Author Description

Login to generate an author description

Ask a Question About This Mathematician

Quotient inductive-inductive types (QIITs) generalise inductive types in two ways: a QIIT can have more than one sort and the later sorts can be indexed over the previous ones. In … Quotient inductive-inductive types (QIITs) generalise inductive types in two ways: a QIIT can have more than one sort and the later sorts can be indexed over the previous ones. In addition, equality constructors are also allowed. We work in a setting with uniqueness of identity proofs, hence we use the term QIIT instead of higher inductive-inductive type. An example of a QIIT is the well-typed (intrinsic) syntax of type theory quotiented by conversion. In this paper first we specify finitary QIITs using a domain-specific type theory which we call the theory of signatures. The syntax of the theory of signatures is given by a QIIT as well. Then, using this syntax we show that all specified QIITs exist and they have a dependent elimination principle. We also show that algebras of a signature form a category with families (CwF) and use the internal language of this CwF to show that dependent elimination is equivalent to initiality.
Applicative functors are a generalisation of monads. Both allow the expression of effectful computations into an otherwise pure language, like Haskell. Applicative functors are to be preferred to monads when … Applicative functors are a generalisation of monads. Both allow the expression of effectful computations into an otherwise pure language, like Haskell. Applicative functors are to be preferred to monads when the structure of a computation is fixed a priori. That makes it possible to perform certain kinds of static analysis on applicative values. We define a notion of free applicative functor, prove that it satisfies the appropriate laws, and that the construction is left adjoint to a suitable forgetful functor. We show how free applicative functors can be used to implement embedded DSLs which can be statically analysed.
We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated in the metalanguage of type theory using quotient inductive types. We use a … We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated in the metalanguage of type theory using quotient inductive types. We use a typed presentation hence there are no preterms or realizers in our construction, and every construction respects the conversion relation. NBE for simple types uses a logical relation between the syntax and the presheaf interpretation. In our construction, we merge the presheaf interpretation and the logical relation into a proof-relevant logical predicate. We prove normalisation, completeness, stability and decidability of definitional equality. Most of the constructions were formalized in Agda.
Higher inductive-inductive types (HIITs) generalize inductive types of dependent type theories in two ways. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed … Higher inductive-inductive types (HIITs) generalize inductive types of dependent type theories in two ways. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed over each other. On the other hand they support equality constructors, thus generalizing higher inductive types of homotopy type theory. Examples that make use of both features are the Cauchy real numbers and the well-typed syntax of type theory where conversion rules are given as equality constructors. In this paper we propose a general definition of HIITs using a small type theory, named the theory of signatures. A context in this theory encodes a HIIT by listing the constructors. We also compute notions of induction and recursion for HIITs, by using variants of syntactic logical relation translations. Building full categorical semantics and constructing initial algebras is left for future work. The theory of HIIT signatures was formalised in Agda together with the syntactic translations. We also provide a Haskell implementation, which takes signatures as input and outputs translation results as valid Agda code.
Following the cubical set model of type theory which validates the univalence axiom, cubical type theories have been developed that interpret the identity type using an interval pretype. These theories … Following the cubical set model of type theory which validates the univalence axiom, cubical type theories have been developed that interpret the identity type using an interval pretype. These theories start from a geometric view of equality. A proof of equality is encoded as a term in a context extended by the interval pretype. Our goal is to develop a cubical theory where the identity type is defined recursively over the type structure, and the geometry arises from these definitions. In this theory, cubes are present explicitly, e.g. a line is a telescope with 3 elements: two endpoints and the connecting equality. This is in line with Bernardy and Moulin's earlier work on internal parametricity. In this paper we present a naive syntax for internal parametricity and by replacing the parametric interpretation of the universe, we extend it to univalence. However, we don't know how to compute in this theory. As a second step, we present a version of the theory for parametricity with named dimensions which has an operational semantics. Extending this syntax to univalence is left as further work.
