Bryon Aragam

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Dimension-independent rates for structured neural density estimation 2024 Robert A. Vandermeulen
Wai Ming Tai
Bryon Aragam
+ PDF Chat Identifying General Mechanism Shifts in Linear Causal Representations 2024 Tianyu Chen
Kevin Bello
Francesco Locatello
Bryon Aragam
Pradeep Ravikumar
+ PDF Chat Model-free Estimation of Latent Structure via Multiscale Nonparametric Maximum Likelihood 2024 Bryon Aragam
Ruiyi Yang
+ PDF Chat Breaking the curse of dimensionality in structured density estimation 2024 Robert A. Vandermeulen
Wai Ming Tai
Bryon Aragam
+ PDF Chat Likelihood-based Differentiable Structure Learning 2024 Chang Deng
Kevin Bello
Pradeep Ravikumar
Bryon Aragam
+ PDF Chat Do LLMs dream of elephants (when told not to)? Latent concept association and associative memory in transformers 2024 Yibo Jiang
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
+ PDF Chat Greedy equivalence search for nonparametric graphical models 2024 Bryon Aragam
+ PDF Chat On the Origins of Linear Representations in Large Language Models 2024 Yibo Jiang
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
Victor Veitch
+ PDF Chat Learning Interpretable Concepts: Unifying Causal Representation Learning and Foundation Models 2024 Goutham Rajendran
Simon Buchholz
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
+ PDF Chat Optimal estimation of Gaussian (poly)trees 2024 Yuhao Wang
Ming Gao
Wai Ming Tai
Bryon Aragam
Arnab Bhattacharyya
+ PDF Chat Uniform consistency in nonparametric mixture models 2023 Bryon Aragam
Ruiyi Yang
+ Learning Mixtures of Gaussians with Censored Data 2023 Wai Ming Tai
Bryon Aragam
+ Optimizing NOTEARS Objectives via Topological Swaps 2023 Chang Deng
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
+ Neuro-Causal Factor Analysis 2023 Alex Markham
Ming-Yu Liu
Bryon Aragam
Liam Solus
+ Learning Linear Causal Representations from Interventions under General Nonlinear Mixing 2023 Simon Buchholz
Goutham Rajendran
Elan Rosenfeld
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
+ Optimal neighbourhood selection in structural equation models 2023 Ming Gao
Wai Ming Tai
Bryon Aragam
+ Learning nonparametric latent causal graphs with unknown interventions 2023 Yibo Jiang
Bryon Aragam
+ iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive Noise Models 2023 Tianyu Chen
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
+ Global Optimality in Bivariate Gradient-based DAG Learning 2023 Chang Deng
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
+ Assumption violations in causal discovery and the robustness of score matching 2023 Francesco Montagna
Atalanti A. Mastakouri
Elias Eulig
Nicoletta Noceti
Lorenzo Rosasco
Dominik Janzing
Bryon Aragam
Francesco Locatello
+ Uncovering Meanings of Embeddings via Partial Orthogonality 2023 Yibo Jiang
Bryon Aragam
Victor Veitch
+ Inconsistency of cross-validation for structure learning in Gaussian graphical models 2023 Zhao Lyu
Wai Ming Tai
Mladen Kolar
Bryon Aragam
+ PDF Chat Identifiability of deep generative models under mixture priors without auxiliary information 2022 Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
+ Trade-offs of Linear Mixed Models in Genome-Wide Association Studies 2022 Haohan Wang
Bryon Aragam
Eric P. Xing
+ Optimal estimation of Gaussian DAG models 2022 Ming Gao
Wai Ming Tai
Bryon Aragam
+ A non-graphical representation of conditional independence via the neighbourhood lattice 2022 Arash Amini
Bryon Aragam
Qing Zhou
+ Tight Bounds on the Hardness of Learning Simple Nonparametric Mixtures 2022 Bryon Aragam
Wai Ming Tai
+ DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization 2022 Kevin Bello
Bryon Aragam
Pradeep Ravikumar
+ Identifiability of deep generative models without auxiliary information 2022 Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
+ Structure learning in polynomial time: Greedy algorithms, Bregman information, and exponential families 2021 Goutham Rajendran
Bohdan Kivva
Ming Gao
Bryon Aragam
+ NOTMAD: Estimating Bayesian Networks with Sample-Specific Structures and Parameters 2021 Benjamin J. Lengerich
Caleb N. Ellington
Bryon Aragam
Eric P. Xing
Manolis Kellis
+ PDF Chat Efficient Bayesian network structure learning via local Markov boundary search 2021 Ming Gao
Bryon Aragam
+ Structure learning in polynomial time: Greedy algorithms, Bregman information, and exponential families 2021 Goutham Rajendran
Bohdan Kivva
Ming Gao
Bryon Aragam
+ Learning latent causal graphs via mixture oracles 2021 Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
+ Fundamental Limits and Tradeoffs in Invariant Representation Learning 2021 Han Zhao
Dan Chen
Bryon Aragam
Tommi Jaakkola
Geoff Gordon
Pradeep Ravikumar
+ Uniform Consistency in Nonparametric Mixture Models 2021 Bryon Aragam
Ruiyi Yang
+ Efficient Bayesian network structure learning via local Markov boundary search 2021 Ming Gao
Bryon Aragam
+ Tradeoffs of Linear Mixed Models in Genome-wide Association Studies 2021 Haohan Wang
Bryon Aragam
Eric P. Xing
+ NOTMAD: Estimating Bayesian Networks with Sample-Specific Structures and Parameters 2021 Ben Lengerich
Caleb Ellington
Bryon Aragam
Eric P. Xing
Manolis Kellis
+ Structure learning in polynomial time: Greedy algorithms, Bregman information, and exponential families 2021 Goutham Rajendran
Bohdan Kivva
Ming Gao
Bryon Aragam
+ Learning latent causal graphs via mixture oracles 2021 Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
+ PDF Chat Identifiability of nonparametric mixture models and Bayes optimal clustering 2020 Bryon Aragam
Dan Chen
Eric P. Xing
Pradeep Ravikumar
+ PDF Chat A polynomial-time algorithm for learning nonparametric causal graphs 2020 Ming Gao
Yi Ding
Bryon Aragam
+ DYNOTEARS: Structure Learning from Time-Series Data 2020 Roxana Pamfil
Nisara Sriwattanaworachai
Shaan Desai
Philip Pilgerstorfer
Paul Beaumont
Konstantinos Georgatzis
Bryon Aragam
+ A polynomial-time algorithm for learning nonparametric causal graphs 2020 Ming Gao
Yi Ding
Bryon Aragam
+ DYNOTEARS: Structure Learning from Time-Series Data 2020 Roxana Pamfil
Nisara Sriwattanaworachai
Shaan Desai
Philip Pilgerstorfer
Paul R Beaumont
Konstantinos Georgatzis
Bryon Aragam
+ Fundamental Limits and Tradeoffs in Invariant Representation Learning 2020 Han Zhao
Dan Chen
Bryon Aragam
Tommi Jaakkola
Geoffrey J. Gordon
Pradeep Ravikumar
+ Diagnostic Curves for Black Box Models. 2019 David I. Inouye
Liu Leqi
Joon Sik Kim
Bryon Aragam
Pradeep Ravikumar
+ Automated Dependence Plots 2019 David I. Inouye
Liu Leqi
Joon Sik Kim
Bryon Aragam
Pradeep Ravikumar
+ Automated Dependence Plots. 2019 David I. Inouye
Liu Leqi
Joon Sik Kim
Bryon Aragam
Pradeep Ravikumar
+ Learning Sample-Specific Models with Low-Rank Personalized Regression 2019 Benjamin J. Lengerich
Bryon Aragam
Eric P. Xing
+ Learning Sparse Nonparametric DAGs. 2019 Xun Zheng
Dan Chen
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
+ Globally optimal score-based learning of directed acyclic graphs in high-dimensions 2019 Bryon Aragam
Arash A. Amini
Qing Zhou
+ On perfectness in Gaussian graphical models 2019 Arash A. Amini
Bryon Aragam
Qing Zhou
+ Learning Sample-Specific Models with Low-Rank Personalized Regression 2019 Benjamin J. Lengerich
Bryon Aragam
Eric P. Xing
