Lori Graham‐Brady

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Physics-Informed Latent Neural Operator for Real-time Predictions of Complex Physical Systems 2025 Sharmila Karumuri
Lori Graham‐Brady
Somdatta Goswami
+ PDF Chat Bayesian neural networks for predicting uncertainty in full-field material response 2024 George D. Pasparakis
Lori Graham‐Brady
Michael D. Shields
+ PDF Chat Efficient Training of Deep Neural Operator Networks via Randomized Sampling 2024 Sharmila Karumuri
Lori Graham‐Brady
Somdatta Goswami
+ PDF Chat Bayesian neural networks for predicting uncertainty in full-field material response 2024 George D. Pasparakis
Lori Graham‐Brady
Michael D. Shields
+ PDF Chat Prediction of local elasto-plastic stress and strain fields in a two-phase composite microstructure using a deep convolutional neural network 2024 Indrashish Saha
Ashwini Gupta
Lori Graham‐Brady
+ PDF Chat Accelerated multiscale mechanics modeling in a deep learning framework 2023 Ashwini Gupta
Anindya Bhaduri
Lori Graham‐Brady
+ Prediction of local elasto-plastic stress and strain fields in a two-phase composite microstructure using a deep convolutional neural network 2023 Indrashish Saha
Ashwini Gupta
Lori Graham‐Brady
+ PDF Chat Stress field prediction in fiber-reinforced composite materials using a deep learning approach 2022 Anindya Bhaduri
Ashwini Gupta
Lori Graham‐Brady
+ PDF Chat Fragmentation and granular transition of ceramics for high rate loading 2022 Amartya Bhattacharjee
Ryan Hurley
Lori Graham‐Brady
+ Machine Learning in Heterogeneous Porous Materials 2022 Marta D’Elia
Hang Deng
Cedric G. Fraces
Krishna Garikipati
Lori Graham‐Brady
Amanda A. Howard
George Em Karniadakis
Vahid Keshavarzzadeh
Robert M. Kirby
Nathan Kutz
+ Accelerated multiscale mechanics modeling in a deep learning framework 2022 Ashwini Kumar Gupta
Anindya Bhaduri
Lori Graham‐Brady
+ PDF Chat Probabilistic Modeling of Discrete Structural Response with Application to Composite Plate Penetration Models 2021 Anindya Bhaduri
Christopher S. Meyer
John W. Gillespie
Bazle Z. Haque
Michael D. Shields
Lori Graham‐Brady
+ PDF Chat An efficient optimization based microstructure reconstruction approach with multiple loss functions 2021 Anindya Bhaduri
Ashwini Gupta
Audrey Olivier
Lori Graham‐Brady
+ Stress field prediction in fiber-reinforced composite materials using a deep learning approach 2021 Anindya Bhaduri
Ashwini Kumar Gupta
Lori Graham‐Brady
+ An efficient optimization based microstructure reconstruction approach with multiple loss functions 2021 Anindya Bhaduri
Ashwini Kumar Gupta
Audrey Olivier
Lori Graham‐Brady
+ Probabilistic modeling of discrete structural response with application to composite plate penetration models 2020 Anindya Bhaduri
Christopher S. Meyer
John W. Gillespie
Bazle Z. Haque
Michael D. Shields
Lori Graham‐Brady
+ PDF Chat Constitutive Model for Brittle Granular Materials Considering Competition between Breakage and Dilation 2019 Mehmet B. Cil
Ryan Hurley
Lori Graham‐Brady
+ A constitutive model for brittle granular materials considering the competition between breakage and dilation 2019 Mehmet B. Cil
Ryan Hurley
Lori Graham‐Brady
+ PDF Chat Stochastic collocation approach with adaptive mesh refinement for parametric uncertainty analysis 2018 Anindya Bhaduri
Yanyan He
Michael D. Shields
Lori Graham‐Brady
Robert M. Kirby
+ PDF Chat An efficient adaptive sparse grid collocation method through derivative estimation 2017 Anindya Bhaduri
Lori Graham‐Brady
+ An efficient adaptive sparse grid collocation method through derivative estimation 2017 Anindya Bhaduri
Lori Graham‐Brady