Quotient inductive-inductive types (QIITs) are generalized inductive types which allow sorts to be indexed over previously declared sorts, and allow usage of equality constructors. QIITs are especially useful for algebraic … Quotient inductive-inductive types (QIITs) are generalized inductive types which allow sorts to be indexed over previously declared sorts, and allow usage of equality constructors. QIITs are especially useful for algebraic descriptions of type theories and constructive definitions of real, ordinal and surreal numbers. We develop new metatheory for large QIITs, large elimination, recursive equations and infinitary constructors. As in prior work, we describe QIITs using a type theory where each context represents a QIIT signature. However, in our case the theory of signatures can also describe its own signature, modulo universe sizes. We bootstrap the model theory of signatures using self-description and a Church-coded notion of signature, without using complicated raw syntax or assuming an existing internal QIIT of signatures. We give semantics to described QIITs by modeling each signature as a finitely complete CwF (category with families) of algebras. Compared to the case of finitary QIITs, we additionally need to show invariance under algebra isomorphisms in the semantics. We do this by modeling signature types as isofibrations. Finally, we show by a term model construction that every QIIT is constructible from the syntax of the theory of signatures.
We present new induction principles for the syntax of dependent type theories. These induction principles are expressed in the internal language of presheaf categories. This ensures for free that any … We present new induction principles for the syntax of dependent type theories. These induction principles are expressed in the internal language of presheaf categories. This ensures for free that any construction is stable under substitution. In order to combine the internal languages of multiple presheaf categories, we use Dependent Right Adjoints and Multimodal Type Theory. Categorical gluing is used to prove these induction principles, but it not visible in their statements, which involve a notion of model without context extensions. We illustrate the derivation of these induction principles by the example of type theory with a hierarchy of universes closed under function space and natural numbers, but we expect that our method can be applied to any syntax with bindings. As example applications of these induction principles, we give short and boilerplate-free proofs of canonicity and normalization for our example type theory.
We present new induction principles for the syntax of dependent type theories, which we call relative induction principles. The result of the induction principle relative to a functor F into … We present new induction principles for the syntax of dependent type theories, which we call relative induction principles. The result of the induction principle relative to a functor F into the syntax is stable over the codomain of F. We rely on the internal language of presheaf categories. In order to combine the internal languages of multiple presheaf categories, we use Dependent Right Adjoints and Multimodal Type Theory. Categorical gluing is used to prove these induction principles, but it not visible in their statements, which involve a notion of model without context extensions. As example applications of these induction principles, we give short and boilerplate-free proofs of canonicity and normalization for some small type theories, and sketch proofs of other metatheoretic results.
We present new induction principles for the syntax of dependent type theories, which we call relative induction principles. The result of the induction principle relative to a functor F into … We present new induction principles for the syntax of dependent type theories, which we call relative induction principles. The result of the induction principle relative to a functor F into the syntax is stable over the codomain of F. We rely on the internal language of presheaf categories. In order to combine the internal languages of multiple presheaf categories, we use Dependent Right Adjoints and Multimodal Type Theory. Categorical gluing is used to prove these induction principles, but it not visible in their statements, which involve a notion of model without context extensions. As example applications of these induction principles, we give short and boilerplate-free proofs of canonicity and normalization for some small type theories, and sketch proofs of other metatheoretic results.
We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated in the metalanguage of type theory using quotient inductive types. We use a … We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated in the metalanguage of type theory using quotient inductive types. We use a typed presentation hence there are no preterms or realizers in our construction, and every construction respects the conversion relation. NBE for simple types uses a logical relation between the syntax and the presheaf interpretation. In our construction, we merge the presheaf interpretation and the logical relation into a proof-relevant logical predicate. We prove normalisation, completeness, stability and decidability of definitional equality. Most of the constructions were formalized in Agda.
