Elia Bruè

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Fundamental groups and the Milnor conjecture 2025 Elia Bruè
Aaron Naber
Daniele Semola
+ PDF Chat Lower Ricci Curvature Bounds and the Orientability of Spaces 2024 Camillo Brena
Elia Brué
Alessandro Pigati
+ Stability of tori under lower sectional curvature 2024 Elia Bruè
Aaron Naber
Daniele Semola
+ Enhanced Dissipation for Two-Dimensional Hamiltonian Flows 2024 Elia Bruè
Michele Coti Zelati
Elio Marconi
+ Instability and nonuniqueness in mathematical fluid dynamics 2024 Elia Bruè
+ PDF Chat Flexibility of Two-Dimensional Euler Flows with Integrable Vorticity 2024 Elia Bruè
Maria Colombo
Anuj Kumar
+ PDF Chat Topological regularity and stability of noncollapsed spaces with Ricci curvature bounded below 2024 Elia Bruè
Alessandro Pigati
Daniele Semola
+ PDF Chat Sharp Nonuniqueness in the Transport Equation with Sobolev Velocity Field 2024 Elia Bruè
Maria Colombo
Anuj Kumar
+ Instability and Non-uniqueness for the 2D Euler Equations, after M. Vishik 2024 Dallas Albritton
Elia Bruè
Maria Colombo
Camillo De Lellis
Vikram Giri
Maximilian Janisch
Hyunju Kwon
+ 0.1 Idea of the proof 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ A.3 Proof of Theorem 3.4 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ 3.9 Proof of Proposition 3.17 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ B.4 Proof of Lemma 1.9 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ 3.5 ODE Lemmas 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ 2.3 Proof of Theorem 1.10: preliminary lemmas 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ 4.1 Proof of Proposition 4.2 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ 3.10 Proof of Lemma 3.19 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ 3.7 Proof of Proposition 3.15: Part I 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ A.4 Proof of Proposition A.4 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ 3.8 Proof of Proposition 3.15: Part II 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ 3.4 Overview of the proof of Theorem 3.12 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ 2.2 Proof of Theorem 2.4 and proof of Theorem 2.1(a) 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ 3.6 Proof of Proposition 3.13 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ 2.4 Proof of Theorem 1.10: conclusion 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ B.2 Proof of Theorem 0.3 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ B.3 Proof of Proposition 1.5 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ Instability and Non-uniqueness for the 2D Euler Equations, after M. Vishik 2024 Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
+ Lecture XVII: The Benamou-Brenier Formula 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture IV: Necessary and Sufficient Optimality Conditions 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture V: Existence of Optimal Maps and Applications 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture XI: Gradient Flows: An Introduction 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture XVIII: An Introduction to Otto’s Calculus 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture II: The Kantorovich Problem 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture XII: Gradient Flows: The Brézis-Komura Theorem 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture XIX: Heat Flow, Optimal Transport and Ricci Curvature 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture III: The Kantorovich–Rubinstein Duality 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture XIII: Examples of Gradient Flows in PDEs 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture VII: The Monge-Ampére Equation and Optimal Transport on Riemannian Manifolds 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture XVI: The Continuity Equation and the Hopf-Lax Semigroup 