+
PDF
Chat
|
Fundamental groups and the Milnor conjecture
|
2025
|
Elia Bruè
Aaron Naber
Daniele Semola
|
+
PDF
Chat
|
Lower Ricci Curvature Bounds and the Orientability of Spaces
|
2024
|
Camillo Brena
Elia Brué
Alessandro Pigati
|
+
|
Stability of tori under lower sectional curvature
|
2024
|
Elia Bruè
Aaron Naber
Daniele Semola
|
+
|
Enhanced Dissipation for Two-Dimensional Hamiltonian Flows
|
2024
|
Elia Bruè
Michele Coti Zelati
Elio Marconi
|
+
|
Instability and nonuniqueness in mathematical fluid dynamics
|
2024
|
Elia Bruè
|
+
PDF
Chat
|
Flexibility of Two-Dimensional Euler Flows with Integrable Vorticity
|
2024
|
Elia Bruè
Maria Colombo
Anuj Kumar
|
+
PDF
Chat
|
Topological regularity and stability of noncollapsed spaces with Ricci
curvature bounded below
|
2024
|
Elia Bruè
Alessandro Pigati
Daniele Semola
|
+
PDF
Chat
|
Sharp Nonuniqueness in the Transport Equation with Sobolev Velocity
Field
|
2024
|
Elia Bruè
Maria Colombo
Anuj Kumar
|
+
|
Instability and Non-uniqueness for the 2D Euler Equations, after M. Vishik
|
2024
|
Dallas Albritton
Elia Bruè
Maria Colombo
Camillo De Lellis
Vikram Giri
Maximilian Janisch
Hyunju Kwon
|
+
|
0.1 Idea of the proof
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
A.3 Proof of Theorem 3.4
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
3.9 Proof of Proposition 3.17
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
B.4 Proof of Lemma 1.9
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
3.5 ODE Lemmas
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
2.3 Proof of Theorem 1.10: preliminary lemmas
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
4.1 Proof of Proposition 4.2
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
3.10 Proof of Lemma 3.19
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
3.7 Proof of Proposition 3.15: Part I
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
A.4 Proof of Proposition A.4
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
3.8 Proof of Proposition 3.15: Part II
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
3.4 Overview of the proof of Theorem 3.12
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
2.2 Proof of Theorem 2.4 and proof of Theorem 2.1(a)
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
3.6 Proof of Proposition 3.13
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
2.4 Proof of Theorem 1.10: conclusion
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
B.2 Proof of Theorem 0.3
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
B.3 Proof of Proposition 1.5
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
Instability and Non-uniqueness for the 2D Euler Equations, after M. Vishik
|
2024
|
Maria Colombo
Vikram Giri
Maximilian Janisch
HyunjuVE Kwon
Elia Bruè
Dallas Albritton
|
+
|
Lecture XVII: The Benamou-Brenier Formula
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture IV: Necessary and Sufficient Optimality Conditions
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture V: Existence of Optimal Maps and Applications
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture XI: Gradient Flows: An Introduction
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture XVIII: An Introduction to Otto’s Calculus
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture II: The Kantorovich Problem
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture XII: Gradient Flows: The Brézis-Komura Theorem
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture XIX: Heat Flow, Optimal Transport and Ricci Curvature
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture III: The Kantorovich–Rubinstein Duality
