Lam M. Nguyen

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Abstracted Shapes as Tokens -- A Generalizable and Interpretable Model for Time-series Classification 2024 Yunshi Wen
Tengfei Ma
Tsui-Wei Weng
Lam M. Nguyen
A. Agung Julius
+ PDF Chat Shuffling Gradient-Based Methods for Nonconvex-Concave Minimax Optimization 2024 Quoc Tran-Dinh
Trang H. Tran
Lam M. Nguyen
+ PDF Chat Guaranteeing Conservation Laws with Projection in Physics-Informed Neural Networks 2024 Albert V. Baez
Wang Zhang
Ziwen Ma
Subhro Das
Lam M. Nguyen
Luca Daniel
+ Shuffling Momentum Gradient Algorithm for Convex Optimization 2024 Trang H. Tran
Quoc Tran-Dinh
Lam M. Nguyen
+ PDF Chat One Step Closer to Unbiased Aleatoric Uncertainty Estimation 2024 Zhang Wang
Ziwen Martin
Subhro Das
Tsui-Wei Weng
Alexandre Megretski
Luca Daniel
Lam M. Nguyen
+ PDF Chat Shuffling Momentum Gradient Algorithm for Convex Optimization 2024 Trang H. Tran
Quoc Tran-Dinh
Lam M. Nguyen
+ PDF Chat Stochastic ISTA/FISTA Adaptive Step Search Algorithms for Convex Composite Optimization 2024 Lam M. Nguyen
Katya Scheinberg
Trang H. Tran
+ PDF Chat Promoting Robustness of Randomized Smoothing: Two Cost-Effective Approaches 2023 Linbo Liu
Trong Nghia Hoang
Lam M. Nguyen
Tsui-Wei Weng
+ PDF Chat Attacking c-MARL More Effectively: A Data Driven Approach 2023 Nhan H. Pham
Lam M. Nguyen
Jie Chen
Hoang Thanh Lam
Subhro Das
Tsui-Wei Weng
+ ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction 2023 Wang Zhang
Tsui-Wei Weng
Subhro Das
Alexandre Megretski
Luca Daniel
Lam M. Nguyen
+ An End-to-End Time Series Model for Simultaneous Imputation and Forecast 2023 Trang H. Tran
Lam M. Nguyen
Kyongmin Yeo
Nam Nguyen
Dzung T. Phan
Roman Vaculín
Jayant Kalagnanam
+ Learning Robust and Consistent Time Series Representations: A Dilated Inception-Based Approach 2023 Anh Nguyen
Trang H. Tran
Hieu H. Pham
Phi Le Nguyen
Lam M. Nguyen
+ Batch Clipping and Adaptive Layerwise Clipping for Differential Private Stochastic Gradient Descent 2023 Toan N. Nguyen
Phuong Ha Nguyen
Lam M. Nguyen
Marten van Dijk
+ Promoting Robustness of Randomized Smoothing: Two Cost-Effective Approaches 2023 Linbo Liu
Trong Nghia Hoang
Lam M. Nguyen
Tsui-Wei Weng
+ A Supervised Contrastive Learning Pretrain-Finetune Approach for Time Series 2023 Trang H. Tran
Lam M. Nguyen
Kyongmin Yeo
Nam Khanh Nguyen
Roman Vaculín
+ One step closer to unbiased aleatoric uncertainty estimation 2023 Wang Zhang
Ziwen Ma
Subhro Das
Tsui-Wei Weng
Alexandre Megretski
Luca Daniel
Lam M. Nguyen
+ PDF Chat Interpretable Clustering via Multi-Polytope Machines 2022 Connor Lawless
Jayant Kalagnanam
Lam M. Nguyen
Dzung T. Phan
Chandra Reddy
+ PDF Chat Finite-sum smooth optimization with SARAH 2022 Lam M. Nguyen
Marten van Dijk
Dzung T. Phan
Phuong Ha Nguyen
Tsui-Wei Weng
Jayant Kalagnanam
+ Attacking c-MARL More Effectively: A Data Driven Approach 2022 Nhan H. Pham
Lam M. Nguyen
Jie Chen
Hoang Thanh Lam
Subhro Das
Tsui-Wei Weng
+ Finite-Sum Optimization: A New Perspective for Convergence to a Global Solution 2022 Lam M. Nguyen
Trang H. Tran
Marten van Dijk
+ Nesterov Accelerated Shuffling Gradient Method for Convex Optimization 2022 Trang H. Tran
Lam M. Nguyen
Katya Scheinberg
+ StepDIRECT -- A Derivative-Free Optimization Method for Stepwise Functions 2022 Dzung T. Phan
Huan Liu
Lam M. Nguyen
+ PDF Chat StepDIRECT - A Derivative-Free Optimization Method for Stepwise Functions 2022 Dzung T. Phan
Huan Liu
Lam M. Nguyen