+ PDF Chat Learning Large-Scale Bayesian Networks with the <b>sparsebn</b> Package 2019 Bryon Aragam
Jiaying Gu
Qing Zhou
+ Automated Dependence Plots 2019 David I. Inouye
Liu Leqi
Joon Sik Kim
Bryon Aragam
Pradeep Ravikumar
+ Learning Sparse Nonparametric DAGs 2019 Xun Zheng
Dan Chen
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
+ PDF Chat Precision Lasso: accounting for correlations and linear dependencies in high-dimensional genomic data 2018 Haohan Wang
Benjamin J. Lengerich
Bryon Aragam
Eric P. Xing
+ DAGs with NO TEARS: Smooth Optimization for Structure Learning. 2018 Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
+ Identifiability of Nonparametric Mixture Models and Bayes Optimal Clustering 2018 Bryon Aragam
Dan Chen
Pradeep Ravikumar
Eric P. Xing
+ Sample Complexity of Nonparametric Semi-Supervised Learning 2018 Dan Chen
Liu Leqi
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
+ Fault Tolerance in Iterative-Convergent Machine Learning 2018 Aurick Qiao
Bryon Aragam
Bingjing Zhang
Eric P. Xing
+ DAGs with NO TEARS: Continuous Optimization for Structure Learning 2018 Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
+ Identifiability of Nonparametric Mixture Models and Bayes Optimal Clustering 2018 Bryon Aragam
Dan Chen
Eric P. Xing
Pradeep Ravikumar
+ Partial correlation graphs and the neighborhood lattice. 2017 Arash A. Amini
Bryon Aragam
Qing Zhou
+ The neighborhood lattice for encoding partial correlations in a Hilbert space 2017 Arash A. Amini
Bryon Aragam
Qing Zhou
+ Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression 2015 Bryon Aragam
Arash A. Amini
Qing Zhou
+ Concave Penalized Estimation of Sparse Gaussian Bayesian Networks 2014 Bryon Aragam
Qing Zhou
+ Concave Penalized Estimation of Sparse Bayesian Networks. 2014 Bryon Aragam
Qing Zhou
+ Concave Penalized Estimation of Sparse Gaussian Bayesian Networks 2014 Bryon Aragam
Qing Zhou
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ $\ell_{0}$-penalized maximum likelihood for sparse directed acyclic graphs 2013 Sara van de Geer
Peter BĂŒhlmann
8
+ High-dimensional learning of linear causal networks via inverse covariance estimation 2013 Po‐Ling Loh
Peter BĂŒhlmann
8
+ PDF Chat Identifiability of Gaussian structural equation models with equal error variances 2013 Jonas Peters
Peter BĂŒhlmann
7
+ PDF Chat Nearly unbiased variable selection under minimax concave penalty 2010 Cun‐Hui Zhang
7
+ Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data 2008 Onureena Banerjee
Laurent El Ghaoui
Alexandre d’Aspremont
7
+ Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression 2015 Bryon Aragam
Arash A. Amini
Qing Zhou
7
+ Concave Penalized Estimation of Sparse Gaussian Bayesian Networks 2014 Bryon Aragam
Qing Zhou
6
+ PDF Chat Learning Sparse Causal Gaussian Networks With Experimental Intervention: Regularization and Coordinate Descent 2012 Fei Fu
Qing Zhou
6
+ CAM: Causal additive models, high-dimensional order search and penalized regression 2014 Peter BĂŒhlmann
Jonas Peters
Jan Ernest
6
+ A General Theory of Concave Regularization for High-Dimensional Sparse Estimation Problems 2012 Cun‐Hui Zhang
Tong Zhang
6
+ PDF Chat Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs 2010 Ali Shojaie
George Michailidis
6
+ High-dimensional graphs and variable selection with the Lasso 2006 Nicolai Meinshausen
Peter BĂŒhlmann
6
+ A* Lasso for Learning a Sparse Bayesian Network Structure for Continuous Variables 2013 Jing Xiang
Se Young Kim
6
+ Estimating high-dimensional directed acyclic graphs with the PC-algorithm 2005 Markus Kalisch
Peter BĂŒhlmann
5
+ On Model Selection Consistency of Lasso 2006 Peng Zhao
Bin Yu
5