There are multiple ways to formalise the metatheory of type theory. For some purposes, it is enough to consider specific models of a type theory, but sometimes it is necessary … There are multiple ways to formalise the metatheory of type theory. For some purposes, it is enough to consider specific models of a type theory, but sometimes it is necessary to refer to the syntax, for example in proofs of canonicity and normalisation. One option is to embed the syntax deeply, by using inductive definitions in a proof assistant. However, in this case the handling of definitional equalities becomes technically challenging. Alternatively, we can reuse conversion checking in the metatheory by shallowly embedding the object theory. In this paper, we consider the standard model of a type theoretic object theory in Agda. This model has the property that all of its equalities hold definitionally, and we can use it as a shallow embedding by building expressions from the components of this model. However, if we are to reason soundly about the syntax with this setup, we must ensure that distinguishable syntactic constructs do not become provably equal when shallowly embedded. First, we prove that shallow embedding is injective up to definitional equality, by modelling the embedding as a syntactic translation targeting the metatheory. Second, we use an implementation hiding trick to disallow illegal propositional equality proofs and constructions which do not come from the syntax. We showcase our technique with very short formalisations of canonicity and parametricity for Martin-Lof type theory. Our technique only requires features which are available in all major proof assistants based on dependent type theory.
There are multiple ways to formalise the metatheory of type theory. For some purposes, it is enough to consider specific models of a type theory, but sometimes it is necessary … There are multiple ways to formalise the metatheory of type theory. For some purposes, it is enough to consider specific models of a type theory, but sometimes it is necessary to refer to the syntax, for example in proofs of canonicity and normalisation. One option is to embed the syntax deeply, by using inductive definitions in a proof assistant. However, in this case the handling of definitional equalities becomes technically challenging. Alternatively, we can reuse conversion checking in the metatheory by shallowly embedding the object theory. In this paper, we consider the standard model of a type theoretic object theory in Agda. This model has the property that all of its equalities hold definitionally, and we can use it as a shallow embedding by building expressions from the components of this model. However, if we are to reason soundly about the syntax with this setup, we must ensure that distinguishable syntactic constructs do not become provably equal when shallowly embedded. First, we prove that shallow embedding is injective up to definitional equality, by modelling the embedding as a syntactic translation targeting the metatheory. Second, we use an implementation hiding trick to disallow illegal propositional equality proofs and constructions which do not come from the syntax. We showcase our technique with very short formalisations of canonicity and parametricity for Martin-L\"of type theory. Our technique only requires features which are available in all major proof assistants based on dependent type theory.
Metatheorems about type theories are often proven by interpreting the syntax into models constructed using categorical gluing. We propose to use only sconing (gluing along a global section functor) instead … Metatheorems about type theories are often proven by interpreting the syntax into models constructed using categorical gluing. We propose to use only sconing (gluing along a global section functor) instead of general gluing. The sconing is performed internally to a presheaf category, and we recover the original glued model by externalization. Our method relies on constructions involving two notions of models: first-order models (with explicit contexts) and higher-order models (without explicit contexts). Sconing turns a displayed higher-order model into a displayed first-order model. Using these, we derive specialized induction principles for the syntax of type theory. The input of such an induction principle is a boilerplate-free description of its motives and methods, not mentioning contexts. The output is a section with computation rules specified in the same internal language. We illustrate our framework by proofs of canonicity, normalization and syntactic parametricity for type theory.
Parametricity is a property of the syntax of type theory implying, e.g., that there is only one function having the type of the polymorphic identity function. Parametricity is usually proven … Parametricity is a property of the syntax of type theory implying, e.g., that there is only one function having the type of the polymorphic identity function. Parametricity is usually proven externally, and does not hold internally. Internalising it is difficult because once there is a term witnessing parametricity, it also has to be parametric itself and this results in the appearance of higher dimensional cubes. In previous theories with internal parametricity, either an explicit syntax for higher cubes is present or the theory is extended with a new sort for the interval. In this paper we present a type theory with internal parametricity which is a simple extension of Martin-L\"of type theory: there are a few new type formers, term formers and equations. Geometry is not explicit in this syntax, but emergent: the new operations and equations only refer to objects up to dimension 3. We show that this theory is modelled by presheaves over the BCH cube category. Fibrancy conditions are not needed because we use span-based rather than relational parametricity. We define a gluing model for this theory implying that external parametricity and canonicity hold. The theory can be seen as a special case of a new kind of modal type theory, and it is the simplest setting in which the computational properties of higher observational type theory can be demonstrated.
