Antoine Cornuéjols

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat ml_edm package: a Python toolkit for Machine Learning based Early Decision Making 2024 Aurélien Renault
Youssef Achenchabe
Édouard Bertrand
Alexis Bondu
Antoine Cornuéjols
Vincent Lemaire
Asma Dachraoui
+ PDF Chat Early Classification of Time Series: Taxonomy and Benchmark 2024 Aurélien Renault
Alexis Bondu
Antoine Cornuéjols
Vincent Lemaire
+ biquality-learn: a Python library for Biquality Learning 2023 Pierre Nodet
Vincent Lemaire
Alexis Bondu
Antoine Cornuéjols
+ Biquality Learning: a Framework to Design Algorithms Dealing with Closed-Set Distribution Shifts 2023 Pierre Nodet
Vincent Lemaire
Alexis Bondu
Antoine Cornuéjols
+ PDF Chat When to Classify Events in Open Times Series? 2022 Youssef Achenchabe
Alexis Bondu
Antoine Cornuéjols
Vincent Lemaire
+ PDF Chat Open challenges for Machine Learning based Early Decision-Making research 2022 Alexis Bondu
Youssef Achenchabe
Albert Bifet
Fabrice Clérot
Antoine Cornuéjols
João Gama
Georges Hébrail
Vincent Lemaire
Pierre-François Marteau
+ PDF Chat Early and Revocable Time Series Classification 2022 Youssef Achenchabe
Alexis Bondu
Antoine Cornuéjols
Vincent Lemaire
+ Open challenges for Machine Learning based Early Decision-Making research 2022 Alexis Bondu
Youssef Achenchabe
Albert Bifet
Fabrice Clérot
Antoine Cornuéjols
João Gama
Georges Hébrail
Vincent Lemaire
Pierre-François Marteau
+ When to Classify Events in Open Times Series? 2022 Youssef Achenchabe
Alexis Bondu
Antoine Cornuéjols
Vincent Lemaire
+ PDF Chat Importance Reweighting for Biquality Learning 2021 Pierre Nodet
Vincent Lemaire
Alexis Bondu
Antoine Cornuéjols
Adam Ouorou
+ PDF Chat From Weakly Supervised Learning to Biquality Learning: an Introduction 2021 Pierre Nodet
Vincent Lemaire
Alexis Bondu
Antoine Cornuéjols
Adam Ouorou
+ Early Classification of Time Series is Meaningful 2021 Youssef Achenchabe
Alexis Bondu
Antoine Cornuéjols
Vincent Lemaire
+ Contrastive Representations for Label Noise Require Fine-Tuning 2021 Pierre Nodet
Vincent Lemaire
Alexis Bondu
Antoine Cornuéjols
+ Early and Revocable Time Series Classification 2021 Youssef Achenchabe
Alexis Bondu
Antoine Cornuéjols
Vincent Lemaire
+ Importance Reweighting for Biquality Learning 2020 Pierre Nodet
Vincent Lemaire
Alexis Bondu
Antoine Cornuéjols
+ PDF Chat Predictive K-means with local models 2020 Vincent Lemaire
Oumaima Alaoui Ismaili
Antoine Cornuéjols
Dominique Gay
+ PDF Chat Predictive K-means with local models 2020 Vincent Lemaire
Oumaima Ismaili
Antoine Cornuéjols
Dominique Gay
+ Early Classification of Time Series. Cost-based Optimization Criterion and Algorithms 2020 Youssef Achenchabe
Alexis Bondu
Antoine Cornuéjols
Asma Dachraoui
+ Predictive K-means with Local Models 2020 Vincent Lemaire
Oumaima Alaoui Ismaili
Antoine Cornuéjols
Dominique Gay
+ From Shallow to Deep Interactions Between Knowledge Representation, Reasoning and Machine Learning (Kay R. Amel group) 2019 Zied Bouraoui
Antoine Cornuéjols
Thierry Denœux
Sébastien Destercke
Didier Dubois
Romain Guillaume
João Marques‐Silva
Jérôme Mengin
Henri Prade
Steven Schockaert
+ Tunnel Effects in Cognition: A new Mechanism for Scientific Discovery and Education 2017 Antoine Cornuéjols
Andrée Tiberghien
Gérard Collet
+ New Results - Inverse problems 2004 Antoine Cornuéjols
Mohamed Jebalia
Matthieu Pierres
Marc Schoenauer
Michèle Sébag
Vijay Pratap Singh
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise 2018 Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
5
+ Learning from untrusted data 2017 Moses Charikar
Jacob Steinhardt
Gregory Valiant
3
+ PDF Chat Multiple instance learning: A survey of problem characteristics and applications 2017 Marc‐André Carbonneau
Veronika Cheplygina
Éric Granger
Ghyslain Gagnon
3
+ PDF Chat Classification with Noisy Labels by Importance Reweighting 2015 Tongliang Liu
Dacheng Tao
3
+ PDF Chat Learning from positive and unlabeled data: a survey 2020 Jessa Bekker
Jesse Davis
3
+ PDF Chat End-to-end Learning for Early Classification of Time Series 2019 Marc Rußwurm
Sébastien Lefèvre
Nicolas Courty
Rémi Emonet
Marco Körner
Romain Tavenard
3
+ PDF Chat Importance Reweighting for Biquality Learning 2021 Pierre Nodet
Vincent Lemaire
Alexis Bondu
Antoine Cornuéjols
Adam Ouorou
3
+ PDF Chat From Weakly Supervised Learning to Biquality Learning: an Introduction 2021 Pierre Nodet
Vincent Lemaire
Alexis Bondu
Antoine Cornuéjols
Adam Ouorou
3
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
3
+ PDF Chat Snorkel 2017 Alexander Ratner
Stephen H. Bach
Henry R. Ehrenberg
Jason Fries
Sen Wu
