escape from poor local maxima during the iterations, resulting in more transferable adversarial examples. To further improve the success rates for black-box attacks, we apply momentum iterative algorithms to an ensemble of models, and show that the adversarially trained models with a strong defense ability are also vulnerable to our black-box attacks. We hope that the proposed methods will serve as a benchmark for evaluating the robustness of various deep models and defense methods. With this method, we won the first places in NIPS 2017 Non-targeted Adversarial Attack and Targeted Adversarial Attack competitions.
We introduce a self-supervised method for learning visual correspondence from unlabeled video. The main idea is to use cycle-consistency in time as free supervisory signal for learning visual representations from … We introduce a self-supervised method for learning visual correspondence from unlabeled video. The main idea is to use cycle-consistency in time as free supervisory signal for learning visual representations from scratch. At training time, our model learns a feature map representation to be useful for performing cycle-consistent tracking. At test time, we use the acquired representation to find nearest neighbors across space and time. We demonstrate the generalizability of the representation -- without finetuning -- across a range of visual correspondence tasks, including video object segmentation, keypoint tracking, and optical flow. Our approach outperforms previous self-supervised methods and performs competitively with strongly supervised methods.
Deep learning frameworks have often focused on either usability or speed, but not both. PyTorch is a machine learning library that shows that these two goals are in fact compatible: … Deep learning frameworks have often focused on either usability or speed, but not both. PyTorch is a machine learning library that shows that these two goals are in fact compatible: it was designed from first principles to support an imperative and Pythonic programming style that supports code as a model, makes debugging easy and is consistent with other popular scientific computing libraries, while remaining efficient and supporting hardware accelerators such as GPUs. In this paper, we detail the principles that drove the implementation of PyTorch and how they are reflected in its architecture. We emphasize that every aspect of PyTorch is a regular Python program under the full control of its user. We also explain how the careful and pragmatic implementation of the key components of its runtime enables them to work together to achieve compelling performance. We demonstrate the efficiency of individual subsystems, as well as the overall speed of PyTorch on several commonly used benchmarks.
To facilitate the analysis of human actions, interactions and emotions, we compute a 3D model of human body pose, hand pose, and facial expression from a single monocular image. To … To facilitate the analysis of human actions, interactions and emotions, we compute a 3D model of human body pose, hand pose, and facial expression from a single monocular image. To achieve this, we use thousands of 3D scans to train a new, unified, 3D model of the human body, SMPL-X, that extends SMPL with fully articulated hands and an expressive face. Learning to regress the parameters of SMPL-X directly from images is challenging without paired images and 3D ground truth. Consequently, we follow the approach of SMPLify, which estimates 2D features and then optimizes model parameters to fit the features. We improve on SMPLify in several significant ways: (1) we detect 2D features corresponding to the face, hands, and feet and fit the full SMPL-X model to these; (2) we train a new neural network pose prior using a large MoCap dataset; (3) we define a new interpenetration penalty that is both fast and accurate; (4) we automatically detect gender and the appropriate body models (male, female, or neutral); (5) our PyTorch implementation achieves a speedup of more than 8x over Chumpy. We use the new method, SMPLify-X, to fit SMPL-X to both controlled images and images in the wild. We evaluate 3D accuracy on a new curated dataset comprising 100 images with pseudo ground-truth. This is a step towards automatic expressive human capture from monocular RGB data. The models, code, and data are available for research purposes at https://smpl-x.is.tue.mpg.de.
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has … We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.
Adversarial examples are perturbed inputs designed to fool machine learning models. Adversarial training injects such examples into training data to increase robustness. To scale this technique to large datasets, perturbations … Adversarial examples are perturbed inputs designed to fool machine learning models. Adversarial training injects such examples into training data to increase robustness. To scale this technique to large datasets, perturbations are crafted using fast single-step methods that maximize a linear approximation of the model's loss. We show that this form of adversarial training converges to a degenerate global minimum, wherein small curvature artifacts near the data points obfuscate a linear approximation of the loss. The model thus learns to generate weak perturbations, rather than defend against strong ones. As a result, we find that adversarial training remains vulnerable to black-box attacks, where we transfer perturbations computed on undefended models, as well as to a powerful novel single-step attack that escapes the non-smooth vicinity of the input data via a small random step. We further introduce Ensemble Adversarial Training, a technique that augments training data with perturbations transferred from other models. On ImageNet, Ensemble Adversarial Training yields models with strong robustness to black-box attacks. In particular, our most robust model won the first round of the NIPS 2017 competition on Defenses against Adversarial Attacks. However, subsequent work found that more elaborate black-box attacks could significantly enhance transferability and reduce the accuracy of our models.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally … With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose Occupancy Networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.
