Genevera I. Allen

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Cluster Quilting: Spectral Clustering for Patchwork Learning 2024 Lili Zheng
Andersen Chang
Genevera I. Allen
+ PDF Chat Fair MP-BOOST: Fair and Interpretable Minipatch Boosting 2024 Camille Olivia Little
Genevera I. Allen
+ Data Augmentation via Subgroup Mixup for Improving Fairness 2024 Madeline Navarro
Camille Little
Genevera I. Allen
Santiago Segarra
+ PDF Chat Graphical Model Inference with Erosely Measured Data 2023 Lili Zheng
Genevera I. Allen
+ PDF Chat Subbotin graphical models for extreme value dependencies with applications to functional neuronal connectivity 2023 Andersen Chang
Genevera I. Allen
+ PDF Chat Supervised Convex Clustering 2023 Minjie Wang
Tianyi Yao
Genevera I. Allen
+ Nonparanormal Graph Quilting with Applications to Calcium Imaging 2023 Andersen Chang
Lili Zheng
Gautam Dasarthy
Genevera I. Allen
+ Interpretable Machine Learning for Discovery: Statistical Challenges \& Opportunities 2023 Genevera I. Allen
Luqin Gan
Lili Zheng
+ Data Augmentation via Subgroup Mixup for Improving Fairness 2023 Madeline Navarro
Camille Little
Genevera I. Allen
Santiago Segarra
+ PDF Chat Nonparanormal graph quilting with applications to calcium imaging 2023 Andersen Chang
Lili Zheng
Gautam Dasarathy
Genevera I. Allen
+ Joint Semi-Symmetric Tensor PCA for Integrating Multi-modal Populations of Networks 2023 Jiaming Liu
Lili Zheng
Zhengwu Zhang
Genevera I. Allen
+ Fair Feature Importance Scores for Interpreting Tree-Based Methods and Surrogates 2023 Camille Olivia Little
Debolina Halder Lina
Genevera I. Allen
+ Thresholded graphical lasso adjusts for latent variables 2022 Minjie Wang
Genevera I. Allen
+ PDF Chat Fast and interpretable consensus clustering via minipatch learning 2022 Luqin Gan
Genevera I. Allen
+ A Low-Rank Tensor Completion Approach for Imputing Functional Neuronal Data from Multiple Recordings 2022 Lili Zheng
Zachary T. Rewolinski
Genevera I. Allen
+ Correlation Imputation for Single-Cell RNA-seq 2022 Luqin Gan
Giuseppe Vinci
Genevera I. Allen
+ Model-Agnostic Confidence Intervals for Feature Importance: A Fast and Powerful Approach Using Minipatch Ensembles 2022 Luqin Gan
Lili Zheng
Genevera I. Allen
+ To the Fairness Frontier and Beyond: Identifying, Quantifying, and Optimizing the Fairness-Accuracy Pareto Frontier 2022 Camille Olivia Little
Michael Weylandt
Genevera I. Allen
+ Low-Rank Covariance Completion for Graph Quilting with Applications to Functional Connectivity 2022 Andersen Chang
Lili Zheng
Genevera I. Allen
+ Graphical Model Inference with Erosely Measured Data 2022 Lili Zheng
Genevera I. Allen
+ Network Clustering for Latent State and Changepoint Detection. 2021 Madeline Navarro
Genevera I. Allen
Michael Weylandt
+ Extreme Graphical Models with Applications to Functional Neuronal Connectivity 2021 Andersen Chang
Genevera I. Allen
+ PDF Chat Simultaneous Grouping and Denoising via Sparse Convex Wavelet Clustering 2021 Michael Weylandt
T. Mitchell Roddenberry
Genevera I. Allen
+ PDF Chat MP-Boost: Minipatch Boosting via Adaptive Feature and Observation Sampling 2021 Mohammad Taha Toghani
Genevera I. Allen
+ Thresholded Graphical Lasso Adjusts for Latent Variables: Application to Functional Neural Connectivity 2021 Minjie Wang
Genevera I. Allen
+ Integrated Principal Components Analysis 2021 Tiffany M. Tang
Genevera I. Allen
