+
PDF
Chat
|
Abstracted Shapes as Tokens -- A Generalizable and Interpretable Model
for Time-series Classification
|
2024
|
Yunshi Wen
Tengfei Ma
Tsui-Wei Weng
Lam M. Nguyen
A. Agung Julius
|
+
PDF
Chat
|
Shuffling Gradient-Based Methods for Nonconvex-Concave Minimax
Optimization
|
2024
|
Quoc Tran-Dinh
Trang H. Tran
Lam M. Nguyen
|
+
PDF
Chat
|
Guaranteeing Conservation Laws with Projection in Physics-Informed
Neural Networks
|
2024
|
Albert V. Baez
Wang Zhang
Ziwen Ma
Subhro Das
Lam M. Nguyen
Luca Daniel
|
+
|
Shuffling Momentum Gradient Algorithm for Convex Optimization
|
2024
|
Trang H. Tran
Quoc Tran-Dinh
Lam M. Nguyen
|
+
PDF
Chat
|
One Step Closer to Unbiased Aleatoric Uncertainty Estimation
|
2024
|
Zhang Wang
Ziwen Martin
Subhro Das
Tsui-Wei Weng
Alexandre Megretski
Luca Daniel
Lam M. Nguyen
|
+
PDF
Chat
|
Shuffling Momentum Gradient Algorithm for Convex Optimization
|
2024
|
Trang H. Tran
Quoc Tran-Dinh
Lam M. Nguyen
|
+
PDF
Chat
|
Stochastic ISTA/FISTA Adaptive Step Search Algorithms for Convex
Composite Optimization
|
2024
|
Lam M. Nguyen
Katya Scheinberg
Trang H. Tran
|
+
PDF
Chat
|
Promoting Robustness of Randomized Smoothing: Two Cost-Effective Approaches
|
2023
|
Linbo Liu
Trong Nghia Hoang
Lam M. Nguyen
Tsui-Wei Weng
|
+
PDF
Chat
|
Attacking c-MARL More Effectively: A Data Driven Approach
|
2023
|
Nhan H. Pham
Lam M. Nguyen
Jie Chen
Hoang Thanh Lam
Subhro Das
Tsui-Wei Weng
|
+
|
ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction
|
2023
|
Wang Zhang
Tsui-Wei Weng
Subhro Das
Alexandre Megretski
Luca Daniel
Lam M. Nguyen
|
+
|
An End-to-End Time Series Model for Simultaneous Imputation and Forecast
|
2023
|
Trang H. Tran
Lam M. Nguyen
Kyongmin Yeo
Nam Nguyen
Dzung T. Phan
Roman Vaculín
Jayant Kalagnanam
|
+
|
Learning Robust and Consistent Time Series Representations: A Dilated Inception-Based Approach
|
2023
|
Anh Nguyen
Trang H. Tran
Hieu H. Pham
Phi Le Nguyen
Lam M. Nguyen
|
+
|
Batch Clipping and Adaptive Layerwise Clipping for Differential Private Stochastic Gradient Descent
|
2023
|
Toan N. Nguyen
Phuong Ha Nguyen
Lam M. Nguyen
Marten van Dijk
|
+
|
Promoting Robustness of Randomized Smoothing: Two Cost-Effective Approaches
|
2023
|
Linbo Liu
Trong Nghia Hoang
Lam M. Nguyen
Tsui-Wei Weng
|
+
|
A Supervised Contrastive Learning Pretrain-Finetune Approach for Time Series
|
2023
|
Trang H. Tran
Lam M. Nguyen
Kyongmin Yeo
Nam Khanh Nguyen
Roman Vaculín
|
+
|
One step closer to unbiased aleatoric uncertainty estimation
|
2023
|
Wang Zhang
Ziwen Ma
Subhro Das
Tsui-Wei Weng
Alexandre Megretski
Luca Daniel
Lam M. Nguyen
|
+
PDF
Chat
|
Interpretable Clustering via Multi-Polytope Machines
|
2022
|
Connor Lawless
Jayant Kalagnanam
Lam M. Nguyen
Dzung T. Phan
Chandra Reddy
|
+
PDF
Chat
|
Finite-sum smooth optimization with SARAH
|
2022
|
Lam M. Nguyen
Marten van Dijk
Dzung T. Phan
Phuong Ha Nguyen
Tsui-Wei Weng
Jayant Kalagnanam
|
+
|
Attacking c-MARL More Effectively: A Data Driven Approach