When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover short-comings. Existing benchmarks for visual question … When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover short-comings. Existing benchmarks for visual question answering can help, but have strong biases that models can exploit to correctly answer questions without reasoning. They also conflate multiple sources of error, making it hard to pinpoint model weaknesses. We present a diagnostic dataset that tests a range of visual reasoning abilities. It contains minimal biases and has detailed annotations describing the kind of reasoning each question requires. We use this dataset to analyze a variety of modern visual reasoning systems, providing novel insights into their abilities and limitations.
The FlowNet demonstrated that optical flow estimation can be cast as a learning problem. However, the state of the art with regard to the quality of the flow has still … The FlowNet demonstrated that optical flow estimation can be cast as a learning problem. However, the state of the art with regard to the quality of the flow has still been defined by traditional methods. Particularly on small displacements and real-world data, FlowNet cannot compete with variational methods. In this paper, we advance the concept of end-to-end learning of optical flow and make it work really well. The large improvements in quality and speed are caused by three major contributions: first, we focus on the training data and show that the schedule of presenting data during training is very important. Second, we develop a stacked architecture that includes warping of the second image with intermediate optical flow. Third, we elaborate on small displacements by introducing a subnetwork specializing on small motions. FlowNet 2.0 is only marginally slower than the original FlowNet but decreases the estimation error by more than 50%. It performs on par with state-of-the-art methods, while running at interactive frame rates. Moreover, we present faster variants that allow optical flow computation at up to 140fps with accuracy matching the original FlowNet.
Due to the importance of zero-shot learning, the number of proposed approaches has increased steadily recently. We argue that it is time to take a step back and to analyze … Due to the importance of zero-shot learning, the number of proposed approaches has increased steadily recently. We argue that it is time to take a step back and to analyze the status quo of the area. The purpose of this paper is three-fold. First, given the fact that there is no agreed upon zero-shot learning benchmark, we first define a new benchmark by unifying both the evaluation protocols and data splits. This is an important contribution as published results are often not comparable and sometimes even flawed due to, e.g. pre-training on zero-shot test classes. Second, we compare and analyze a significant number of the state-of-the-art methods in depth, both in the classic zero-shot setting but also in the more realistic generalized zero-shot setting. Finally, we discuss limitations of the current status of the area which can be taken as a basis for advancing it.
In this work we explore recent advances in Recurrent Neural Networks for large scale Language Modeling, a task central to language understanding. We extend current models to deal with two … In this work we explore recent advances in Recurrent Neural Networks for large scale Language Modeling, a task central to language understanding. We extend current models to deal with two key challenges present in this task: corpora and vocabulary sizes, and complex, long term structure of language. We perform an exhaustive study on techniques such as character Convolutional Neural Networks or Long-Short Term Memory, on the One Billion Word Benchmark. Our best single model significantly improves state-of-the-art perplexity from 51.3 down to 30.0 (whilst reducing the number of parameters by a factor of 20), while an ensemble of models sets a new record by improving perplexity from 41.0 down to 23.7. We also release these models for the NLP and ML community to study and improve upon.
We present the Moments in Time Dataset, a large-scale human-annotated collection of one million short videos corresponding to dynamic events unfolding within three seconds. Modeling the spatial-audio-temporal dynamics even for … We present the Moments in Time Dataset, a large-scale human-annotated collection of one million short videos corresponding to dynamic events unfolding within three seconds. Modeling the spatial-audio-temporal dynamics even for actions occurring in 3 second videos poses many challenges: meaningful events do not include only people, but also objects, animals, and natural phenomena; visual and auditory events can be symmetrical in time ("opening" is "closing" in reverse), and either transient or sustained. We describe the annotation process of our dataset (each video is tagged with one action or activity label among 339 different classes), analyze its scale and diversity in comparison to other large-scale video datasets for action recognition, and report results of several baseline models addressing separately, and jointly, three modalities: spatial, temporal and auditory. The Moments in Time dataset, designed to have a large coverage and diversity of events in both visual and auditory modalities, can serve as a new challenge to develop models that scale to the level of complexity and abstract reasoning that a human processes on a daily basis.
