Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Javier Antorán
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Efficient and Unbiased Sampling of Boltzmann Distributions via Consistency Models
2024
Z. W. Fan
Jiajun He
Laurence I. Midgley
Javier Antorán
José Miguel Hernández-Lobato
+
PDF
Chat
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
2024
Jihao Andreas Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
+
PDF
Chat
Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks
2024
Javier Antorán
+
PDF
Chat
A Generative Model of Symmetry Transformations
2024
James Urquhart Allingham
Bruno Mlodozeniec
Shreyas Padhy
Javier Antorán
David Krueger
Richard E. Turner
Eric Nalisnick
José Miguel Hernández-Lobato
+
Image Reconstruction via Deep Image Prior Subspaces
2023
Riccardo Barbano
Javier Antorán
Johannes Leuschner
José Miguel Hernández-Lobato
Željko Kereta
Bangti Jin
+
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
2023
Jihao Andreas Lin
Javier Antorán
Shreyas Padhy
David M. Janz
José Miguel Hernández-Lobato
Alexander Terenin
+
Online Laplace Model Selection Revisited
2023
Jihao Andreas Lin
Javier Antorán
José Miguel Hernández-Lobato
+
SE(3) Equivariant Augmented Coupling Flows
2023
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Émile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
+
Stochastic Gradient Descent for Gaussian Processes Done Right
2023
Jihao Andreas Lin
Shreyas Padhy
Javier Antorán
Austin Tripp
Alexander Terenin
Csaba Szepesvári
José Miguel Hernández-Lobato
David M. Janz
+
Deep End-to-end Causal Inference
2022
Tomas Geffner
Javier Antorán
Adam S. Foster
Wenbo Gong
Chao Ma
Emre Kıcıman
Amit Sharma
Angus Lamb
Martin Kukla
Nick Pawlowski
+
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
2022
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
+
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
2022
Javier Antorán
David M. Janz
James Urquhart Allingham
Erik Daxberger
Riccardo Barbano
Eric Nalisnick
José Miguel Hernández-Lobato
+
Bayesian Experimental Design for Computed Tomography with the Linearised Deep Image Prior
2022
Riccardo Barbano
Johannes Leuschner
Javier Antorán
Bangti Jin
José Miguel Hernández-Lobato
+
Sampling-based inference for large linear models, with application to linearised Laplace
2022
Javier Antorán
Shreyas Padhy
Riccardo Barbano
Eric Nalisnick
David M. Janz
José Miguel Hernández-Lobato
+
PDF
Chat
Addressing Bias in Active Learning with Depth Uncertainty Networks... or Not
2021
Chelsea Murray
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
+
Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty
2021
Umang Bhatt
Javier Antorán
Yunfeng Zhang
Q. Vera Liao
Prasanna Sattigeri
Riccardo Fogliato
Gabrielle Gauthier Melançon
Ranganath Krishnan
Jason Stanley
Omesh Tickoo
+
Addressing Bias in Active Learning with Depth Uncertainty Networks... or Not
2021
Chelsea Murray
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
+
Depth Uncertainty Networks for Active Learning
2021
Chelsea Murray
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
+
Depth Uncertainty in Neural Networks
2020
Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
+
Variational Depth Search in ResNets.
2020
Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
+
Getting a CLUE: A Method for Explaining Uncertainty Estimates
2020
Javier Antorán
Umang Bhatt
Tameem Adel
Adrian Weller
José Miguel Hernández-Lobato
+
Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty
2020
Umang Bhatt
Yunfeng Zhang
Javier Antorán
Q. Vera Liao
Prasanna Sattigeri
Riccardo Fogliato
Gabrielle Gauthier Melançon
Ranganath Krishnan
Jason Stanley
Omesh Tickoo
+
Bayesian Deep Learning via Subnetwork Inference
2020
Erik Daxberger
Eric Nalisnick
James Urquhart Allingham
Javier Antorán
José Miguel Hernández-Lobato
+
Depth Uncertainty in Neural Networks
2020
Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
+
Variational Depth Search in ResNets
2020
Javier Antorán
James Urquhart Allingham
José Miguel Hernández-Lobato
+
PDF
Chat
Disentangling and Learning Robust Representations with Natural Clustering
2019
Javier Antorán
Antonio Miguel
+
Disentangling in Variational Autoencoders with Natural Clustering.