+ Finding Optimal Policy for Queueing Models: New Parameterization 2022 Trang H. Tran
Lam M. Nguyen
Katya Scheinberg
+ Generalizing DP-SGD with Shuffling and Batch Clipping 2022 Marten van Dijk
Phuong Ha Nguyen
Toan N. Nguyen
Lam M. Nguyen
+ On Unbalanced Optimal Transport: Gradient Methods, Sparsity and Approximation Error 2022 Quang Minh Nhi Nguyen
Hoang Huy Nguyen
Yi Zhou
Lam M. Nguyen
+ On the Convergence to a Global Solution of Shuffling-Type Gradient Algorithms 2022 Lam M. Nguyen
Trang H. Tran
+ PDF Chat Interpretable Clustering via Multi-Polytope Machines 2021 Connor Lawless
Jayant Kalagnanam
Lam M. Nguyen
Dzung T. Phan
Chandra Reddy
+ On the Equivalence between Neural Network and Support Vector Machine 2021 Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
+ PDF Chat On the Equivalence between Neural Network and Support Vector Machine 2021 Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
+ Federated Learning with Randomized Douglas-Rachford Splitting Methods. 2021 Nhan H. Pham
Lam M. Nguyen
Dzung T. Phan
Quoc Tran-Dinh
+ FedDR -- Randomized Douglas-Rachford Splitting Algorithms for Nonconvex Federated Composite Optimization. 2021 Quoc Tran-Dinh
Nhan H. Pham
Dzung T. Phan
Lam M. Nguyen
+ Differential Private Hogwild! over Distributed Local Data Sets. 2021 Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Phuong Ha Nguyen
+ Bringing Differential Private SGD to Practice: On the Independence of Gaussian Noise and the Number of Training Rounds 2021 Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Phuong Ha Nguyen
+ On the Equivalence between Neural Network and Support Vector Machine 2021 Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
+ FedDR -- Randomized Douglas-Rachford Splitting Algorithms for Nonconvex Federated Composite Optimization 2021 Quoc Tran-Dinh
Nhan H. Pham
Dzung T. Phan
Lam M. Nguyen
+ Proactive DP: A Multple Target Optimization Framework for DP-SGD 2021 Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Phuong Ha Nguyen
+ Interpretable Clustering via Multi-Polytope Machines 2021 Connor Lawless
Jayant Kalagnanam
Lam M. Nguyen
Dzung T. Phan
Chandra Reddy
+ Shuffling Gradient-Based Methods with Momentum. 2020 Trang H. Tran
Lam M. Nguyen
Quoc Tran-Dinh
+ SMG: A Shuffling Gradient-Based Method with Momentum 2020 Trang H. Tran
Lam M. Nguyen
Quoc Tran-Dinh
+ PDF Chat Inexact SARAH algorithm for stochastic optimization 2020 Lam M. Nguyen
Katya Scheinberg
Martin Takáč
+ Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization 2020 Quoc Tran-Dinh
Nhan H. Pham
Lam M. Nguyen
+ Convergence Rates of Accelerated Markov Gradient Descent with Applications in Reinforcement Learning 2020 Thinh T. Doan
Lam M. Nguyen
Nhan H. Pham
Justin Romberg
+ A Unified Convergence Analysis for Shuffling-Type Gradient Methods 2020 Lam M. Nguyen
Quoc Tran-Dinh
Dzung T. Phan
Phuong Ha Nguyen
Marten van Dijk
+ A Hybrid Stochastic Policy Gradient Algorithm for Reinforcement Learning 2020 Nhan H. Pham
Lam M. Nguyen
Dzung T. Phan
Phuong Ha Nguyen
Marten van Dijk
Quoc Tran-Dinh
+ Finite-Time Analysis of Stochastic Gradient Descent under Markov Randomness 2020 Thinh T. Doan
Lam M. Nguyen
Nhan H. Pham
Justin Romberg
+ Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax Problems 2020 Quoc Tran-Dinh
Deyi Liu
Lam M. Nguyen
+ Asynchronous Federated Learning with Reduced Number of Rounds and with Differential Privacy from Less Aggregated Gaussian Noise 2020 Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Quoc Tran-Dinh
Phuong Ha Nguyen