+ Fast and Accurate Graph Learning for Huge Data via Minipatch Ensembles 2021 Tianyi Yao
Minjie Wang
Genevera I. Allen
+ PDF Chat Sparse regression for extreme values 2021 Andersen Chang
Minjie Wang
Genevera I. Allen
+ Network Clustering for Latent State and Changepoint Detection 2021 Madeline Navarro
Genevera I. Allen
Michael Weylandt
+ Subbotin Graphical Models for Extreme Value Dependencies with Applications to Functional Neuronal Connectivity 2021 Andersen Chang
Genevera I. Allen
+ PDF Chat Interpretable Visualization and Higher-Order Dimension Reduction for ECoG Data 2020 Kelly Geyer
Frederick Campbell
Andersen Chang
John F. Magnotti
Michael S. Beauchamp
Genevera I. Allen
+ Simultaneous Grouping and Denoising via Sparse Convex Wavelet Clustering 2020 Michael Weylandt
T. Mitchell Roddenberry
Genevera I. Allen
+ PDF Chat Feature selection for data integration with mixed multiview data 2020 Yulia Baker
Tiffany M. Tang
Genevera I. Allen
+ Interpretable Visualization and Higher-Order Dimension Reduction for ECoG Data 2020 Kelly Geyer
Frederick Campbell
Andersen Chang
John F. Magnotti
Michael S. Beauchamp
Genevera I. Allen
+ Supervised Convex Clustering 2020 Minjie Wang
Tianyi Yao
Genevera I. Allen
+ Sparse Regression for Extreme Values 2020 Andersen Chang
Minjie Wang
Genevera I. Allen
+ Feature Selection for Huge Data via Minipatch Learning 2020 Tianyi Yao
Genevera I. Allen
+ Interpretable Visualization and Higher-Order Dimension Reduction for ECoG Data 2020 Kelly Geyer
Frederick Campbell
Andersen Chang
John F. Magnotti
Michael S. Beauchamp
Genevera I. Allen
+ Graph quilting: graphical model selection from partially observed covariances. 2019 Giuseppe Vinci
Gautam Dasarathy
Genevera I. Allen
+ PDF Chat Integrative Generalized Convex Clustering Optimization and Feature Selection for Mixed Multi-View Data 2019 Minjie Wang
Genevera I. Allen
+ PDF Chat Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization 2019 Michael Weylandt
John Nagorski
Genevera I. Allen
+ PDF Chat Sparse and Functional Principal Components Analysis 2019 Genevera I. Allen
Michael Weylandt
+ PDF Chat Clustered Gaussian Graphical Model Via Symmetric Convex Clustering 2019 Tianyi Yao
Genevera I. Allen
+ PDF Chat Tensor network factorizations: Relationships between brain structural connectomes and traits 2019 Zhengwu Zhang
Genevera I. Allen
Hongtu Zhu
David B. Dunson
+ Feature Selection for Data Integration with Mixed Multi-view Data. 2019 Yulia Baker
Tiffany M. Tang
Genevera I. Allen
+ Dynamic Visualization and Fast Computation for Convex Clustering and Bi-Clustering 2019 Michael Weylandt
John Nagorski
Genevera I. Allen
+ Clustered Gaussian Graphical Model via Symmetric Convex Clustering 2019 Tianyi Yao
Genevera I. Allen
+ Integrative Generalized Convex Clustering Optimization and Feature Selection for Mixed Multi-View Data 2019 Minjie Wang
Genevera I. Allen
+ Feature Selection for Data Integration with Mixed Multi-view Data 2019 Yulia Baker
Tiffany M. Tang
Genevera I. Allen
+ Graph quilting: graphical model selection from partially observed covariances 2019 Giuseppe Vinci
Gautam Dasarathy
Genevera I. Allen
+ Integrated Principal Components Analysis 2018 Tiffany M. Tang
Genevera I. Allen
+ PDF Chat Genomic region detection via Spatial Convex Clustering 2018 John Nagorski
Genevera I. Allen
+ Tensor network factorizations: Relationships between brain structural connectomes and traits 2018 Zhengwu Zhang