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture VI: A Proof of the Isoperimetric Inequality and Stability in Optimal Transport 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture X: Wasserstein Geodesics, Nonbranching and Curvature 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lectures on Optimal Transport 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture XV: Semicontinuity and Convexity of Energies in the Wasserstein Space 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture I: Preliminary Notions and the Monge Problem 2024 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ PDF Chat Gluing Non-unique Navier–Stokes Solutions 2023 Dallas Albritton
Elia Bruè
Maria Colombo
+ PDF Chat Nonuniqueness of Solutions to the Euler Equations with Vorticity in a Lorentz Space 2023 Elia Bruè
Maria Colombo
+ PDF Chat Onsager critical solutions of the forced Navier-Stokes equations 2023 Elia Bruè
Maria Colombo
Gianluca Crippa
Camillo De Lellis
Massimo Sorella
+ PDF Chat The metric measure boundary of spaces with Ricci curvature bounded below 2023 Elia Bruè
Andrea Mondino
Daniele Semola
+ PDF Chat Anomalous Dissipation for the Forced 3D Navier–Stokes Equations 2023 Elia Bruè
Camillo De Lellis
+ Fundamental Groups and the Milnor Conjecture 2023 Elia Bruè
Aaron Naber
Daniele Semola
+ Stability of Tori under Lower Sectional Curvature 2023 Elia Bruè
Aaron Naber
Daniele Semola
+ Non-uniqueness in law of Leray solutions to 3D forced stochastic Navier-Stokes equations 2023 Elia Bruè
Rui Jin
Yachun Li
Deng Zhang
+ Six dimensional counterexample to the Milnor Conjecture 2023 Elia Bruè
Aaron Naber
Daniele Semola
+ PDF Chat A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics II 2022 Elia Bruè
Mattia Calzi
Giovanni E. Comi
Giorgio Stefani
+ PDF Chat Constancy of the dimension in codimension one and locality of the unit normal on $\RCD(K,N)$ spaces 2022 Elia Bruè
Enrico Pasqualetto
Daniele Semola
+ PDF Chat Non-uniqueness of Leray solutions of the forced Navier-Stokes equations 2022 Dallas Albritton
Elia Bruè
Maria Colombo
+ PDF Chat On the existence of isoperimetric regions in manifolds with nonnegative Ricci curvature and Euclidean volume growth 2022 Gioacchino Antonelli
Elia Bruè
Mattia Fogagnolo
Marco Pozzetta
+ Rectifiability of the reduced boundary for sets of finite perimeter over $\operatorname{RCD}(K,N)$ spaces 2022 Elia Bruè
Enrico Pasqualetto
Daniele Semola
+ PDF Chat Boundary regularity and stability for spaces with Ricci bounded below 2022 Elia Bruè
Aaron Naber
Daniele Semola
+ The metric measure boundary of spaces with Ricci curvature bounded below 2022 Elia Bruè
Andrea Mondino
Daniele Semola
+ Anomalous dissipation for the forced 3D Navier-Stokes equations 2022 Elia Bruè
Camillo De Lellis
+ Gluing non-unique Navier-Stokes solutions 2022 Dallas Albritton
Elia Bruè
Maria Colombo
+ Enhanced dissipation for two-dimensional Hamiltonian flows 2022 Elia Bruè
Michele Coti Zelati
Elio Marconi
+ Onsager critical solutions of the forced Navier-Stokes equations 2022 Elia Bruè
Maria Colombo
Gianluca Crippa
Camillo De Lellis
Massimo Sorella
+ PDF Chat Sharp regularity estimates for solutions of the continuity equation drifted by Sobolev vector fields 2021 Elia Bruè
Quoc‐Hung Nguyen
+ PDF Chat Improved regularity estimates for Lagrangian flows on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si2.svg"><mml:mrow><mml:mo class="qopname">RCD</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mi>K</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> spaces 2021 Elia Bruè
Qin Deng
Daniele Semola
+ PDF Chat Rectifiability of RCD(K,N) spaces via δ-splitting maps 2021 Elia Bruè
Enrico Pasqualetto
Daniele Semola
+ PDF Chat Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves 2021 Elia Bruè
Maria Colombo
Camillo De Lellis
+ PDF Chat Advection Diffusion Equations with Sobolev Velocity Field 2021 Elia Bruè
Quoc‐Hung Nguyen