Though deep neural networks have achieved significant progress on various tasks, often enhanced by model ensemble, existing high-performance models can be vulnerable to adversarial attacks. Many efforts have been devoted … Though deep neural networks have achieved significant progress on various tasks, often enhanced by model ensemble, existing high-performance models can be vulnerable to adversarial attacks. Many efforts have been devoted to enhancing the robustness of individual networks and then constructing a straightforward ensemble, e.g., by directly averaging the outputs, which ignores the interaction among networks. This paper presents a new method that explores the interaction among individual networks to improve robustness for ensemble models. Technically, we define a new notion of ensemble diversity in the adversarial setting as the diversity among non-maximal predictions of individual members, and present an adaptive diversity promoting (ADP) regularizer to encourage the diversity, which leads to globally better robustness for the ensemble by making adversarial examples difficult to transfer among individual members. Our method is computationally efficient and compatible with the defense methods acting on individual networks. Empirical results on various datasets verify that our method can improve adversarial robustness while maintaining state-of-the-art accuracy on normal examples.
The purpose of this study is to determine whether current video datasets have sufficient data for training very deep convolutional neural networks (CNNs) with spatio-temporal three-dimensional (3D) kernels. Recently, the … The purpose of this study is to determine whether current video datasets have sufficient data for training very deep convolutional neural networks (CNNs) with spatio-temporal three-dimensional (3D) kernels. Recently, the performance levels of 3D CNNs in the field of action recognition have improved significantly. However, to date, conventional research has only explored relatively shallow 3D architectures. We examine the architectures of various 3D CNNs from relatively shallow to very deep ones on current video datasets. Based on the results of those experiments, the following conclusions could be obtained: (i) ResNet-18 training resulted in significant overfitting for UCF-101, HMDB-51, and ActivityNet but not for Kinetics. (ii) The Kinetics dataset has sufficient data for training of deep 3D CNNs, and enables training of up to 152 ResNets layers, interestingly similar to 2D ResNets on ImageNet. ResNeXt-101 achieved 78.4% average accuracy on the Kinetics test set. (iii) Kinetics pretrained simple 3D architectures outperforms complex 2D architectures, and the pretrained ResNeXt-101 achieved 94.5% and 70.2% on UCF-101 and HMDB-51, respectively. The use of 2D CNNs trained on ImageNet has produced significant progress in various tasks in image. We believe that using deep 3D CNNs together with Kinetics will retrace the successful history of 2D CNNs and ImageNet, and stimulate advances in computer vision for videos. The codes and pretrained models used in this study are publicly available <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> .
This volume contains the papers accepted to the 25th International Conference on Machine Learning (ICML 2008). ICML is the annual conference of the International Machine Learning Society (IMLS), and provides … This volume contains the papers accepted to the 25th International Conference on Machine Learning (ICML 2008). ICML is the annual conference of the International Machine Learning Society (IMLS), and provides a venue for the presentation and discussion of current research in the field of machine learning. These proceedings can also be found online at http://www.machinelearning.org. This year, ICML was held July 5..9 at the University of Helsinki, in Helsinki, Finland, and was co-located with COLT-2008, the 21st Annual Conference on Computational Learning Theory, and UAI-2008, the 24th Conference on Uncertainty in Artificial Intelligence. No less than 583 papers were submitted to ICML 2008. There was a very thorough review process, in which each paper was reviewed double-blind by three program committee (PC) members. Authors were able to respond to the initial reviews, and the PC members could then modify their reviews based on online discussions and the content of this author response. There were two discussion periods led by the senior program committee (SPC), one just before and one after the submission of author responses. At the end of the second discussion period, the SPC members gave their recommendations and provided a summary review for each of their papers. Some papers were checked by the SPCs to ensure that reviewer comments had been addressed. Apart from the length restrictions on papers and the compressed time frame, the review process for ICML resembles that of many journal publications. In total, 158 papers were accepted to ICML this year, including a small number of papers which were initially conditionally accepted, yielding an overall acceptance rate of 27%. ICML authors presented their papers both orally and in a poster session, allowing time for detailed discussions with any interested attendees of the conference. Each day of the main conference included one or two invited talks by a prominent researcher. We were very fortunate to be able to host Michael Collins, of the Massachusetts Institute of Technology; Andrew Ng, of Stanford University; and Luc De Raedt, of the Katholieke Universiteit Leuven, and John Winn of Microsoft Research Cambridge. In addition to the technical talks, ICML- 2008 also included nine tutorials held before the main conference, presented by Alex Smola, Arthur Gretton, and Kenji Fukumizu; Bert Kappen and Marc Toussaint; Neil Lawrence; MartinWainwright; Ralf Herbrich and Thore Graepel; Andreas Krause and Carlos Guestrin; Shai Shalev-Shwartz and Yoram Singer; Rob Fergus; and Matthias Seeger. This year our workshops were organized jointly with COLT and UAI as part of a special overlap day, consisting of eleven workshops selected and arranged collaboratively by the respective workshop chairs of the three conferences. This day provided a rich opportunity for interaction among the attendees of the conferences. This year, ICML enlarged its award offerings to match several other well-established conferences. We hope these will help build our community, celebrate our advances, and encourage applications and long-term thinking. In addition to our previously traditional Paper and Student Paper awards, we also gave awards for Application Paper and 10-year Best Paper (for the best paper of ICML 1998, optionally given in conjunction with a co-located conference). We thank the Machine Learning Journal for sponsoring some of our paper awards.