Parametricity is a property of the syntax of type theory implying, e.g., that there is only one function having the type of the polymorphic identity function. Parametricity is usually proven … Parametricity is a property of the syntax of type theory implying, e.g., that there is only one function having the type of the polymorphic identity function. Parametricity is usually proven externally, and does not hold internally. Internalising it is difficult because once there is a term witnessing parametricity, it also has to be parametric itself and this results in the appearance of higher dimensional cubes. In previous theories with internal parametricity, either an explicit syntax for higher cubes is present or the theory is extended with a new sort for the interval. In this paper we present a type theory with internal parametricity which is a simple extension of Martin-L\"of type theory: there are a few new type formers, term formers and equations. Geometry is not explicit in this syntax, but emergent: the new operations and equations only refer to objects up to dimension 3. We show that this theory is modelled by presheaves over the BCH cube category. Fibrancy conditions are not needed because we use span-based rather than relational parametricity. We define a gluing model for this theory implying that external parametricity and canonicity hold. The theory can be seen as a special case of a new kind of modal type theory, and it is the simplest setting in which the computational properties of higher observational type theory can be demonstrated.
Metatheorems about type theories are often proven by interpreting the syntax into models constructed using categorical gluing. We propose to use only sconing (gluing along a global section functor) instead … Metatheorems about type theories are often proven by interpreting the syntax into models constructed using categorical gluing. We propose to use only sconing (gluing along a global section functor) instead of general gluing. The sconing is performed internally to a presheaf category, and we recover the original glued model by externalization. Our method relies on constructions involving two notions of models: first-order models (with explicit contexts) and higher-order models (without explicit contexts). Sconing turns a displayed higher-order model into a displayed first-order model. Using these, we derive specialized induction principles for the syntax of type theory. The input of such an induction principle is a boilerplate-free description of its motives and methods, not mentioning contexts. The output is a section with computation rules specified in the same internal language. We illustrate our framework by proofs of canonicity, normalization and syntactic parametricity for type theory.
We present new induction principles for the syntax of dependent type theories. These induction principles are expressed in the internal language of presheaf categories. This ensures for free that any … We present new induction principles for the syntax of dependent type theories. These induction principles are expressed in the internal language of presheaf categories. This ensures for free that any construction is stable under substitution. In order to combine the internal languages of multiple presheaf categories, we use Dependent Right Adjoints and Multimodal Type Theory. Categorical gluing is used to prove these induction principles, but it not visible in their statements, which involve a notion of model without context extensions. We illustrate the derivation of these induction principles by the example of type theory with a hierarchy of universes closed under function space and natural numbers, but we expect that our method can be applied to any syntax with bindings. As example applications of these induction principles, we give short and boilerplate-free proofs of canonicity and normalization for our example type theory.
We present new induction principles for the syntax of dependent type theories, which we call relative induction principles. The result of the induction principle relative to a functor F into … We present new induction principles for the syntax of dependent type theories, which we call relative induction principles. The result of the induction principle relative to a functor F into the syntax is stable over the codomain of F. We rely on the internal language of presheaf categories. In order to combine the internal languages of multiple presheaf categories, we use Dependent Right Adjoints and Multimodal Type Theory. Categorical gluing is used to prove these induction principles, but it not visible in their statements, which involve a notion of model without context extensions. As example applications of these induction principles, we give short and boilerplate-free proofs of canonicity and normalization for some small type theories, and sketch proofs of other metatheoretic results.
We present new induction principles for the syntax of dependent type theories, which we call relative induction principles. The result of the induction principle relative to a functor F into … We present new induction principles for the syntax of dependent type theories, which we call relative induction principles. The result of the induction principle relative to a functor F into the syntax is stable over the codomain of F. We rely on the internal language of presheaf categories. In order to combine the internal languages of multiple presheaf categories, we use Dependent Right Adjoints and Multimodal Type Theory. Categorical gluing is used to prove these induction principles, but it not visible in their statements, which involve a notion of model without context extensions. As example applications of these induction principles, we give short and boilerplate-free proofs of canonicity and normalization for some small type theories, and sketch proofs of other metatheoretic results.