+ Improved regularity estimates for Lagrangian flows on $\text{RCD}(K,N)$ spaces 2021 Elia Bruè
Qin Deng
Daniele Semola
+ Lecture 17: The Benamou–Brenier Formula 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 1: Preliminary Notions and the Monge Problem 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 5: Existence of Optimal Maps and Applications 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 13: Examples of Gradient Flows in PDEs 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 2: The Kantorovich Problem 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 9: Analysis on Metric Spaces and the Dynamic Formulation of Optimal Transport 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 16: The Continuity Equation and the Hopf-Lax Semigroup 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 19: Heat Flow, Optimal Transport and Ricci Curvature 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 3: The Kantorovich–Rubinstein Duality 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 4: Necessary and Sufficient Optimality Conditions 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 8: The Metric Side of Optimal Transport 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 12: Gradient Flows: The Brézis-Komura Theorem 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 7: The Monge-Ampére Equation and Optimal Transport on Riemannian Manifolds 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 6: A Proof of the Isoperimetric Inequality and Stability in Optimal Transport 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 10: Wasserstein Geodesics, Nonbranching and Curvature 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 18: An Introduction to Otto’s Calculus 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 15: Semicontinuity and Convexity of Energies in the Wasserstein Space 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lecture 11: Gradient Flows: An Introduction 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ BV Functions and Sets of Finite Perimeter on Configuration Spaces 2021 Elia Bruè
Kohei Suzuki
+ Constancy of the dimension in codimension one and locality of the unit normal on $\mathrm{RCD}(K,N)$ spaces 2021 Elia Bruè
Enrico Pasqualetto
Daniele Semola
+ Lectures on Optimal Transport 2021 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Instability and nonuniqueness for the $2d$ Euler equations in vorticity form, after M. Vishik 2021 Dallas Albritton
Elia Bruè
Maria Colombo
Camillo De Lellis
Vikram Giri
Maximilian Janisch
Hyunju Kwon
+ Non-uniqueness of Leray solutions of the forced Navier-Stokes equations 2021 Dallas Albritton
Elia Bruè
Maria Colombo
+ Nonuniqueness of solutions to the Euler equations with vorticity in a Lorentz space 2021 Elia Bruè
Maria Colombo
+ PDF Chat Linear Lipschitz and C1 extension operators through random projection 2020 Elia Bruè
Simone Di Marino
Federico Stra
+ PDF Chat A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics II 2020 Elia Bruè
Mattia Calzi
Giovanni E. Comi
Giorgio Stefani
+ PDF Chat Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts 2020 Elia Bruè
Quoc‐Hung Nguyen
+ Rectifiability of RCD(K,N) spaces via $\delta$-splitting maps 2020 Elia Bruè
Enrico Pasqualetto
Daniele Semola
+ Boundary regularity and stability for spaces with Ricci bounded below 2020 Elia Bruè
Aaron Naber
Daniele Semola
+ Rectifiability of RCD(K,N) spaces via $δ$-splitting maps 2020 Elia Bruè
Enrico Pasqualetto
Daniele Semola
+ PDF Chat A maximal function characterisation of absolutely continuous measures and Sobolev functions 2019 Elia Bruè
Quoc‐Hung Nguyen
Giorgio Stefani
+ PDF Chat On the Sobolev space of functions with derivative of logarithmic order 2019 Elia Bruè
Quoc‐Hung Nguyen
+ Regularity of Lagrangian flows over RCD<sup>*</sup>(<i>K</i>, <i>N</i>) spaces 2019 Elia Bruè
Daniele Semola
+ Volume bounds for the quantitative singular strata of non collapsed RCD metric measure spaces 2019 Gioacchino Antonelli