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture XIII: Examples of Gradient Flows in PDEs
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture VII: The Monge-Ampére Equation and Optimal Transport on Riemannian Manifolds
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture XVI: The Continuity Equation and the Hopf-Lax Semigroup
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture VI: A Proof of the Isoperimetric Inequality and Stability in Optimal Transport
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture X: Wasserstein Geodesics, Nonbranching and Curvature
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lectures on Optimal Transport
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture XV: Semicontinuity and Convexity of Energies in the Wasserstein Space
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture I: Preliminary Notions and the Monge Problem
|
2024
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
PDF
Chat
|
Gluing Non-unique Navier–Stokes Solutions
|
2023
|
Dallas Albritton
Elia Bruè
Maria Colombo
|
+
PDF
Chat
|
Nonuniqueness of Solutions to the Euler Equations with Vorticity in a Lorentz Space
|
2023
|
Elia Bruè
Maria Colombo
|
+
PDF
Chat
|
Onsager critical solutions of the forced Navier-Stokes equations
|
2023
|
Elia Bruè
Maria Colombo
Gianluca Crippa
Camillo De Lellis
Massimo Sorella
|
+
PDF
Chat
|
The metric measure boundary of spaces with Ricci curvature bounded below
|
2023
|
Elia Bruè
Andrea Mondino
Daniele Semola
|
+
PDF
Chat
|
Anomalous Dissipation for the Forced 3D Navier–Stokes Equations
|
2023
|
Elia Bruè
Camillo De Lellis
|
+
|
Fundamental Groups and the Milnor Conjecture
|
2023
|
Elia Bruè
Aaron Naber
Daniele Semola
|
+
|
Stability of Tori under Lower Sectional Curvature
|
2023
|
Elia Bruè
Aaron Naber
Daniele Semola
|
+
|
Non-uniqueness in law of Leray solutions to 3D forced stochastic Navier-Stokes equations
|
2023
|
Elia Bruè
Rui Jin
Yachun Li
Deng Zhang
|
+
|
Six dimensional counterexample to the Milnor Conjecture
|
2023
|
Elia Bruè
Aaron Naber
Daniele Semola
|
+
PDF
Chat
|
A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics II
|
2022
|
Elia Bruè
Mattia Calzi
Giovanni E. Comi
Giorgio Stefani
|
+
PDF
Chat
|
Constancy of the dimension in codimension one and locality of the unit normal on $\RCD(K,N)$ spaces
|
2022
|
Elia Bruè
Enrico Pasqualetto
Daniele Semola
|
+
PDF
Chat
|
Non-uniqueness of Leray solutions of the forced Navier-Stokes equations
|
2022
|
Dallas Albritton
Elia Bruè
Maria Colombo
|
+
PDF
Chat
|
On the existence of isoperimetric regions in manifolds with nonnegative Ricci curvature and Euclidean volume growth
|
2022
|
Gioacchino Antonelli
Elia Bruè
Mattia Fogagnolo
Marco Pozzetta
|
+
|
Rectifiability of the reduced boundary for sets of finite perimeter over $\operatorname{RCD}(K,N)$ spaces
|
2022
|
Elia Bruè
Enrico Pasqualetto
Daniele Semola
|
+
PDF
Chat
|
Boundary regularity and stability for spaces with Ricci bounded below
|
2022
|
Elia Bruè
Aaron Naber
Daniele Semola
|
+
|
The metric measure boundary of spaces with Ricci curvature bounded below
|
2022
|
Elia Bruè
Andrea Mondino
Daniele Semola
|
+
|
Anomalous dissipation for the forced 3D Navier-Stokes equations
|
2022
|
Elia Bruè
Camillo De Lellis
|
+
|
Gluing non-unique Navier-Stokes solutions
|
2022
|
Dallas Albritton
Elia Bruè
Maria Colombo
|
+
|
Enhanced dissipation for two-dimensional Hamiltonian flows
|
2022
|
Elia Bruè
Michele Coti Zelati
Elio Marconi
|
+
|
Onsager critical solutions of the forced Navier-Stokes equations
|
2022
|
Elia Bruè
Maria Colombo
Gianluca Crippa
Camillo De Lellis
Massimo Sorella
|
+
PDF
Chat
|
Sharp regularity estimates for solutions of the continuity equation drifted by Sobolev vector fields