+ An Optimal Hybrid Variance-Reduced Algorithm for Stochastic Composite Nonconvex Optimization 2020 Deyi Liu
Lam M. Nguyen
Quoc Tran-Dinh
+ Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes 2020 Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Quoc Tran-Dinh
Phuong Ha Nguyen
+ A Scalable MIP-based Method for Learning Optimal Multivariate Decision Trees 2020 Haoran Zhu
Pavankumar Murali
Dzung T. Phan
Lam M. Nguyen
Jayant Kalagnanam
+ SMG: A Shuffling Gradient-Based Method with Momentum 2020 Trang Tran
Lam M. Nguyen
Quoc Tran-Dinh
+ Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization 2020 Quoc Tran-Dinh
Nhan H. Pham
Lam M. Nguyen
+ Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD 2019 Marten van Dijk
Lam M. Nguyen
Phuong Ha Nguyen
Dzung T. Phan
+ Hybrid Stochastic Gradient Descent Algorithms for Stochastic Nonconvex Optimization 2019 Quoc Tran-Dinh
Nhan H. Pham
Dzung T. Phan
Lam M. Nguyen
+ Optimal Finite-Sum Smooth Non-Convex Optimization with SARAH. 2019 Lam M. Nguyen
Marten van Dijk
Dzung T. Phan
Phuong Ha Nguyen
Tsui-Wei Weng
Jayant Kalagnanam
+ DTN: A Learning Rate Scheme with Convergence Rate of $\mathcal{O}(1/t)$ for SGD 2019 Lam M. Nguyen
Phuong Ha Nguyen
Dzung T. Phan
Jayant Kalagnanam
Marten van Dijk
+ ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization 2019 Nhan H. Pham
Lam M. Nguyen
Dzung T. Phan
Quoc Tran-Dinh
+ A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization 2019 Quoc Tran-Dinh
Nhan H. Pham
Dzung T. Phan
Lam M. Nguyen
+ Tight Dimension Independent Lower Bound on the Expected Convergence Rate for Diminishing Step Sizes in SGD 2019 Phuong Ha Nguyen
Lam M. Nguyen
Marten van Dijk
+ BUZz: BUffer Zones for defending adversarial examples in image classification 2019 Phuong Ha Nguyen
Kaleel Mahmood
Lam M. Nguyen
Thanh Thi Nguyen
Marten van Dijk
+ New Convergence Aspects of Stochastic Gradient Algorithms 2019 Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
Katya Scheinberg
Martin Takáč
Marten van Dijk
+ Hybrid Stochastic Gradient Descent Algorithms for Stochastic Nonconvex Optimization 2019 Quoc Tran-Dinh
Nhan H. Pham
Dzung T. Phan
Lam M. Nguyen
+ DTN: A Learning Rate Scheme with Convergence Rate of $\mathcal{O}(1/t)$ for SGD 2019 Lam M. Nguyen
Phuong Ha Nguyen
Dzung T. Phan
Jayant Kalagnanam
Marten van Dijk
+ Finite-Sum Smooth Optimization with SARAH 2019 Lam M. Nguyen
Marten van Dijk
Dzung T. Phan
Phuong Ha Nguyen
Tsui-Wei Weng
Jayant Kalagnanam
+ PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach 2018 Tsui-Wei Weng
Pin‐Yu Chen
Lam M. Nguyen
Mark S. Squillante
Ivan Oseledets
Luca Daniel
+ Inexact SARAH Algorithm for Stochastic Optimization 2018 Lam M. Nguyen
Katya Scheinberg
Martin Takáč
+ New Convergence Aspects of Stochastic Gradient Algorithms 2018 Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
Katya Scheinberg
Martin Takáč
Marten van Dijk
+ Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD 2018 Marten van Dijk
Lam M. Nguyen
Phuong Ha Nguyen
Dzung T. Phan
+ When Does Stochastic Gradient Algorithm Work Well? 2018 Lam M. Nguyen
Nam Nguyen
Dzung T. Phan
Jayant Kalagnanam
Katya Scheinberg
+ SGD and Hogwild! Convergence Without the Bounded Gradients Assumption 2018 Lam M. Nguyen
Phuong Ha Nguyen
Marten van Dijk
Peter Richtárik
Katya Scheinberg
Martin Takáč
+ Tight Dimension Independent Lower Bound on the Expected Convergence Rate for Diminishing Step Sizes in SGD 2018 Phuong Ha Nguyen
Lam M. Nguyen
Marten van Dijk
+ PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach 2018 Tsui-Wei Weng