+ An efficient adaptive sparse grid collocation method through derivative estimation 2017 Anindya Bhaduri
Lori Graham‐Brady
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Stochastic collocation approach with adaptive mesh refinement for parametric uncertainty analysis 2018 Anindya Bhaduri
Yanyan He
Michael D. Shields
Lori Graham‐Brady
Robert M. Kirby
4
+ PDF Chat An efficient optimization based microstructure reconstruction approach with multiple loss functions 2021 Anindya Bhaduri
Ashwini Gupta
Audrey Olivier
Lori Graham‐Brady
3
+ PDF Chat Probabilistic Modeling of Discrete Structural Response with Application to Composite Plate Penetration Models 2021 Anindya Bhaduri
Christopher S. Meyer
John W. Gillespie
Bazle Z. Haque
Michael D. Shields
Lori Graham‐Brady
3
+ PDF Chat Stress field prediction in fiber-reinforced composite materials using a deep learning approach 2022 Anindya Bhaduri
Ashwini Gupta
Lori Graham‐Brady
3
+ A deep learning framework for solution and discovery in solid mechanics 2020 Ehsan Haghighat
Maziar Raissi
Adrian Moure
Héctor Gómez
Rubén Juanes
3
+ PDF Chat Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures 2017 Brian DeCost
Toby Francis
Elizabeth A. Holm
2
+ PDF Chat Accelerated multiscale mechanics modeling in a deep learning framework 2023 Ashwini Gupta
Anindya Bhaduri
Lori Graham‐Brady
2
+ PDF Chat Three-dimensional convolutional neural network (3D-CNN) for heterogeneous material homogenization 2020 Chengping Rao
Yang Liu
2
+ PDF Chat A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials 2018 Zeliang Liu
Cheng Wu
M. Koishi
2
+ PDF Chat A data-driven approach to full-field nonlinear stress distribution and failure pattern prediction in composites using deep learning 2022 Reza Sepasdar
Anuj Karpatne
Maryam Shakiba
2
+ PDF Chat Stress Field Prediction in Cantilevered Structures Using Convolutional Neural Networks 2019 Zhenguo Nie
Haoliang Jiang
Levent Burak Kara
2
+ PDF Chat A learning-based multiscale method and its application to inelastic impact problems 2021 Burigede Liu
Nikola B. Kovachki
Zongyi Li
Kamyar Azizzadenesheli
Anima Anandkumar
Andrew M. Stuart
Kaushik Bhattacharya
2
+ PDF Chat An efficient adaptive sparse grid collocation method through derivative estimation 2017 Anindya Bhaduri
Lori Graham‐Brady
2
+ Predicting Mechanical Properties from Microstructure Images in Fiber-reinforced Polymers using Convolutional Neural Networks 2020 Yixuan Sun
Imad Hanhan
Michael D. Sangid
Guang Lin
2
+ PDF Chat Learning the stress-strain fields in digital composites using Fourier neural operator 2022 Meer Mehran Rashid
Tanu Pittie
Souvik Chakraborty
N. M. Anoop Krishnan
2
+ Advances in multidimensional integration 2002 Ronald Cools
2
+ Off-lattice reconstruction of porous media: critical evaluation, geometrical confinement and molecular transport 1998 Pierre Levitz
1
+ PDF Chat Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications 2008 Yang Jiao
Frank H. Stillinger
Salvatore Torquato
1
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
1
+ PDF Chat Multi-column deep neural networks for image classification 2012 Dan Cireşan
Ueli Meier
Jürgen Schmidhuber
1
+ High-Order Collocation Methods for Differential Equations with Random Inputs 2005 Dongbin Xiu
Jan S. Hesthaven
1
+ PDF Chat A two-dimensional interpolation function for irregularly-spaced data 1968 Donald S. Shepard
1
+ PDF Chat Transition from damage to fragmentation in collision of solids 1999 Ferenc Kun
Hans J. Herrmann
1
+ TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems 2016 Martı́n Abadi
Ashish Agarwal
Paul Barham
Eugene Brevdo
Zhifeng Chen
Craig Citro
Gregory S. Corrado
Andy Davis
Jay B. Dean
