Javier Antorán

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Efficient and Unbiased Sampling of Boltzmann Distributions via Consistency Models 2024 Z. W. Fan
Jiajun He
Laurence I. Midgley
Javier Antorán
José Miguel Hernández-Lobato
+ PDF Chat Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes 2024 Jihao Andreas Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
+ PDF Chat Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks 2024 Javier Antorán
+ PDF Chat A Generative Model of Symmetry Transformations 2024 James Urquhart Allingham
Bruno Mlodozeniec
Shreyas Padhy
Javier Antorán
David Krueger
Richard E. Turner
Eric Nalisnick
José Miguel Hernández-Lobato
+ Image Reconstruction via Deep Image Prior Subspaces 2023 Riccardo Barbano
Javier Antorán
Johannes Leuschner
José Miguel Hernández-Lobato
Željko Kereta
Bangti Jin
+ Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent 2023 Jihao Andreas Lin
Javier Antorán
Shreyas Padhy
David M. Janz
José Miguel Hernández-Lobato
Alexander Terenin
+ Online Laplace Model Selection Revisited 2023 Jihao Andreas Lin
Javier Antorán
José Miguel Hernández-Lobato
+ SE(3) Equivariant Augmented Coupling Flows 2023 Laurence I. Midgley
Vincent Stimper
Javier Antorán
Émile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
+ Stochastic Gradient Descent for Gaussian Processes Done Right 2023 Jihao Andreas Lin
Shreyas Padhy
Javier Antorán
Austin Tripp
Alexander Terenin
Csaba Szepesvári
José Miguel Hernández-Lobato
David M. Janz
+ Deep End-to-end Causal Inference 2022 Tomas Geffner
Javier Antorán
Adam S. Foster
Wenbo Gong
Chao Ma
Emre Kıcıman
Amit Sharma
Angus Lamb
Martin Kukla
Nick Pawlowski
+ Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior 2022 Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
+ Adapting the Linearised Laplace Model Evidence for Modern Deep Learning 2022 Javier Antorán
David M. Janz
James Urquhart Allingham
Erik Daxberger
Riccardo Barbano
Eric Nalisnick
José Miguel Hernández-Lobato
+ Bayesian Experimental Design for Computed Tomography with the Linearised Deep Image Prior 2022 Riccardo Barbano
Johannes Leuschner
Javier Antorán
Bangti Jin
José Miguel Hernández-Lobato
+ Sampling-based inference for large linear models, with application to linearised Laplace 2022 Javier Antorán
Shreyas Padhy
Riccardo Barbano
Eric Nalisnick
David M. Janz
José Miguel Hernández-Lobato
+ PDF Chat Addressing Bias in Active Learning with Depth Uncertainty Networks... or Not 2021 Chelsea Murray
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
+ Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty 2021 Umang Bhatt
Javier Antorán
Yunfeng Zhang
Q. Vera Liao
Prasanna Sattigeri
Riccardo Fogliato
Gabrielle Gauthier Melançon
Ranganath Krishnan
Jason Stanley
Omesh Tickoo
+ Addressing Bias in Active Learning with Depth Uncertainty Networks... or Not 2021 Chelsea Murray
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
+ Depth Uncertainty Networks for Active Learning 2021 Chelsea Murray
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
+ Depth Uncertainty in Neural Networks 2020 Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
+ Variational Depth Search in ResNets. 2020 Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
+ Getting a CLUE: A Method for Explaining Uncertainty Estimates 2020 Javier Antorán
Umang Bhatt
Tameem Adel
Adrian Weller
José Miguel Hernández-Lobato
+ Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty 2020 Umang Bhatt
Yunfeng Zhang
Javier Antorán
Q. Vera Liao
Prasanna Sattigeri
Riccardo Fogliato
Gabrielle Gauthier Melançon
Ranganath Krishnan
Jason Stanley
Omesh Tickoo
+ Bayesian Deep Learning via Subnetwork Inference 2020 Erik Daxberger
Eric Nalisnick
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
+ Depth Uncertainty in Neural Networks 2020 Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
+ Variational Depth Search in ResNets 2020 Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
+ PDF Chat Disentangling and Learning Robust Representations with Natural Clustering 2019 Javier Antorán
Antonio Miguel
+ Disentangling in Variational Autoencoders with Natural Clustering. 2019 Javier Antorán
Antonio Miguel
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Towards A Rigorous Science of Interpretable Machine Learning 2017 Finale Doshi‐Velez
Been Kim
3
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
3
+ Explainable machine learning in deployment 2020 Umang Bhatt
Alice Xiang
Shubham Sharma
Adrian Weller
Ankur Taly
Yunhan Jia
Joydeep Ghosh
Ruchir Puri
José M. F. Moura
Peter Eckersley
3
+ Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles 2016 Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
3
+ Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms 2017 Xiao Han
Kashif Rasul
Roland Vollgraf
3
+ Violin Plots: A Box Plot-Density Trace Synergism 1998 Jerry L. Hintze
Ray D. Nelson
2
+ PDF Chat Model Cards for Model Reporting 2019 Margaret Mitchell
Simone Wu
Andrew Zaldivar
Parker Barnes
Lucy Vasserman
Ben Hutchinson
Elena Spitzer
Inioluwa Deborah Raji
Timnit Gebru
2