Elia Bruè
Daniele Semola
+ PDF Chat Rigidity of the 1-Bakry–Émery Inequality and Sets of Finite Perimeter in RCD Spaces 2019 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ PDF Chat Constancy of the Dimension for RCD(<i>K</i>,<i>N</i>) Spaces via Regularity of Lagrangian Flows 2019 Elia Bruè
Daniele Semola
+ Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts 2019 Elia Bruè
Quoc‐Hung Nguyen
+ Rectifiability of the reduced boundary for sets of finite perimeter over RCD$(K,N)$ spaces 2019 Elia Bruè
Enrico Pasqualetto
Daniele Semola
+ PDF Chat Volume Bounds for the Quantitative Singular Strata of Non Collapsed RCD Metric Measure Spaces 2019 Gioacchino Antonelli
Elia Bruè
Daniele Semola
+ Volume bounds for the quantitative singular strata of non collapsed RCD metric measure spaces 2019 Gioacchino Antonelli
Elia Bruè
Daniele Semola
+ Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts 2019 Elia Bruè
Quoc‐Hung Nguyen
+ Rigidity of the 1-Bakry-\'Emery inequality and sets of finite perimeter in RCD spaces 2018 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and RCD(K,∞) spaces 2018 Luigi Ambrosio
Elia Bruè
Dario Trevisan
+ A maximal function characterization of absolutely continuous measures and Sobolev functions 2018 Elia Bruè
Quoc‐Hung Nguyen
Giorgio Stefani
+ On the Sobolev space of functions with derivative of logarithmic order 2018 Elia Bruè
Quoc‐Hung Nguyen
+ Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows 2018 Elia Bruè
Daniele Semola
+ Regularity of Lagrangian flows over $RCD^*(K,N)$ spaces 2018 Elia Bruè
Daniele Semola
+ Linear Lipschitz and $C^1$ extension operators through random projection 2018 Elia Bruè
Simone Di Marino
Federico Stra
+ On the Sobolev space of functions with derivative of logarithmic order 2018 Elia Bruè
Quoc‐Hung Nguyen
+ Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows 2018 Elia Bruè
Daniele Semola
+ Rigidity of the 1-Bakry-Émery inequality and sets of finite perimeter in RCD spaces 2018 Luigi Ambrosio
Elia Bruè
Daniele Semola
+ Linear Lipschitz and $C^1$ extension operators through random projection 2018 Elia Bruè
Simone Di Marino
Federico Stra
+ Regularity of Lagrangian flows over $RCD^*(K,N)$ spaces 2018 Elia Bruè
Daniele Semola
+ Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and $RCD(K,\infty)$ spaces 2017 Luigi Ambrosio
Elia Bruè
Dario Trevisan
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Ricci curvature for metric-measure spaces via optimal transport 2009 John Lott
Cédric Villani
18
+ Ordinary differential equations, transport theory and Sobolev spaces 1989 Ronald J. DiPerna
Pierre Louis Lions
17
+ PDF Chat On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces 2014 Matthias Erbar
Kazumasa Kuwada
Karl-Theodor Sturm
15
+ PDF Chat Metric measure spaces with Riemannian Ricci curvature bounded from below 2014 Luigi Ambrosio
Nicola Gigli
Giuseppe Savaré
15
+ PDF Chat On the geometry of metric measure spaces. II 2006 Karl‐Theodor Sturm
14
+ Transport equation and Cauchy problem for BV vector fields 2004 Luigi Ambrosio
14
+ Riemannian Ricci curvature lower bounds in metric measure spaces with 𝜎-finite measure 2015 Luigi Ambrosio
Nicola Gigli
Andrea Mondino
Tapio Rajala
13
+ PDF Chat On the differential structure of metric measure spaces and applications 2014 Nicola Gigli
13
+ PDF Chat Non-collapsed spaces with Ricci curvature bounded from below 2018 Guido De Philippis
Nicola Gigli
13
+ Lower Bounds on Ricci Curvature and the Almost Rigidity of Warped Products 1996 Jeff Cheeger
Tobias Colding
13
+ Functions of bounded variation on “good” metric spaces 2003 Michele Miranda
12
+ PDF Chat Structure theory of metric measure spaces with lower Ricci curvature bounds 2019 Andrea Mondino
Aaron Naber
12
+ PDF Chat Estimates and regularity results for the DiPerna-Lions flow 2008 Gianluca Crippa
Camillo De Lellis
12
+ Optimal Transport: Old and New 2013 Cédric Villani
12