Quotient inductive-inductive types (QIITs) are generalized inductive types which allow sorts to be indexed over previously declared sorts, and allow usage of equality constructors. QIITs are especially useful for algebraic … Quotient inductive-inductive types (QIITs) are generalized inductive types which allow sorts to be indexed over previously declared sorts, and allow usage of equality constructors. QIITs are especially useful for algebraic descriptions of type theories and constructive definitions of real, ordinal and surreal numbers. We develop new metatheory for large QIITs, large elimination, recursive equations and infinitary constructors. As in prior work, we describe QIITs using a type theory where each context represents a QIIT signature. However, in our case the theory of signatures can also describe its own signature, modulo universe sizes. We bootstrap the model theory of signatures using self-description and a Church-coded notion of signature, without using complicated raw syntax or assuming an existing internal QIIT of signatures. We give semantics to described QIITs by modeling each signature as a finitely complete CwF (category with families) of algebras. Compared to the case of finitary QIITs, we additionally need to show invariance under algebra isomorphisms in the semantics. We do this by modeling signature types as isofibrations. Finally, we show by a term model construction that every QIIT is constructible from the syntax of the theory of signatures.
There are multiple ways to formalise the metatheory of type theory. For some purposes, it is enough to consider specific models of a type theory, but sometimes it is necessary … There are multiple ways to formalise the metatheory of type theory. For some purposes, it is enough to consider specific models of a type theory, but sometimes it is necessary to refer to the syntax, for example in proofs of canonicity and normalisation. One option is to embed the syntax deeply, by using inductive definitions in a proof assistant. However, in this case the handling of definitional equalities becomes technically challenging. Alternatively, we can reuse conversion checking in the metatheory by shallowly embedding the object theory. In this paper, we consider the standard model of a type theoretic object theory in Agda. This model has the property that all of its equalities hold definitionally, and we can use it as a shallow embedding by building expressions from the components of this model. However, if we are to reason soundly about the syntax with this setup, we must ensure that distinguishable syntactic constructs do not become provably equal when shallowly embedded. First, we prove that shallow embedding is injective up to definitional equality, by modelling the embedding as a syntactic translation targeting the metatheory. Second, we use an implementation hiding trick to disallow illegal propositional equality proofs and constructions which do not come from the syntax. We showcase our technique with very short formalisations of canonicity and parametricity for Martin-Lof type theory. Our technique only requires features which are available in all major proof assistants based on dependent type theory.
Quotient inductive-inductive types (QIITs) generalise inductive types in two ways: a QIIT can have more than one sort and the later sorts can be indexed over the previous ones. In … Quotient inductive-inductive types (QIITs) generalise inductive types in two ways: a QIIT can have more than one sort and the later sorts can be indexed over the previous ones. In addition, equality constructors are also allowed. We work in a setting with uniqueness of identity proofs, hence we use the term QIIT instead of higher inductive-inductive type. An example of a QIIT is the well-typed (intrinsic) syntax of type theory quotiented by conversion. In this paper first we specify finitary QIITs using a domain-specific type theory which we call the theory of signatures. The syntax of the theory of signatures is given by a QIIT as well. Then, using this syntax we show that all specified QIITs exist and they have a dependent elimination principle. We also show that algebras of a signature form a category with families (CwF) and use the internal language of this CwF to show that dependent elimination is equivalent to initiality.
Higher inductive-inductive types (HIITs) generalize inductive types of dependent type theories in two ways. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed … Higher inductive-inductive types (HIITs) generalize inductive types of dependent type theories in two ways. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed over each other. On the other hand they support equality constructors, thus generalizing higher inductive types of homotopy type theory. Examples that make use of both features are the Cauchy real numbers and the well-typed syntax of type theory where conversion rules are given as equality constructors. In this paper we propose a general definition of HIITs using a small type theory, named the theory of signatures. A context in this theory encodes a HIIT by listing the constructors. We also compute notions of induction and recursion for HIITs, by using variants of syntactic logical relation translations. Building full categorical semantics and constructing initial algebras is left for future work. The theory of HIIT signatures was formalised in Agda together with the syntactic translations. We also provide a Haskell implementation, which takes signatures as input and outputs translation results as valid Agda code.