Genevera I. Allen
Hongtu Zhu
David B. Dunson
+ Integrated Principal Components Analysis 2018 Tiffany M. Tang
Genevera I. Allen
+ Statistical data integration: Challenges and opportunities 2017 Genevera I. Allen
+ PDF Chat A review of multivariate distributions for count data derived from the Poisson distribution 2017 David I. Inouye
Eunho Yang
Genevera I. Allen
Pradeep Ravikumar
+ PDF Chat Convex biclustering: Convex Biclustering 2017 C. Eric
Genevera I. Allen
Richard G. Baraniuk
+ Within group variable selection through the Exclusive Lasso 2017 Frederick Campbell
Genevera I. Allen
+ Genomic Region Detection via Spatial Convex Clustering 2016 John Nagorski
Genevera I. Allen
+ A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution 2016 David I. Inouye
Eunho Yang
Genevera I. Allen
Pradeep Ravikumar
+ PDF Chat Convex Biclustering 2016 C. Eric
Genevera I. Allen
Richard G. Baraniuk
+ A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution 2016 David I. Inouye
Eunho Yang
Genevera I. Allen
Pradeep Ravikumar
+ Genomic Region Detection via Spatial Convex Clustering 2016 John Nagorski
Genevera I. Allen
+ PDF Chat ADMM Algorithmic Regularization Paths for Sparse Statistical Machine Learning 2016 Yue Hu
C. Eric
Genevera I. Allen
+ PDF Chat Local-aggregate Modeling for Big Data via Distributed Optimization: Applications to Neuroimaging 2015 Yue Hu
Genevera I. Allen
+ Comments on “visualizing statistical models”: Visualizing modern statistical methods for Big Data 2015 Genevera I. Allen
Frederick Campbell
Yue Hu
+ Within Group Variable Selection through the Exclusive Lasso 2015 Frederick Campbell
Genevera I. Allen
+ Two Sample Inference for Populations of Graphical Models with Applications to Functional Connectivity 2015 Manjari Narayan
Genevera I. Allen
Tomson Steffie
+ ADMM Algorithmic Regularization Paths for Sparse Statistical Machine Learning 2015 Yue Hu
C. Eric
Genevera I. Allen
+ Within Group Variable Selection through the Exclusive Lasso 2015 Frederick Campbell
Genevera I. Allen
+ Two Sample Inference for Populations of Graphical Models with Applications to Functional Connectivity 2015 Manjari Narayan
Genevera I. Allen
Steffie Tomson
+ Singular Value Decomposition and High Dimensional Data 2014 Genevera I. Allen
Patrick O. Perry
+ PDF Chat On the Reproducibility of TCGA Ovarian Cancer MicroRNA Profiles 2014 Ying‐Wooi Wan
Claire M. Mach
Genevera I. Allen
Matthew L. Anderson
Zhandong Liu
+ A General Framework for Mixed Graphical Models 2014 Eunho Yang
Pradeep Ravikumar
Genevera I. Allen
Yulia Baker
Ying‐Wooi Wan
Zhandong Liu
+ Local-Aggregate Modeling for Big-Data via Distributed Optimization: Applications to Neuroimaging 2014 Yue Hu
Genevera I. Allen
+ On Poisson Graphical Models 2013 Eunho Yang
Pradeep Ravikumar
Genevera I. Allen
Zhandong Liu
+ Conditional Random Fields via Univariate Exponential Families 2013 Eunho Yang
Pradeep Ravikumar
Genevera I. Allen
Zhandong Liu
+ Multi-way functional principal components analysis 2013 Genevera I. Allen
+ PDF Chat A Generalized Least-Square Matrix Decomposition 2013 Genevera I. Allen
Logan Grosenick
Jonathan Taylor
+ On Graphical Models via Univariate Exponential Family Distributions 2013 Eunho Yang
Pradeep Ravikumar
Genevera I. Allen
Zhandong Liu
+ PDF Chat Regularized partial least squares with an application to NMR spectroscopy 2012 Genevera I. Allen
Christine B. Peterson
Marina Vannucci
Mirjana Maletić‐Savatić