Pin‐Yu Chen
Lam M. Nguyen
Mark S. Squillante
Ivan Oseledets
Luca Daniel
+ Inexact SARAH Algorithm for Stochastic Optimization 2018 Lam M. Nguyen
Katya Scheinberg
Martin Takáč
+ New Convergence Aspects of Stochastic Gradient Algorithms 2018 Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
Katya Scheinberg
Martin Takáč
Marten van Dijk
+ Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD 2018 Marten van Dijk
Lam M. Nguyen
Phuong Ha Nguyen
Dzung T. Phan
+ PDF Chat A queueing system with on-demand servers: local stability of fluid limits 2017 Lam M. Nguyen
Alexander Stolyar
+ SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient 2017 Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin Takáč
+ Stochastic Recursive Gradient Algorithm for Nonconvex Optimization 2017 Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin Takáč
+ SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient 2017 Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin Takáč
+ PDF Chat A Service System with Randomly Behaving On-demand Agents 2016 Lam M. Nguyen
Alexander Stolyar
+ PDF Chat A Service System with Randomly Behaving On-demand Agents 2016 Lam M. Nguyen
Alexander Stolyar
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient 2017 Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin Takáč
17
+ Optimization Methods for Large-Scale Machine Learning 2018 Léon Bottou
Frank E. Curtis
Jorge Nocedal
12
+ SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives 2014 Aaron Defazio
Francis Bach
Simon Lacoste-Julien
11
+ A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets 2012 Nicolas Le Roux
Mark Schmidt
Francis Bach
11
+ SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator 2018 Cong Fang
Chris Junchi Li
Zhouchen Lin
Tong Zhang
10
+ PDF Chat Minimizing finite sums with the stochastic average gradient 2016 Mark Schmidt
Nicolas Le Roux
Francis Bach
9
+ PDF Chat Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming 2013 Saeed Ghadimi
Guanghui Lan
8
+ Introductory Lectures on Convex Optimization: A Basic Course 2014 Ю Е Нестеров
8
+ Stochastic Recursive Gradient Algorithm for Nonconvex Optimization 2017 Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin Takáč
8
+ Robust Stochastic Approximation Approach to Stochastic Programming 2009 Arkadi Nemirovski
Anatoli Juditsky
Guanghui Lan
Alexander Shapiro
7
+ Non-convex Finite-Sum Optimization Via SCSG Methods 2017 Lihua Lei
Cheng Ju
Jianbo Chen
Michael I. Jordan
7
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
7
+ Some methods of speeding up the convergence of iteration methods 1964 B. T. Polyak
7
+ Stochastic Variance Reduction for Nonconvex Optimization 2016 Sashank J. Reddi
Ahmed Hefny
Suvrit Sra
Barnabás Póczos
Alex Smola
6
+ Semi-Stochastic Gradient Descent Methods 2013 Jakub Konečný
Peter Richtárik
6
+ Cubic regularization of Newton method and its global performance 2006 Yurii Nesterov
B. T. Polyak
6
+ PDF Chat Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition 2016 Hamed Karimi
Julie Nutini
Mark Schmidt
6
+ Optimization Methods for Large-Scale Machine Learning 2016 Léon Bottou
Frank E. Curtis
Jorge Nocedal
6
+ PDF Chat Finite-sum smooth optimization with SARAH 2022 Lam M. Nguyen
Marten van Dijk
Dzung T. Phan
Phuong Ha Nguyen
Tsui-Wei Weng
Jayant Kalagnanam
5
+ When Does Stochastic Gradient Algorithm Work Well? 2018 Lam M. Nguyen
Nam Nguyen
Dzung T. Phan
Jayant Kalagnanam
Katya Scheinberg
5