There are multiple ways to formalise the metatheory of type theory. For some purposes, it is enough to consider specific models of a type theory, but sometimes it is necessary … There are multiple ways to formalise the metatheory of type theory. For some purposes, it is enough to consider specific models of a type theory, but sometimes it is necessary to refer to the syntax, for example in proofs of canonicity and normalisation. One option is to embed the syntax deeply, by using inductive definitions in a proof assistant. However, in this case the handling of definitional equalities becomes technically challenging. Alternatively, we can reuse conversion checking in the metatheory by shallowly embedding the object theory. In this paper, we consider the standard model of a type theoretic object theory in Agda. This model has the property that all of its equalities hold definitionally, and we can use it as a shallow embedding by building expressions from the components of this model. However, if we are to reason soundly about the syntax with this setup, we must ensure that distinguishable syntactic constructs do not become provably equal when shallowly embedded. First, we prove that shallow embedding is injective up to definitional equality, by modelling the embedding as a syntactic translation targeting the metatheory. Second, we use an implementation hiding trick to disallow illegal propositional equality proofs and constructions which do not come from the syntax. We showcase our technique with very short formalisations of canonicity and parametricity for Martin-L\"of type theory. Our technique only requires features which are available in all major proof assistants based on dependent type theory.
Following the cubical set model of type theory which validates the univalence axiom, cubical type theories have been developed that interpret the identity type using an interval pretype. These theories … Following the cubical set model of type theory which validates the univalence axiom, cubical type theories have been developed that interpret the identity type using an interval pretype. These theories start from a geometric view of equality. A proof of equality is encoded as a term in a context extended by the interval pretype. Our goal is to develop a cubical theory where the identity type is defined recursively over the type structure, and the geometry arises from these definitions. In this theory, cubes are present explicitly, e.g. a line is a telescope with 3 elements: two endpoints and the connecting equality. This is in line with Bernardy and Moulin's earlier work on internal parametricity. In this paper we present a naive syntax for internal parametricity and by replacing the parametric interpretation of the universe, we extend it to univalence. However, we don't know how to compute in this theory. As a second step, we present a version of the theory for parametricity with named dimensions which has an operational semantics. Extending this syntax to univalence is left as further work.
We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated in the metalanguage of type theory using quotient inductive types. We use a … We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated in the metalanguage of type theory using quotient inductive types. We use a typed presentation hence there are no preterms or realizers in our construction, and every construction respects the conversion relation. NBE for simple types uses a logical relation between the syntax and the presheaf interpretation. In our construction, we merge the presheaf interpretation and the logical relation into a proof-relevant logical predicate. We prove normalisation, completeness, stability and decidability of definitional equality. Most of the constructions were formalized in Agda.
We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated in the metalanguage of type theory using quotient inductive types. We use a … We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated in the metalanguage of type theory using quotient inductive types. We use a typed presentation hence there are no preterms or realizers in our construction, and every construction respects the conversion relation. NBE for simple types uses a logical relation between the syntax and the presheaf interpretation. In our construction, we merge the presheaf interpretation and the logical relation into a proof-relevant logical predicate. We prove normalisation, completeness, stability and decidability of definitional equality. Most of the constructions were formalized in Agda.
Applicative functors are a generalisation of monads. Both allow the expression of effectful computations into an otherwise pure language, like Haskell. Applicative functors are to be preferred to monads when … Applicative functors are a generalisation of monads. Both allow the expression of effectful computations into an otherwise pure language, like Haskell. Applicative functors are to be preferred to monads when the structure of a computation is fixed a priori. That makes it possible to perform certain kinds of static analysis on applicative values. We define a notion of free applicative functor, prove that it satisfies the appropriate laws, and that the construction is left adjoint to a suitable forgetful functor. We show how free applicative functors can be used to implement embedded DSLs which can be statically analysed.