Deep learning takes advantage of large datasets and computationally efficient training algorithms to outperform other approaches at various machine learning tasks. However, imperfections in the training phase of deep neural … Deep learning takes advantage of large datasets and computationally efficient training algorithms to outperform other approaches at various machine learning tasks. However, imperfections in the training phase of deep neural networks make them vulnerable to adversarial samples: inputs crafted by adversaries with the intent of causing deep neural networks to misclassify. In this work, we formalize the space of adversaries against deep neural networks (DNNs) and introduce a novel class of algorithms to craft adversarial samples based on a precise understanding of the mapping between inputs and outputs of DNNs. In an application to computer vision, we show that our algorithms can reliably produce samples correctly classified by human subjects but misclassified in specific targets by a DNN with a 97% adversarial success rate while only modifying on average 4.02% of the input features per sample. We then evaluate the vulnerability of different sample classes to adversarial perturbations by defining a hardness measure. Finally, we describe preliminary work outlining defenses against adversarial samples by defining a predictive measure of distance between a benign input and a target classification.
We capitalize on large amounts of unlabeled video in order to learn a model of scene dynamics for both video recognition tasks (e.g. action classification) and video generation tasks (e.g. … We capitalize on large amounts of unlabeled video in order to learn a model of scene dynamics for both video recognition tasks (e.g. action classification) and video generation tasks (e.g. future prediction). We propose a generative adversarial network for video with a spatio-temporal convolutional architecture that untangles the scene's foreground from the background. Experiments suggest this model can generate tiny videos up to a second at full frame rate better than simple baselines, and we show its utility at predicting plausible futures of static images. Moreover, experiments and visualizations show the model internally learns useful features for recognizing actions with minimal supervision, suggesting scene dynamics are a promising signal for representation learning. We believe generative video models can impact many applications in video understanding and simulation.
A major stumbling block to progress in understanding basic human interactions, such as getting out of bed or opening a refrigerator, is lack of good training data. Most past efforts … A major stumbling block to progress in understanding basic human interactions, such as getting out of bed or opening a refrigerator, is lack of good training data. Most past efforts have gathered this data explicitly: starting with a laundry list of action labels, and then querying search engines for videos tagged with each label. In this work, we do the reverse and search implicitly: we start with a large collection of interaction-rich video data and then annotate and analyze it. We use Internet Lifestyle Vlogs as the source of surprisingly large and diverse interaction data. We show that by collecting the data first, we are able to achieve greater scale and far greater diversity in terms of actions and actors. Additionally, our data exposes biases built into common explicitly gathered data. We make sense of our data by analyzing the central component of interaction - hands. We benchmark two tasks: identifying semantic object contact at the video level and non-semantic contact state at the frame level. We additionally demonstrate future prediction of hands.
We introduce UCF101 which is currently the largest dataset of human actions. It consists of 101 action classes, over 13k clips and 27 hours of video data. The database consists … We introduce UCF101 which is currently the largest dataset of human actions. It consists of 101 action classes, over 13k clips and 27 hours of video data. The database consists of realistic user uploaded videos containing camera motion and cluttered background. Additionally, we provide baseline action recognition results on this new dataset using standard bag of words approach with overall performance of 44.5%. To the best of our knowledge, UCF101 is currently the most challenging dataset of actions due to its large number of classes, large number of clips and also unconstrained nature of such clips.
Neural networks trained on datasets such as ImageNet have led to major advances in visual object classification. One obstacle that prevents networks from reasoning more deeply about complex scenes and … Neural networks trained on datasets such as ImageNet have led to major advances in visual object classification. One obstacle that prevents networks from reasoning more deeply about complex scenes and situations, and from integrating visual knowledge with natural language, like humans do, is their lack of common sense knowledge about the physical world. Videos, unlike still images, contain a wealth of detailed information about the physical world. However, most labelled video datasets represent high-level concepts rather than detailed physical aspects about actions and scenes. In this work, we describe our ongoing collection of the "something-something" database of video prediction tasks whose solutions require a common sense understanding of the depicted situation. The database currently contains more than 100,000 videos across 174 classes, which are defined as caption-templates. We also describe the challenges in crowd-sourcing this data at scale.