+ PDF Chat Well-posedness of Lagrangian flows and continuity equations in metric measure spaces 2014 Luigi Ambrosio
Dario Trevisan
11
+ PDF Chat On the structure of spaces with Ricci curvature bounded below. I 1997 Jeff Cheeger
Tobias Colding
11
+ Nonsmooth Differential Geometry: An Approach Tailored for Spaces With Ricci Curvature Bounded from Below 2017 Nicola Gigli
11
+ PDF Chat On the volume measure of non-smooth spaces with Ricci curvature bounded below 2018 Martin Kell
Andrea Mondino
10
+ PDF Chat Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows 2015 Nicola Gigli
Andrea Mondino
Giuseppe Savaré
10
+ Optimal Transport 2008 Cédric Villani
10
+ Equivalent definitions of BV space and of total variation on metric measure spaces 2014 Luigi Ambrosio
Simone Di Marino
9
+ Localization and tensorization properties of the curvature-dimension condition for metric measure spaces 2010 Kathrin Bacher
Karl‐Theodor Sturm
9
+ PDF Chat Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications 2012 Tobias Colding
Aaron Naber
9
+ Gradient Flows: In Metric Spaces and in the Space of Probability Measures 2005 Luigi Ambrosio
Nicola Gigli
Giuseppe Savaré
9
+ New stability results for sequences of metric measure spaces with uniform Ricci bounds from below 2017 Luigi Ambrosio
Shouhei Honda
9
+ PDF Chat On the geometry of metric measure spaces 2006 Karl‐Theodor Sturm
9
+ CALCULUS, HEAT FLOW AND CURVATURE-DIMENSION BOUNDS IN METRIC MEASURE SPACES 2019 Luigi Ambrosio
9
+ Differentiability of Lipschitz Functions on Metric Measure Spaces 1999 Jeff Cheeger
8
+ PDF Chat Nonsmooth differential geometry– An approach tailored for spaces with Ricci curvature bounded from below 2017 Luigi Ambrosio
Andrea Mondino
Giuseppe Savaré
8
+ PDF Chat From volume cone to metric cone in the nonsmooth setting 2016 Guido De Philippis
Nicola Gigli
8
+ PDF Chat Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces 2013 Giuseppe Savaré
8
+ Singular Integrals and Differentiability Properties of Functions. 1971 Elias M. Stein
8
+ PDF Chat Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below 2013 Nicola Gigli
Andrea Mondino
Tapio Rajala
8
+ PDF Chat Regularity of Einstein manifolds and the codimension 4 conjecture 2015 Jeff Cheeger
Aaron Naber
8
+ PDF Chat Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces 2019 Luigi Ambrosio
Andrea Mondino
Giuseppe Savaré
7
+ PDF Chat Heat Kernel Bounds on Metric Measure Spaces and Some Applications 2015 Renjin Jiang
Huaiqian Li
Hui-Chun Zhang
7
+ Riemannian Geometry 2016 Peter Petersen
7
+ The splitting theorem in non-smooth context 2013 Nicola Gigli
6
+ PDF Chat Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below 2013 Luigi Ambrosio
Nicola Gigli
Giuseppe Savaré
6
+ Continuity equations and ODE flows with non-smooth velocity 2014 Luigi Ambrosio
Gianluca Crippa
6
+ PDF Chat Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces 2013 Luigi Ambrosio
Nicola Gigli
Giuseppe Savaré
6
+ PDF Chat Sharp regularity estimates for solutions of the continuity equation drifted by Sobolev vector fields 2021 Elia Bruè
Quoc‐Hung Nguyen
6
+ Rectifiability of Singular Sets in Noncollapsed Spaces with Ricci Curvature bounded below 2018 Jeff Cheeger
Wenshuai Jiang
Aaron Naber
6
+ PDF Chat Volume Bounds for the Quantitative Singular Strata of Non Collapsed RCD Metric Measure Spaces 2019 Gioacchino Antonelli
Elia Bruè
Daniele Semola
6
+ Ricci Curvature and Volume Convergence 1997 Tobias Colding
6
+ The Globalization Theorem for the Curvature Dimension Condition 2016 Fabio Cavalletti
Emanuel Milman
6
+ Some Nonlinear Problems in Riemannian Geometry 1998 Thierry Aubin
6
+ PDF Chat Lower bounds on Ricci curvature and quantitative behavior of singular sets 2012 Jeff Cheeger
Aaron Naber
6
+ Independence on p of weak upper gradients on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="sans-serif">RCD</mml:mi></mml:math> spaces 2016 Nicola Gigli
Bang-Xian Han
6
+ Alexandrov meets Lott--Villani--Sturm 2010 Anton Petrunin
6