+ PDF Chat Katyusha: the first direct acceleration of stochastic gradient methods 2017 Zeyuan Allen-Zhu
4
+ Momentum-Based Variance Reduction in Non-Convex SGD 2019 Ashok Cutkosky
Francesco Orabona
4
+ Stochastic Variance Reduction for Nonconvex Optimization 2016 Sashank J. Reddi
Ahmed Hefny
Suvrit Sra
Barnabás Póczos
Alex Smola
4
+ PDF Chat Stochastic Frank-Wolfe methods for nonconvex optimization 2016 Sashank J. Reddi
Suvrit Sra
Barnabás Póczos
Alex Smola
4
+ A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization 2019 Quoc Tran-Dinh
Nhan H. Pham
Dzung T. Phan
Lam M. Nguyen
4
+ PDF Chat Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey 2011 Dimitri P. Bertsekas
4
+ HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent 2011 Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
4
+ SpiderBoost: A Class of Faster Variance-reduced Algorithms for Nonconvex Optimization. 2018 Zhe Wang
Kaiyi Ji
Yi Zhou
Yingbin Liang
Vahid Tarokh
4
+ Local SGD Converges Fast and Communicates Little 2018 Sebastian U. Stich
4
+ Inexact SARAH Algorithm for Stochastic Optimization 2018 Lam M. Nguyen
Katya Scheinberg
Martin Takáč
4
+ New Convergence Aspects of Stochastic Gradient Algorithms 2019 Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
Katya Scheinberg
Martin Takáč
Marten van Dijk
4
+ PDF Chat Accelerated gradient methods for nonconvex nonlinear and stochastic programming 2015 Saeed Ghadimi
Guanghui Lan
3
+ PDF Chat Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications 2018 Antonin Chambolle
Matthias J. Ehrhardt
Peter Richtárik
Carola‐Bibiane Schönlieb
3
+ PDF Chat A service system with on-demand agent invitations 2015 Guodong Pang
Alexander Stolyar
3
+ A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) 1983 Yurii Nesterov
3
+ Federated Optimization: Distributed Machine Learning for On-Device Intelligence 2016 Jakub Konečný
H. Brendan McMahan
Daniel Ramage
Peter Richtárik
3
+ Proximal stochastic methods for nonsmooth nonconvex finite-sum optimization 2016 Sashank J. Reddi
Suvrit Sra
Barnabás Póczos
Alexander J. Smola
3
+ PDF Chat Incremental proximal methods for large scale convex optimization 2011 Dimitri P. Bertsekas
3
+ PDF Chat Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions 2016 Mengdi Wang
Ethan X. Fang
Han Liu
3
+ PDF Chat Convergence analysis of distributed stochastic gradient descent with shuffling 2019 Qi Meng
Wei Chen
Yue Wang
Zhi-Ming Ma
Tie‐Yan Liu
3
+ Fast Convergence of Stochastic Gradient Descent under a Strong Growth Condition 2013 Mark Schmidt
Nicolas Le Roux
3
+ PDF Chat A Proximal Stochastic Gradient Method with Progressive Variance Reduction 2014 Lin Xiao
Tong Zhang
3
+ Hybrid Stochastic Gradient Descent Algorithms for Stochastic Nonconvex Optimization 2019 Quoc Tran-Dinh
Nhan H. Pham
Dzung T. Phan
Lam M. Nguyen
3
+ SGD without Replacement: Sharper Rates for General Smooth Convex Functions 2019 Anant Raj
Prateek Jain
Praneeth Netrapalli
3
+ Asynchronous Federated Optimization 2019 Cong Xie
Oluwasanmi Koyejo
Indranil Gupta
3
+ Principles of mathematical analysis 1964 Walter Rudin
3
+ Optimal Finite-Sum Smooth Non-Convex Optimization with SARAH. 2019 Lam M. Nguyen
Marten van Dijk
Dzung T. Phan
Phuong Ha Nguyen
Tsui-Wei Weng
Jayant Kalagnanam
3
+ Natasha: Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter 2017 Zeyuan Allen-Zhu
3
+ Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms 2017 Xiao Han
Kashif Rasul
Roland Vollgraf
3
+ PDF Chat Optimization for Machine Learning 2011 Suvrit Sra
Sebastian Nowozin
Stephen J. Wright
3