|
2021
|
Elia Bruè
Quoc‐Hung Nguyen
|
+
PDF
Chat
|
Improved regularity estimates for Lagrangian flows on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si2.svg"><mml:mrow><mml:mo class="qopname">RCD</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mi>K</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> spaces
|
2021
|
Elia Bruè
Qin Deng
Daniele Semola
|
+
PDF
Chat
|
Rectifiability of RCD(K,N) spaces via δ-splitting maps
|
2021
|
Elia Bruè
Enrico Pasqualetto
Daniele Semola
|
+
PDF
Chat
|
Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves
|
2021
|
Elia Bruè
Maria Colombo
Camillo De Lellis
|
+
PDF
Chat
|
Advection Diffusion Equations with Sobolev Velocity Field
|
2021
|
Elia Bruè
Quoc‐Hung Nguyen
|
+
|
Improved regularity estimates for Lagrangian flows on $\text{RCD}(K,N)$ spaces
|
2021
|
Elia Bruè
Qin Deng
Daniele Semola
|
+
|
Lecture 17: The Benamou–Brenier Formula
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 1: Preliminary Notions and the Monge Problem
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 5: Existence of Optimal Maps and Applications
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 13: Examples of Gradient Flows in PDEs
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 2: The Kantorovich Problem
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 9: Analysis on Metric Spaces and the Dynamic Formulation of Optimal Transport
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 16: The Continuity Equation and the Hopf-Lax Semigroup
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 19: Heat Flow, Optimal Transport and Ricci Curvature
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 3: The Kantorovich–Rubinstein Duality
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 4: Necessary and Sufficient Optimality Conditions
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 8: The Metric Side of Optimal Transport
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 12: Gradient Flows: The Brézis-Komura Theorem
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 7: The Monge-Ampére Equation and Optimal Transport on Riemannian Manifolds
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 6: A Proof of the Isoperimetric Inequality and Stability in Optimal Transport
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 10: Wasserstein Geodesics, Nonbranching and Curvature
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 18: An Introduction to Otto’s Calculus
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 15: Semicontinuity and Convexity of Energies in the Wasserstein Space
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lecture 11: Gradient Flows: An Introduction
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
BV Functions and Sets of Finite Perimeter on Configuration Spaces
|
2021
|
Elia Bruè
Kohei Suzuki
|
+
|
Constancy of the dimension in codimension one and locality of the unit normal on $\mathrm{RCD}(K,N)$ spaces
|
2021
|
Elia Bruè
Enrico Pasqualetto
Daniele Semola
|
+
|
Lectures on Optimal Transport
|
2021
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Instability and nonuniqueness for the $2d$ Euler equations in vorticity form, after M. Vishik
|
2021
|
Dallas Albritton
Elia Bruè
Maria Colombo
Camillo De Lellis
Vikram Giri
Maximilian Janisch
Hyunju Kwon
|
+
|
Non-uniqueness of Leray solutions of the forced Navier-Stokes equations
|
2021
|
Dallas Albritton
Elia Bruè
Maria Colombo
|
+
|
Nonuniqueness of solutions to the Euler equations with vorticity in a Lorentz space
|
2021
|
Elia Bruè
Maria Colombo
|
+
PDF
Chat
|
Linear Lipschitz and C1 extension operators through random projection
|
2020
|
Elia Bruè
Simone Di Marino