2019
Javier Antorán
Antonio Miguel
Common Coauthors
Coauthor
Papers Together
José Miguel Hernández-Lobato
21
James Urquhart Allingham
10
Riccardo Barbano
5
Shreyas Padhy
5
Jihao Andreas Lin
4
David M. Janz
4
Eric Nalisnick
4
Adrian Weller
3
Umang Bhatt
3
Johannes Leuschner
3
Bangti Jin
3
Omesh Tickoo
2
Rumi Chunara
2
Riccardo Fogliato
2
Q. Vera Liao
2
Lama Nachman
2
Ranganath Krishnan
2
Alice Xiang
2
Alexander Terenin
2
Chelsea Murray
2
Laurence I. Midgley
2
Bruno Mlodozeniec
2
Prasanna Sattigeri
2
Gabrielle Gauthier Melançon
2
Erik Daxberger
2
Yunfeng Zhang
2
Antonio Miguel
2
Jason Stanley
2
Wenbo Gong
1
Adam S. Foster
1
Vincent Stimper
1
Csaba Szepesvári
1
Richard E. Turner
1
Chao Ma
1
Željko Kereta
1
David Krueger
1
Miltiadis Allamanis
1
Angus Lamb
1
Madhulika Srikumar
1
Chelsea Murray
1
Tomas Geffner
1
Austin Tripp
1
Z. W. Fan
1
Martin Kukla
1
Nick Pawlowski
1
Emre Kıcıman
1
Bernhard Schölkopf
1
Cheng Zhang
1
Émile Mathieu
1
Tameem Adel
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Towards A Rigorous Science of Interpretable Machine Learning
2017
Finale Doshi‐Velez
Been Kim
3
+
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
2015
Yarin Gal
Zoubin Ghahramani
3
+
Explainable machine learning in deployment
2020
Umang Bhatt
Alice Xiang
Shubham Sharma
Adrian Weller
Ankur Taly
Yunhan Jia
Joydeep Ghosh
Ruchir Puri
José M. F. Moura
Peter Eckersley
3
+
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
3
+
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
2017
Xiao Han
Kashif Rasul
Roland Vollgraf
3
+
Violin Plots: A Box Plot-Density Trace Synergism
1998
Jerry L. Hintze
Ray D. Nelson
2
+
PDF
Chat
Model Cards for Model Reporting
2019
Margaret Mitchell
Simone Wu
Andrew Zaldivar
Parker Barnes
Lucy Vasserman
Ben Hutchinson
Elena Spitzer
Inioluwa Deborah Raji
Timnit Gebru
2
+
PDF
Chat
Visual Reasoning Strategies for Effect Size Judgments and Decisions
2020
Alex Kale
Matthew Kay
Jessica Hullman
2
+
PDF
Chat
Frequentist and Bayesian approaches to data analysis: Evaluation and estimation
2019
Jolynn Pek
Trisha Van Zandt
2
+
Practical Deep Learning with Bayesian Principles
2019
Kazuki Osawa
Siddharth Swaroop
Mohammad Emtiyaz Khan
Anirudh Jain
Runa Eschenhagen
Richard E. Turner
Rio Yokota
2
+
Fairness Evaluation in Presence of Biased Noisy Labels
2020
Riccardo Fogliato
Max G’Sell
Alexandra Chouldechova
2
+
PDF
Chat
Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making
2020
Yunfeng Zhang
Q. Vera Liao
Rachel Bellamy
2
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
2015
Sergey Ioffe
Christian Szegedy
2
+
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
2020
Andrew Gordon Wilson
Pavel Izmailov
2
+
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
2014
Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
2
+
Semi-Supervised Learning with Deep Generative Models
2014
Diederik P. Kingma
Danilo Jimenez Rezende
Shakir Mohamed
Max Welling
2
+
Weight Uncertainty in Neural Networks
2015
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
2
+
Neural Discrete Representation Learning
2017
Aäron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
2
+
Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift
2019
Yaniv Ovadia
Emily Fertig
Jie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
2
+
Conceptual difficulties when interpreting histograms: A review
2019
Lonneke Boels
Arthur Bakker
Wim Van Dooren
Paul Drijvers
2
+
PDF
Chat
FactSheets: Increasing trust in AI services through supplier's declarations of conformity