Matthieu Devin
1
+ PDF Chat Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation 2016 Rohit Tripathy
Ilias Bilionis
Marcial Gonzalez
1
+ PDF Chat On the Depth of Deep Neural Networks: A Theoretical View 2016 Shizhao Sun
Wei Chen
Liwei Wang
Xiaoguang Liu
Tie‐Yan Liu
1
+ PDF Chat Inferring low-dimensional microstructure representations using convolutional neural networks 2017 Nicholas Lubbers
Turab Lookman
Kipton Barros
1
+ What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 2017 Alex Kendall
Yarin Gal
1
+ PDF Chat Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification 2018 Yinhao Zhu
Nicholas Zabaras
1
+ PDF Chat Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification 2018 Rohit Tripathy
Ilias Bilionis
1
+ PDF Chat Exploring the 3D architectures of deep material network in data-driven multiscale mechanics 2019 Zeliang Liu
Cheng Wu
1
+ A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference 2019 Kumar Shridhar
Felix Laumann
Marcus Liwicki
1
+ Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles 2016 Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
1
+ PDF Chat Building data-driven models with microstructural images: Generalization and interpretability 2017 Julia Ling
Maxwell Hutchinson
Erin Antono
Brian DeCost
Elizabeth A. Holm
Bryce Meredig
1
+ PDF Chat Microstructure Representation and Reconstruction of Heterogeneous Materials Via Deep Belief Network for Computational Material Design 2017 Ruijin Cang
Yaopengxiao Xu
Shaohua Chen
Yongming Liu
Yang Jiao
Max Yi Ren
1
+ PDF Chat Monotonic classification: An overview on algorithms, performance measures and data sets 2019 José-Ramón Cano
Pedro Antonio Gutiérrez
Bartosz Krawczyk
Michał Woźniak
Salvador García
1
+ The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo 2014 Matthew D. Homan
Andrew Gelman
1
+ PDF Chat Consistent manifold representation for topological data analysis 2019 Tyrus Berry
Timothy Sauer
1
+ Texture synthesis using convolutional neural networks 2015 Leon A. Gatys
Alexander S. Ecker
Matthias Bethge
1
+ On the Validity of Bayesian Neural Networks for Uncertainty Estimation 2019 John Mitros
Brian Mac Namee
1
+ B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data 2020 Liu Yang
Xuhui Meng
George Em Karniadakis
1
+ We Know Where We Don't Know: 3D Bayesian CNNs for Credible Geometric Uncertainty 2020 Tyler LaBonte
Carianne Martinez
Scott Alan Roberts
1
+ Prediction of the evolution of the stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural network model 2020 Ari Frankel
Kousuke Tachida
Reese E. Jones
1
+ Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty 2020 Miguel Monteiro
Loïc Le Folgoc
Daniel C. Castro
Nick Pawlowski
Bernardo Marques
Konstantinos Kamnitsas
Mark van der Wilk
Ben Glocker
1
+ PDF Chat StressGAN: A Generative Deep Learning Model for Two-Dimensional Stress Distribution Prediction 2021 Haoliang Jiang
Zhenguo Nie
Roselyn Yeo
Amir Barati Farimani
Levent Burak Kara
1
+ PDF Chat Hands-On Bayesian Neural Networks—A Tutorial for Deep Learning Users 2022 Laurent Valentin Jospin
Hamid Laga
Farid Boussaïd
Wray Buntine
Mohammed Bennamoun
1
+ Notes on the Behavior of MC Dropout 2020 Francesco Verdoja
Ville Kyrki
1
+ Machine learning enabled discovery of application dependent design principles for two-dimensional materials 2020 Victor Venturi
Holden Parks
Zeeshan Ahmad
Venkatasubramanian Viswanathan
1
+ Deep Convolutional Encoder‐Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media 2018 Shaoxing Mo
Yinhao Zhu
Nicholas Zabaras
Xiaoqing Shi
Jichun Wu
1
+ PDF Chat Whence the Expected Free Energy? 2021 Beren Millidge
Alexander Tschantz
Christopher L. Buckley
1