+ PDF Chat A Log-Linear Graphical Model for inferring genetic networks from high-throughput sequencing data 2012 Genevera I. Allen
Zhandong Liu
+ Singular Value Decomposition and High Dimensional Data 2012 Genevera I. Allen
Patrick O. Perry
+ Sparse Higher-Order Principal Components Analysis 2012 Genevera I. Allen
+ Regularized Tensor Factorizations and Higher-Order Principal Components Analysis 2012 Genevera I. Allen
+ A Log-Linear Graphical Model for Inferring Genetic Networks from High-Throughput Sequencing Data 2012 Genevera I. Allen
Zhandong Liu
+ Regularized Partial Least Squares with an Application to NMR Spectroscopy 2012 Genevera I. Allen
Christine B. Peterson
Marina Vannucci
Mirjana Maletić‐Savatić
+ A Generalized Least Squares Matrix Decomposition 2011 Genevera I. Allen
Logan Grosenick
Jonathan Taylor
+ A Generalized Least Squares Matrix Decomposition 2011 Genevera I. Allen
Logan Grosenick
Jonathan Taylor
+ PDF Chat Transposable regularized covariance models with an application to missing data imputation 2010 Genevera I. Allen
Robert Tibshirani
+ Inference with Transposable Data: Modeling the Effects of Row and Column Correlations 2010 Genevera I. Allen
Robert Tibshirani
+ Inference with Transposable Data: Modeling the Effects of Row and Column Correlations 2010 Genevera I. Allen
Robert Tibshirani
+ KNIFE: Kernel Iterative Feature Extraction 2009 Genevera I. Allen
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ High-dimensional graphs and variable selection with the Lasso 2006 Nicolai Meinshausen
Peter BĂźhlmann
15
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
14
+ Model selection and estimation in the Gaussian graphical model 2007 Ming Yuan
Yi Lin
14
+ PDF Chat Splitting Methods for Convex Clustering 2014 C. Eric
Kenneth Lange
14
+ PDF Chat Sparsity and Smoothness Via the Fused Lasso 2004 Robert Tibshirani
Michael A. Saunders
Saharon Rosset
Ji Zhu
Keith Knight
13
+ Biclustering via Sparse Singular Value Decomposition 2010 Mihee Lee
Haipeng Shen
Jianhua Z. Huang
J. S. Marron
12
+ Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization 2001 P. Tseng
11
+ Sparse inverse covariance estimation with the graphical lasso 2007 Jerome H. Friedman
Trevor Hastie
R. Tibshirani
11
+ PDF Chat Clusterpath An Algorithm for Clustering using Convex Fusion Penalties 2011 Toby Dylan Hocking
Armand Joulin
Francis Bach
Jean‐Philippe Vert
11
+ PDF Chat Model Selection and Estimation in Regression with Grouped Variables 2005 Ming Yuan
Yi Lin
11
+ High-dimensional Ising model selection using ℓ1-regularized logistic regression 2010 Pradeep Ravikumar
Martin J. Wainwright
John Lafferty
10
+ Spatial Interaction and the Statistical Analysis of Lattice Systems 1974 Julian Besag
10
+ PDF Chat The Adaptive Lasso and Its Oracle Properties 2006 Hui Zou
9
+ Regularization Paths for Generalized Linear Models via Coordinate Descent. 2010 Jerome H. Friedman
Trevor Hastie
Rob Tibshirani
8
+ High-dimensional semiparametric Gaussian copula graphical models 2012 Han Liu
Fang Han
Ming Yuan
John Lafferty
Larry Wasserman
7
+ The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs 2009 Han Liu
John Lafferty
Larry Wasserman
7
+ PDF Chat Least angle regression 2004 Bradley Efron
Trevor Hastie
Iain M. Johnstone
Robert Tibshirani
7
+ PDF Chat High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence 2011 Pradeep Ravikumar
Martin J. Wainwright
Garvesh Raskutti
Bin Yu
7
+ Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties 2001 Jianqing Fan
Runze Li
7
+ PDF Chat The Analysis of Two-Way Functional Data Using Two-Way Regularized Singular Value Decompositions 2009 Jianhua Z. Huang
Haipeng Shen
Andreas Buja
7
+ Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models 2010 Han Liu
Kathryn Roeder
Larry Wasserman
7
+ Sparse Higher-Order Principal Components Analysis 2012 Genevera I. Allen
7
+ PDF Chat Statistical properties of convex clustering 2015 Kean Ming Tan
Daniela Witten
7
+ PDF Chat Sparse Convex Clustering 2017 Binhuan Wang
Yilong Zhang
Will Wei Sun
Yixin Fang
7
+ PDF Chat High-dimensional analysis of semidefinite relaxations for sparse principal components 2009 Arash Amini
Martin J. Wainwright
7
+ PDF Chat A Generalized Least-Square Matrix Decomposition 2013 Genevera I. Allen
Logan Grosenick
Jonathan Taylor
7
+ Functional Data Analysis 2005 J. O. Ramsay
6
+ PDF Chat Convex Biclustering 2016 C. Eric
Genevera I. Allen
Richard G. Baraniuk
6
+ PDF Chat On model selection consistency of regularized M-estimators 2015 Jason D. Lee
Yuekai Sun
Jonathan Taylor
6
+ Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$-Constrained Quadratic Programming (Lasso) 2009 Martin J. Wainwright
6
+ PDF Chat A Constrained<i>ℓ</i><sub>1</sub>Minimization Approach to Sparse Precision Matrix Estimation 2011 Tommaso Cai
Weidong Liu
Xi Luo
6
+ On Graphical Models via Univariate Exponential Family Distributions 2013 Eunho Yang
Pradeep Ravikumar
Genevera I. Allen
Zhandong Liu
6
+ PDF Chat Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization 2019 Michael Weylandt
John Nagorski
Genevera I. Allen
6
+ PDF Chat A Modified Principal Component Technique Based on the LASSO 2003 Ian T. Jolliffe
Nickolay T. Trendafilov
Mudassir Uddin
6
+ PDF Chat Lasso-type recovery of sparse representations for high-dimensional data 2009 Nicolai Meinshausen
Bin Yu
6
+ A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems 2009 Amir Beck
Marc Teboulle
6
+ PDF Chat Stability Selection 2010 Nicolai Meinshausen
Peter BĂźhlmann
6
+ PDF Chat Bi-cross-validation of the SVD and the nonnegative matrix factorization 2009 Art B. Owen
Patrick O. Perry
6
+ Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing 1995 Yoav Benjamini
Yosef Hochberg
6
+ Tensor Decompositions and Applications 2009 Tamara G. Kolda
Brett W. Bader
6
+ Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data 2008 Onureena Banerjee
Laurent El Ghaoui
Alexandre d’Aspremont
5
+ Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition 1970 J. Douglas Carroll
Jih-Jie Chang
5
+ Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models 1978 Svante Wold
5
+ Convex Clustering via <i>l</i> 1 Fusion Penalization 2017 Peter Radchenko
Gourab Mukherjee
5
+ PDF Chat Smoothed functional principal components analysis by choice of norm 1996 Bernard W. Silverman
5
+ PDF Chat Pathwise coordinate optimization 2007 Jerome H. Friedman
Trevor Hastie
Holger HĂśfling
Robert Tibshirani
5
+ PDF Chat A Log-Linear Graphical Model for inferring genetic networks from high-throughput sequencing data 2012 Genevera I. Allen
Zhandong Liu
5
+ Sparse inverse covariance estimation with the lasso 2007 Jerome H. Friedman
Trevor Hastie
Robert Tibshirani
5
+ Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis 1970 Richard A. Harshman
5
+ An EM algorithm for multivariate Poisson distribution and related models 2003 Dimitris Karlis
5