|
2022
|
Nhan H. Pham
Lam M. Nguyen
Jie Chen
Hoang Thanh Lam
Subhro Das
Tsui-Wei Weng
|
+
|
Finite-Sum Optimization: A New Perspective for Convergence to a Global Solution
|
2022
|
Lam M. Nguyen
Trang H. Tran
Marten van Dijk
|
+
|
Nesterov Accelerated Shuffling Gradient Method for Convex Optimization
|
2022
|
Trang H. Tran
Lam M. Nguyen
Katya Scheinberg
|
+
|
StepDIRECT -- A Derivative-Free Optimization Method for Stepwise Functions
|
2022
|
Dzung T. Phan
Huan Liu
Lam M. Nguyen
|
+
PDF
Chat
|
StepDIRECT - A Derivative-Free Optimization Method for Stepwise Functions
|
2022
|
Dzung T. Phan
Huan Liu
Lam M. Nguyen
|
+
|
Finding Optimal Policy for Queueing Models: New Parameterization
|
2022
|
Trang H. Tran
Lam M. Nguyen
Katya Scheinberg
|
+
|
Generalizing DP-SGD with Shuffling and Batch Clipping
|
2022
|
Marten van Dijk
Phuong Ha Nguyen
Toan N. Nguyen
Lam M. Nguyen
|
+
|
On Unbalanced Optimal Transport: Gradient Methods, Sparsity and Approximation Error
|
2022
|
Quang Minh Nhi Nguyen
Hoang Huy Nguyen
Yi Zhou
Lam M. Nguyen
|
+
|
On the Convergence to a Global Solution of Shuffling-Type Gradient Algorithms
|
2022
|
Lam M. Nguyen
Trang H. Tran
|
+
PDF
Chat
|
Interpretable Clustering via Multi-Polytope Machines
|
2021
|
Connor Lawless
Jayant Kalagnanam
Lam M. Nguyen
Dzung T. Phan
Chandra Reddy
|
+
|
On the Equivalence between Neural Network and Support Vector Machine
|
2021
|
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
|
+
PDF
Chat
|
On the Equivalence between Neural Network and Support Vector Machine
|
2021
|
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
|
+
|
Federated Learning with Randomized Douglas-Rachford Splitting Methods.
|
2021
|
Nhan H. Pham
Lam M. Nguyen
Dzung T. Phan
Quoc Tran-Dinh
|
+
|
FedDR -- Randomized Douglas-Rachford Splitting Algorithms for Nonconvex Federated Composite Optimization.
|
2021
|
Quoc Tran-Dinh
Nhan H. Pham
Dzung T. Phan
Lam M. Nguyen
|
+
|
Differential Private Hogwild! over Distributed Local Data Sets.
|
2021
|
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Phuong Ha Nguyen
|
+
|
Bringing Differential Private SGD to Practice: On the Independence of Gaussian Noise and the Number of Training Rounds
|
2021
|
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Phuong Ha Nguyen
|
+
|
On the Equivalence between Neural Network and Support Vector Machine
|
2021
|
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
|
+
|
FedDR -- Randomized Douglas-Rachford Splitting Algorithms for Nonconvex Federated Composite Optimization
|
2021
|
Quoc Tran-Dinh
Nhan H. Pham
Dzung T. Phan
Lam M. Nguyen
|
+
|
Proactive DP: A Multple Target Optimization Framework for DP-SGD
|
2021
|
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Phuong Ha Nguyen
|
+
|
Interpretable Clustering via Multi-Polytope Machines
|
2021
|
Connor Lawless
Jayant Kalagnanam
Lam M. Nguyen
Dzung T. Phan
Chandra Reddy
|
+
|
Shuffling Gradient-Based Methods with Momentum.