+ Sparse inverse covariance estimation with the graphical lasso 2007 Jerome H. Friedman
Trevor Hastie
R. Tibshirani
5
+ Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties 2001 Jianqing Fan
Runze Li
5
+ PDF Chat Identifiability of Finite Mixtures 1963 Henry Teicher
5
+ PDF Chat Nonparametric estimation of component distributions in a multivariate mixture 2003 Peter Hall
Xiao‐Hua Zhou
5
+ PDF Chat Optimal Rate of Convergence for Finite Mixture Models 1995 Jiahua Chen
4
+ PDF Chat Pathwise coordinate optimization 2007 Jerome H. Friedman
Trevor Hastie
Holger Höfling
Robert Tibshirani
4
+ Model-Based Clustering, Discriminant Analysis, and Density Estimation 2002 Chris Fraley
Adrian E. Raftery
4
+ PDF Chat Multi-Domain Sampling With Applications to Structural Inference of Bayesian Networks 2011 Magali Champion
Victor Picheny
Matthieu Vignes
4
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
4
+ PDF Chat Coordinate descent algorithms for lasso penalized regression 2008 Tong Tong Wu
Kenneth Lange
4
+ On the Identifiability of the Post-Nonlinear Causal Model 2012 Kun Zhang
Aapo HyvÀrinen
4
+ Convergence of latent mixing measures in finite and infinite mixture models 2013 XuanLong Nguyen
4
+ PDF Chat The Adaptive Lasso and Its Oracle Properties 2006 Hui Zou
4
+ Causal discovery with continuous additive noise models 2014 Jonas Peters
Joris M. Mooij
Dominik Janzing
Bernhard Schölkopf
4
+ Regularization Paths for Generalized Linear Models via Coordinate Descent. 2010 Jerome H. Friedman
Trevor Hastie
Rob Tibshirani
4
+ PDF Chat Semiparametric mixtures of regressions 2011 David R. Hunter
Derek S. Young
4
+ Geometry of the faithfulness assumption in causal inference 2013 Caroline Uhler
Garvesh Raskutti
Peter BĂŒhlmann
Bin Yu
4
+ PDF Chat On the Mixture of Distributions 1960 Henry Teicher
4
+ PDF Chat Polyhedral aspects of score equivalence in Bayesian network structure learning 2016 James Cussens
David Haws
Milan StudenĂœ
4
+ High-dimensional Ising model selection using ℓ1-regularized logistic regression 2010 Pradeep Ravikumar
Martin J. Wainwright
John Lafferty
4
+ PDF Chat Rates of convergence for the Gaussian mixture sieve 2000 Christopher R. Genovese
Larry Wasserman
4
+ Learning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample Complexity 2017 Asish Ghoshal
Jean Honorio
4
+ Nonparametric inference in multivariate mixtures 2005 Peter Hall
Amnon Neeman
Reza Pakyari
Ryan Elmore
4
+ PDF Chat <i>SparseNet</i>: Coordinate Descent With Nonconvex Penalties 2011 Rahul Mazumder
Jerome H. Friedman
Trevor Hastie
4
+ PDF Chat On causal discovery with an equal-variance assumption 2019 Wenyu Chen
Mathias Drton
Y. Samuel Wang
4
+ PDF Chat Penalized estimation of directed acyclic graphs from discrete data 2018 Jiaying Gu
Fei Fu
Qing Zhou
4
+ PDF Chat None 1997 David Maxwell Chickering
David Heckerman
3
+ A Selective Overview of Variable Selection in High Dimensional Feature Space. 2010 Jianqing Fan
Jinchi Lv
3
+ Covariance matrix selection and estimation via penalised normal likelihood 2006 Jianhua Z. Huang
Naiping Liu
Mohsen Pourahmadi
Linxu Liu
3
+ PDF Chat Data spectroscopy: Eigenspaces of convolution operators and clustering 2009 Tao Shi
Mikhail A. Belkin
Bin Yu
3
+ Finding optimal bayesian networks 2002 David Maxwell Chickering
Christopher Meek
3
+ PDF Chat Learning mixtures of separated nonspherical Gaussians 2005 Sanjeev Arora
Ravi Kannan
3
+ The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter 1996 V. Castelli
Thomas M. Cover
3
+ Learning Bayesian Networks with the<b>bnlearn</b><i>R</i>Package 2010 Marco Scutari
3
+ PDF Chat Tuning parameter selectors for the smoothly clipped absolute deviation method 2007 Hansheng Wang
Runze Li
C.-L. Tsai
3