2019
Matthew Arnold
Rachel Bellamy
Michael Hind
Stephanie Houde
Sameep Mehta
Aleksandra Mojsilović
Ravi Nair
Karthikeyan Natesan Ramamurthy
Adriana Olteanu
David Piorkowski
2
+
Functional Variational Bayesian Neural Networks
2019
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger Grosse
2
+
PDF
Chat
Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved
2019
Jiahao Chen
Nathan Kallus
Xiaojie Mao
Geoffry Svacha
Madeleine Udell
2
+
Predictive Entropy Search for Efficient Global Optimization of Black-box Functions
2014
José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
2
+
Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review
2013
Minge Xie
Kesar Singh
2
+
Disentangling by Factorising
2018
Hyunjik Kim
Andriy Mnih
2
+
PDF
Chat
Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering
2015
Jessica Hullman
Paul Resnick
Eytan Adar
2
+
PDF
Chat
Identity Mappings in Deep Residual Networks
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+
The Bagplot: A Bivariate Boxplot
1999
Peter J. Rousseeuw
Ida Ruts
John W. Tukey
2
+
Bayesian Active Learning for Classification and Preference Learning
2011
Neil Houlsby
Ferenc Huszár
Zoubin Ghahramani
Máté Lengyel
2
+
PDF
Chat
Theoretical Considerations and Development of a Questionnaire to Measure Trust in Automation
2018
Moritz Körber
2
+
Understanding disentangling in $β$-VAE
2018
Christopher Burgess
Irina Higgins
Arka Pal
Löıc Matthey
Nick Watters
Guillaume Desjardins
Alexander Lerchner
2
+
Recent Advances in Autoencoder-Based Representation Learning
2018
Michael Tschannen
Olivier Bachem
Mario Lučić
2
+
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
2015
Sergey Ioffe
Christian Szegedy
2
+
PDF
Chat
To Predict and Serve?
2016
Kristian Lum
William Isaac
2
+
Conditional Generative Adversarial Nets
2014
Mehdi Mirza
Simon Osindero
2
+
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
2017
Lars Mescheder
Sebastian Nowozin
Andreas Geiger
2
+
Variational continual learning
2017
Cuong V. Nguyen
Yingzhen Li
Thang D. Bui
Richard E. Turner
2
+
Axiomatic Attribution for Deep Networks
2017
Mukund Sundararajan
Ankur Taly
Qiqi Yan
2
+
Bayesian Learning of Neural Network Architectures
2019
Georgi Dikov
Justin Bayer
2
+
PDF
Chat
The effects of communicating uncertainty on public trust in facts and numbers
2020
Anne Marthe van der Bles
Sander van der Linden
Alexandra L. J. Freeman
David Spiegelhalter
2
+
A Simple Baseline for Bayesian Uncertainty in Deep Learning
2019
Wesley J. Maddox
Pavel Izmailov
Timur Garipov
Dmitry Vetrov
Andrew Gordon Wilson
2
+
Successor Uncertainties: exploration and uncertainty in temporal difference learning
2019
David M. Janz
Jiri Hron
P. Mazur
Katja Hofmann
José Miguel Hernández-Lobato
Sebastian Tschiatschek
2
+
SCAN: Learning Abstract Hierarchical Compositional Visual Concepts
2017
Irina Higgins
Nicolas Sonnerat
Löıc Matthey
Arka Pal
Christopher Burgess
Matthew Botvinick
Demis Hassabis
Alexander Lerchner
2
+
PDF
Chat
Representation Learning: A Review and New Perspectives
2013
Yoshua Bengio
Aaron Courville
P. M. Durai Raj Vincent
2
+
Introduction to the Theory of Statistics, 3rd ed.
1974
Gordon V. Kass
Alexander M. Mood
Franklin A. Graybill
Duane C. Boes
1
+
Improving predictive inference under covariate shift by weighting the log-likelihood function
2000
Hidetoshi Shimodaira
1
+
Overpruning in Variational Bayesian Neural Networks
2018
Brian L. Trippe
Richard E. Turner
1
+
Bayesian Learning via Stochastic Gradient Langevin Dynamics
2011
Max Welling
Yee Whye Teh
1