Federico Stra
|
+
PDF
Chat
|
A distributional approach to fractional Sobolev spaces and fractional
variation: asymptotics II
|
2020
|
Elia Bruè
Mattia Calzi
Giovanni E. Comi
Giorgio Stefani
|
+
PDF
Chat
|
Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts
|
2020
|
Elia Bruè
Quoc‐Hung Nguyen
|
+
|
Rectifiability of RCD(K,N) spaces via $\delta$-splitting maps
|
2020
|
Elia Bruè
Enrico Pasqualetto
Daniele Semola
|
+
|
Boundary regularity and stability for spaces with Ricci bounded below
|
2020
|
Elia Bruè
Aaron Naber
Daniele Semola
|
+
|
Rectifiability of RCD(K,N) spaces via $δ$-splitting maps
|
2020
|
Elia Bruè
Enrico Pasqualetto
Daniele Semola
|
+
PDF
Chat
|
A maximal function characterisation of absolutely continuous measures and Sobolev functions
|
2019
|
Elia Bruè
Quoc‐Hung Nguyen
Giorgio Stefani
|
+
PDF
Chat
|
On the Sobolev space of functions with derivative of logarithmic order
|
2019
|
Elia Bruè
Quoc‐Hung Nguyen
|
+
|
Regularity of Lagrangian flows over RCD<sup>*</sup>(<i>K</i>, <i>N</i>) spaces
|
2019
|
Elia Bruè
Daniele Semola
|
+
|
Volume bounds for the quantitative singular strata of non collapsed RCD metric measure spaces
|
2019
|
Gioacchino Antonelli
Elia Bruè
Daniele Semola
|
+
PDF
Chat
|
Rigidity of the 1-Bakry–Émery Inequality and Sets of Finite Perimeter in RCD Spaces
|
2019
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
PDF
Chat
|
Constancy of the Dimension for RCD(<i>K</i>,<i>N</i>) Spaces via Regularity of Lagrangian Flows
|
2019
|
Elia Bruè
Daniele Semola
|
+
|
Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts
|
2019
|
Elia Bruè
Quoc‐Hung Nguyen
|
+
|
Rectifiability of the reduced boundary for sets of finite perimeter over RCD$(K,N)$ spaces
|
2019
|
Elia Bruè
Enrico Pasqualetto
Daniele Semola
|
+
PDF
Chat
|
Volume Bounds for the Quantitative Singular Strata of Non Collapsed RCD Metric Measure Spaces
|
2019
|
Gioacchino Antonelli
Elia Bruè
Daniele Semola
|
+
|
Volume bounds for the quantitative singular strata of non collapsed RCD metric measure spaces
|
2019
|
Gioacchino Antonelli
Elia Bruè
Daniele Semola
|
+
|
Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts
|
2019
|
Elia Bruè
Quoc‐Hung Nguyen
|
+
|
Rigidity of the 1-Bakry-\'Emery inequality and sets of finite perimeter in RCD spaces
|
2018
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and RCD(K,∞) spaces
|
2018
|
Luigi Ambrosio
Elia Bruè
Dario Trevisan
|
+
|
A maximal function characterization of absolutely continuous measures and Sobolev functions
|
2018
|
Elia Bruè
Quoc‐Hung Nguyen
Giorgio Stefani
|
+
|
On the Sobolev space of functions with derivative of logarithmic order
|
2018
|
Elia Bruè
Quoc‐Hung Nguyen
|
+
|
Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows
|
2018
|
Elia Bruè
Daniele Semola
|
+
|
Regularity of Lagrangian flows over $RCD^*(K,N)$ spaces
|
2018
|
Elia Bruè
Daniele Semola
|
+
|
Linear Lipschitz and $C^1$ extension operators through random projection
|
2018
|
Elia Bruè
Simone Di Marino
Federico Stra
|
+
|
On the Sobolev space of functions with derivative of logarithmic order
|
2018
|
Elia Bruè
Quoc‐Hung Nguyen
|
+
|
Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows
|
2018
|
Elia Bruè
Daniele Semola
|
+
|
Rigidity of the 1-Bakry-Émery inequality and sets of finite perimeter in RCD spaces
|
2018
|
Luigi Ambrosio
Elia Bruè
Daniele Semola
|
+
|
Linear Lipschitz and $C^1$ extension operators through random projection
|
2018
|
Elia Bruè
Simone Di Marino
Federico Stra
|
+
|
Regularity of Lagrangian flows over $RCD^*(K,N)$ spaces
|
2018
|
Elia Bruè
Daniele Semola
|
+
|
Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and $RCD(K,\infty)$ spaces
|
2017
|
Luigi Ambrosio
Elia Bruè
Dario Trevisan
|