+ PDF Chat Visual Reasoning Strategies for Effect Size Judgments and Decisions 2020 Alex Kale
Matthew Kay
Jessica Hullman
2
+ PDF Chat Frequentist and Bayesian approaches to data analysis: Evaluation and estimation 2019 Jolynn Pek
Trisha Van Zandt
2
+ Practical Deep Learning with Bayesian Principles 2019 Kazuki Osawa
Siddharth Swaroop
Mohammad Emtiyaz Khan
Anirudh Jain
Runa Eschenhagen
Richard E. Turner
Rio Yokota
2
+ Fairness Evaluation in Presence of Biased Noisy Labels 2020 Riccardo Fogliato
Max G’Sell
Alexandra Chouldechova
2
+ PDF Chat Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making 2020 Yunfeng Zhang
Q. Vera Liao
Rachel Bellamy
2
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
2
+ Bayesian Deep Learning and a Probabilistic Perspective of Generalization 2020 Andrew Gordon Wilson
Pavel Izmailov
2
+ Stochastic Backpropagation and Approximate Inference in Deep Generative Models 2014 Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
2
+ Semi-Supervised Learning with Deep Generative Models 2014 Diederik P. Kingma
Danilo Jimenez Rezende
Shakir Mohamed
Max Welling
2
+ Weight Uncertainty in Neural Networks 2015 Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
2
+ Neural Discrete Representation Learning 2017 Aäron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
2
+ Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift 2019 Yaniv Ovadia
Emily Fertig
Jie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
2
+ Conceptual difficulties when interpreting histograms: A review 2019 Lonneke Boels
Arthur Bakker
Wim Van Dooren
Paul Drijvers
2
+ PDF Chat FactSheets: Increasing trust in AI services through supplier's declarations of conformity 2019 Matthew Arnold
Rachel Bellamy
Michael Hind
Stephanie Houde
Sameep Mehta
Aleksandra Mojsilović
Ravi Nair
Karthikeyan Natesan Ramamurthy
Adriana Olteanu
David Piorkowski
2
+ Functional Variational Bayesian Neural Networks 2019 Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger Grosse
2
+ PDF Chat Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved 2019 Jiahao Chen
Nathan Kallus
Xiaojie Mao
Geoffry Svacha
Madeleine Udell
2
+ Predictive Entropy Search for Efficient Global Optimization of Black-box Functions 2014 José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
2
+ Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review 2013 Minge Xie
Kesar Singh
2
+ Disentangling by Factorising 2018 Hyunjik Kim
Andriy Mnih
2
+ PDF Chat Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering 2015 Jessica Hullman
Paul Resnick
Eytan Adar
2
+ PDF Chat Identity Mappings in Deep Residual Networks 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ The Bagplot: A Bivariate Boxplot 1999 Peter J. Rousseeuw
Ida Ruts
John W. Tukey
2
+ Bayesian Active Learning for Classification and Preference Learning 2011 Neil Houlsby
Ferenc Huszár
Zoubin Ghahramani
Máté Lengyel
2
+ PDF Chat Theoretical Considerations and Development of a Questionnaire to Measure Trust in Automation 2018 Moritz Körber
2
+ Understanding disentangling in $β$-VAE 2018 Christopher Burgess
Irina Higgins
Arka Pal
Löıc Matthey
Nick Watters
Guillaume Desjardins
Alexander Lerchner
2
+ Recent Advances in Autoencoder-Based Representation Learning 2018 Michael Tschannen
Olivier Bachem
Mario Lučić
2
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
2
+ PDF Chat To Predict and Serve? 2016 Kristian Lum
William Isaac
2
+ Conditional Generative Adversarial Nets 2014 Mehdi Mirza
Simon Osindero
2
+ Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks 2017 Lars Mescheder
Sebastian Nowozin
Andreas Geiger
2
+ Variational continual learning 2017 Cuong V. Nguyen
Yingzhen Li
Thang D. Bui
Richard E. Turner
2
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
2
+ Bayesian Learning of Neural Network Architectures 2019 Georgi Dikov
Justin Bayer
2
+ PDF Chat The effects of communicating uncertainty on public trust in facts and numbers 2020 Anne Marthe van der Bles
Sander van der Linden
Alexandra L. J. Freeman
David Spiegelhalter
2
+ A Simple Baseline for Bayesian Uncertainty in Deep Learning 2019 Wesley J. Maddox
Pavel Izmailov
Timur Garipov
Dmitry Vetrov
Andrew Gordon Wilson
2
+ Successor Uncertainties: exploration and uncertainty in temporal difference learning 2019 David M. Janz
Jiri Hron
P. Mazur
Katja Hofmann
José Miguel Hernández-Lobato
Sebastian Tschiatschek
2
+ SCAN: Learning Abstract Hierarchical Compositional Visual Concepts 2017 Irina Higgins
Nicolas Sonnerat
Löıc Matthey
Arka Pal
Christopher Burgess
Matthew Botvinick
Demis Hassabis
Alexander Lerchner
2
+ PDF Chat Representation Learning: A Review and New Perspectives 2013 Yoshua Bengio
Aaron Courville
P. M. Durai Raj Vincent
2
+ Introduction to the Theory of Statistics, 3rd ed. 1974 Gordon V. Kass
Alexander M. Mood
Franklin A. Graybill
Duane C. Boes
1
+ Improving predictive inference under covariate shift by weighting the log-likelihood function 2000 Hidetoshi Shimodaira
1
+ Overpruning in Variational Bayesian Neural Networks 2018 Brian L. Trippe
Richard E. Turner
1
+ Bayesian Learning via Stochastic Gradient Langevin Dynamics 2011 Max Welling
Yee Whye Teh
1