Christopher Ré
3
+ Classifying with confidence from incomplete information 2013 Nathan Parrish
Hyrum S. Anderson
Maya R. Gupta
Dun Yu Hsiao
2
+ Learning with Bounded Instance- and Label-dependent Label Noise 2017 Jiacheng Cheng
Tongliang Liu
Kotagiri Ramamohanarao
Dacheng Tao
2
+ Density Ratio Estimation : A Comprehensive Review (Statistical Experiment and Its Related Topics) 2010 Masashi Sugiyama
Taiji Suzuki
Takafumi Kanamori
2
+ PDF Chat Rethinking Importance Weighting for Deep Learning under Distribution Shift 2020 Tongtong Fang
N. Lu
Gang Niu
Masashi Sugiyama
2
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
2
+ Rethinking Importance Weighting for Deep Learning under Distribution Shift 2020 Tongtong Fang
Nan Lu
Gang Niu
Masashi Sugiyama
2
+ On Symmetric Losses for Learning from Corrupted Labels 2019 Nontawat Charoenphakdee
Jongyeong Lee
Masashi Sugiyama
2
+ Are Anchor Points Really Indispensable in Label-Noise Learning? 2019 Xiaobo Xia
Tongliang Liu
Nannan Wang
Bo Han
Gong Chen
Gang Niu
Masashi Sugiyama
2
+ PDF Chat Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach 2017 Giorgio Patrini
Alessandro Rozza
Aditya Krishna Menon
Richard Nock
Lizhen Qu
2
+ PDF Chat Meta Label Correction for Noisy Label Learning 2021 Guo‐qing Zheng
Ahmed Hassan Awadallah
Susan Dumais
2
+ PDF Chat Classifiers with a reject option for early time-series classification 2013 Nima Hatami
Camelia Chira
2
+ An extension of Karmarkar's projective algorithm for convex quadratic programming 1989 Yinyu Ye
Edison Tse
1
+ Explaining and Harnessing Adversarial Examples 2014 Ian Goodfellow
Jonathon Shlens
Christian Szegedy
1
+ PDF Chat Positive and negative explanations of uncertain reasoning in the framework of possibility theory 1992 Henri Farreny del Bosque
Henri Prade
1
+ PDF Chat Nonmonotonic reasoning, preferential models and cumulative logics 1990 Sarit Kraus
Daniel Lehmann
Menachem Magidor
1
+ Performance Analysis of Sequential Probability Ratio Test 2013 Yu Liu
X. Rong Li
1
+ PDF Chat Causes and Explanations: A Structural-Model Approach. Part II: Explanations 2005 Joseph Y. Halpern
Judea Pearl
1
+ PDF Chat Induction of Selective Bayesian Classifiers 1994 Pat Langley
Stephanie Sage
1
+ A study of standardization of variables in cluster analysis 1988 Glenn W. Milligan
Martha C. Cooper
1
+ Comparing probability measures using possibility theory: A notion of relative peakedness 2006 Didier Dubois
Eyke Hüllermeier
1
+ PDF Chat Belief Revision and the EM Algorithm 2016 Inés Couso
Didier Dubois
1
+ PDF Chat Ignorability and Coarse Data 1991 Daniel F. Heitjan
Donald B. Rubin
1
+ PDF Chat Deep visual-semantic alignments for generating image descriptions 2015 Andrej Karpathy
Li Fei-Fei
1
+ PDF Chat A note on sequential detection with exponential penalty for the delay 2000 Martin Beibel
1
+ PDF Chat Maximum Likelihood Estimation from Uncertain Data in the Belief Function Framework 2011 Thierry Denœux
1
+ Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm 1977 A. P. Dempster
N. M. Laird
Donald B. Rubin
1
+ Training Convolutional Networks with Noisy Labels 2014 Sainbayar Sukhbaatar
Joan Bruna
Manohar Paluri
Lubomir Bourdev
Rob Fergus
1
+ A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory 2008 Thierry Denœux
1
+ Statistical Analysis With Missing Data 1989 Maureen Lahiff
Roderick J. A. Little
Donald B. Rubin
1
+ PDF Chat Learning-Assisted Automated Reasoning with Flyspeck 2014 Cezary Kaliszyk
Josef Urban
1
+ PDF Chat SATzilla: Portfolio-based Algorithm Selection for SAT 2008 Lizhong Xu
Frank Hutter
Holger H. Hoos
Kevin Leyton‐Brown
1
+ PDF Chat Stable signal recovery from incomplete and inaccurate measurements 2006 Emmanuel J. Candès
Justin Romberg
Terence Tao
1
+ A tutorial on conformal prediction 2007 Glenn Shafer
Vladimir Vovk
1
+ The Power of Depth for Feedforward Neural Networks 2015 Ronen Eldan
Ohad Shamir
1
+ Learning from Binary Labels with Instance-Dependent Corruption 2016 Aditya Krishna Menon
Brendan van Rooyen
Nagarajan Natarajan
1
+ DeepMath - Deep Sequence Models for Premise Selection 2016 Alex Alemi
François Chollet
Niklas Eén
Geoffrey Irving
Christian Szegedy
Josef Urban
1
+ Outline of a New Approach to the Analysis of Complex Systems and Decision Processes 1973 Lotfi A. Zadeh
1
+ Holophrasm: a neural Automated Theorem Prover for higher-order logic 2016 Daniel Whalen
1
+ Machine learning models, epistemic set-valued data and generalized loss functions: An encompassing approach 2016 Inés Couso
Luciano Sánchez
1
+ PDF Chat Learning to Understand Phrases by Embedding the Dictionary 2016 Felix Hill
Kyunghyun Cho
Anna Korhonen
Yoshua Bengio
1