|
2020
|
Trang H. Tran
Lam M. Nguyen
Quoc Tran-Dinh
|
+
|
SMG: A Shuffling Gradient-Based Method with Momentum
|
2020
|
Trang H. Tran
Lam M. Nguyen
Quoc Tran-Dinh
|
+
PDF
Chat
|
Inexact SARAH algorithm for stochastic optimization
|
2020
|
Lam M. Nguyen
Katya Scheinberg
Martin Takáč
|
+
|
Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization
|
2020
|
Quoc Tran-Dinh
Nhan H. Pham
Lam M. Nguyen
|
+
|
Convergence Rates of Accelerated Markov Gradient Descent with Applications in Reinforcement Learning
|
2020
|
Thinh T. Doan
Lam M. Nguyen
Nhan H. Pham
Justin Romberg
|
+
|
A Unified Convergence Analysis for Shuffling-Type Gradient Methods
|
2020
|
Lam M. Nguyen
Quoc Tran-Dinh
Dzung T. Phan
Phuong Ha Nguyen
Marten van Dijk
|
+
|
A Hybrid Stochastic Policy Gradient Algorithm for Reinforcement Learning
|
2020
|
Nhan H. Pham
Lam M. Nguyen
Dzung T. Phan
Phuong Ha Nguyen
Marten van Dijk
Quoc Tran-Dinh
|
+
|
Finite-Time Analysis of Stochastic Gradient Descent under Markov Randomness
|
2020
|
Thinh T. Doan
Lam M. Nguyen
Nhan H. Pham
Justin Romberg
|
+
|
Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax Problems
|
2020
|
Quoc Tran-Dinh
Deyi Liu
Lam M. Nguyen
|
+
|
Asynchronous Federated Learning with Reduced Number of Rounds and with Differential Privacy from Less Aggregated Gaussian Noise
|
2020
|
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Quoc Tran-Dinh
Phuong Ha Nguyen
|
+
|
An Optimal Hybrid Variance-Reduced Algorithm for Stochastic Composite Nonconvex Optimization
|
2020
|
Deyi Liu
Lam M. Nguyen
Quoc Tran-Dinh
|
+
|
Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes
|
2020
|
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Quoc Tran-Dinh
Phuong Ha Nguyen
|
+
|
A Scalable MIP-based Method for Learning Optimal Multivariate Decision Trees
|
2020
|
Haoran Zhu
Pavankumar Murali
Dzung T. Phan
Lam M. Nguyen
Jayant Kalagnanam
|
+
|
SMG: A Shuffling Gradient-Based Method with Momentum
|
2020
|
Trang Tran
Lam M. Nguyen
Quoc Tran-Dinh
|
+
|
Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization
|
2020
|
Quoc Tran-Dinh
Nhan H. Pham
Lam M. Nguyen
|
+
|
Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD
|
2019
|
Marten van Dijk
Lam M. Nguyen
Phuong Ha Nguyen
Dzung T. Phan
|
+
|
Hybrid Stochastic Gradient Descent Algorithms for Stochastic Nonconvex Optimization
|
2019
|
Quoc Tran-Dinh
Nhan H. Pham
Dzung T. Phan
Lam M. Nguyen
|
+
|
Optimal Finite-Sum Smooth Non-Convex Optimization with SARAH.
|
2019
|
Lam M. Nguyen
Marten van Dijk
Dzung T. Phan
Phuong Ha Nguyen
Tsui-Wei Weng
Jayant Kalagnanam
|
+
|
DTN: A Learning Rate Scheme with Convergence Rate of $\mathcal{O}(1/t)$ for SGD
|
2019
|
Lam M. Nguyen
Phuong Ha Nguyen
Dzung T. Phan
Jayant Kalagnanam
Marten van Dijk
|
+
|
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
|
2019
|
Nhan H. Pham
Lam M. Nguyen
Dzung T. Phan
Quoc Tran-Dinh
|
+
|
A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization
|
2019
|
Quoc Tran-Dinh
Nhan H. Pham
Dzung T. Phan
Lam M. Nguyen
|
+
|
Tight Dimension Independent Lower Bound on the Expected Convergence Rate for Diminishing Step Sizes in SGD
|
2019
|
Phuong Ha Nguyen
Lam M. Nguyen
Marten van Dijk
|
+
|
BUZz: BUffer Zones for defending adversarial examples in image classification
|
2019
|
Phuong Ha Nguyen
Kaleel Mahmood
Lam M. Nguyen
Thanh Thi Nguyen
Marten van Dijk
|
+
|
New Convergence Aspects of Stochastic Gradient Algorithms
|
2019
|
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
Katya Scheinberg
Martin Takáč
Marten van Dijk
|
+
|
Hybrid Stochastic Gradient Descent Algorithms for Stochastic Nonconvex Optimization
|
2019
|
Quoc Tran-Dinh
Nhan H. Pham
Dzung T. Phan
Lam M. Nguyen
|
+
|
DTN: A Learning Rate Scheme with Convergence Rate of $\mathcal{O}(1/t)$ for SGD
|
2019
|
Lam M. Nguyen
Phuong Ha Nguyen
Dzung T. Phan
Jayant Kalagnanam
Marten van Dijk
|
+
|
Finite-Sum Smooth Optimization with SARAH
|
2019
|
Lam M. Nguyen
Marten van Dijk
Dzung T. Phan
Phuong Ha Nguyen
Tsui-Wei Weng
Jayant Kalagnanam
|
+
|
PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach
|
2018
|
Tsui-Wei Weng
Pin‐Yu Chen
Lam M. Nguyen
Mark S. Squillante
Ivan Oseledets
Luca Daniel
|
+
|
Inexact SARAH Algorithm for Stochastic Optimization
|
2018
|
Lam M. Nguyen
Katya Scheinberg
Martin Takáč
|
+
|
New Convergence Aspects of Stochastic Gradient Algorithms
|
2018
|
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
Katya Scheinberg
Martin Takáč
Marten van Dijk
|
+
|
Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD
|
2018
|
Marten van Dijk
Lam M. Nguyen
Phuong Ha Nguyen
Dzung T. Phan
|
+
|
When Does Stochastic Gradient Algorithm Work Well?
|
2018
|
Lam M. Nguyen
Nam Nguyen
Dzung T. Phan
Jayant Kalagnanam
Katya Scheinberg
|
+
|
SGD and Hogwild! Convergence Without the Bounded Gradients Assumption
|
2018
|
Lam M. Nguyen
Phuong Ha Nguyen
Marten van Dijk
Peter Richtárik
Katya Scheinberg
Martin Takáč
|
+
|
Tight Dimension Independent Lower Bound on the Expected Convergence Rate for Diminishing Step Sizes in SGD
|
2018
|
Phuong Ha Nguyen
Lam M. Nguyen
Marten van Dijk
|
+
|
PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach
|
2018
|
Tsui-Wei Weng
Pin‐Yu Chen
Lam M. Nguyen
Mark S. Squillante
Ivan Oseledets
Luca Daniel
|
+
|
Inexact SARAH Algorithm for Stochastic Optimization
|
2018
|
Lam M. Nguyen
Katya Scheinberg
Martin Takáč
|
+
|
New Convergence Aspects of Stochastic Gradient Algorithms
|
2018
|
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
Katya Scheinberg
Martin Takáč
Marten van Dijk
|
+
|
Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD
|
2018
|
Marten van Dijk
Lam M. Nguyen
Phuong Ha Nguyen
Dzung T. Phan
|
+
PDF
Chat
|
A queueing system with on-demand servers: local stability of fluid limits
|
2017
|
Lam M. Nguyen
Alexander Stolyar
|
+
|
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
|
2017
|
Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin Takáč
|
+
|
Stochastic Recursive Gradient Algorithm for Nonconvex Optimization
|
2017
|
Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin Takáč
|
+
|
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
|
2017
|
Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin Takáč
|
+
PDF
Chat
|
A Service System with Randomly Behaving On-demand Agents
|
2016
|
Lam M. Nguyen
Alexander Stolyar
|
+
PDF
Chat
|
A Service System with Randomly Behaving On-demand Agents
|
2016
|
Lam M. Nguyen
Alexander Stolyar
|