This paper presents a type theory in which it is possible to directly manipulate n-dimensional cubes (points, lines, squares, cubes, etc.) based on an interpretation of dependent type theory in … This paper presents a type theory in which it is possible to directly manipulate n-dimensional cubes (points, lines, squares, cubes, etc.) based on an interpretation of dependent type theory in a cubical set model. This enables new ways to reason about identity types, for instance, function extensionality is directly provable in the system. Further, Voevodsky's univalence axiom is provable in this system. We also explain an extension with some higher inductive types like the circle and propositional truncation. Finally we provide semantics for this cubical type theory in a constructive meta-theory.
Quotient inductive-inductive types (QIITs) generalise inductive types in two ways: a QIIT can have more than one sort and the later sorts can be indexed over the previous ones. In … Quotient inductive-inductive types (QIITs) generalise inductive types in two ways: a QIIT can have more than one sort and the later sorts can be indexed over the previous ones. In addition, equality constructors are also allowed. We work in a setting with uniqueness of identity proofs, hence we use the term QIIT instead of higher inductive-inductive type. An example of a QIIT is the well-typed (intrinsic) syntax of type theory quotiented by conversion. In this paper first we specify finitary QIITs using a domain-specific type theory which we call the theory of signatures. The syntax of the theory of signatures is given by a QIIT as well. Then, using this syntax we show that all specified QIITs exist and they have a dependent elimination principle. We also show that algebras of a signature form a category with families (CwF) and use the internal language of this CwF to show that dependent elimination is equivalent to initiality.
Homotopy Type Theory is a new field of mathematics based on the recently-discovered correspondence between Martin-Löf's constructive type theory and abstract homotopy theory. We have a powerful interplay between these … Homotopy Type Theory is a new field of mathematics based on the recently-discovered correspondence between Martin-Löf's constructive type theory and abstract homotopy theory. We have a powerful interplay between these disciplines - we can use geometric intuition to formulate new concepts in type theory and, conversely, use type-theoretic machinery to verify and often simplify existing mathematical proofs.
A higher inductive type of level 1 (a 1-hit) has constructors for points and paths only, whereas a higher inductive type of level 2 (a 2-hit) has constructors for surfaces … A higher inductive type of level 1 (a 1-hit) has constructors for points and paths only, whereas a higher inductive type of level 2 (a 2-hit) has constructors for surfaces too. We restrict attention to finitary higher inductive types and present general schemata for the types of their point, path, and surface constructors. We also derive the elimination and equality rules from the types of constructors for 1-hits and 2-hits. Moreover, we construct a groupoid model for dependent type theory with 2-hits and point out that we obtain a setoid model for dependent type theory with 1-hits by truncating the groupoid model.
We translate the usual class of partial/primitive recursive functions to a pointer recursion framework, accessing actual input values via a pointer reading unit-cost function. These pointer recursive functions classes are … We translate the usual class of partial/primitive recursive functions to a pointer recursion framework, accessing actual input values via a pointer reading unit-cost function. These pointer recursive functions classes are proven equivalent to the usual partial/primitive recursive functions. Complexity-wise, this framework captures in a streamlined way most of the relevant sub-polynomial classes. Pointer recursion with the safe/normal tiering discipline of Bellantoni and Cook corresponds to polylogtime computation. We introduce a new, non-size increasing tiering discipline, called tropical tiering. Tropical tiering and pointer recursion, used with some of the most common recursion schemes, capture the classes logspace, logspace/polylogtime, ptime, and NC. Finally, in a fashion reminiscent of the safe recursive functions, tropical tier-ing is expressed directly in the syntax of the function algebras, yielding the tropical recursive function algebras.
We present a new approach to introducing an extensional propositional equality in Intensional Type Theory. Our construction is based on the observation that there is a sound, intensional setoid model … We present a new approach to introducing an extensional propositional equality in Intensional Type Theory. Our construction is based on the observation that there is a sound, intensional setoid model in Intensional Type theory with a proof-irrelevant universe of propositions and /spl eta/-rules for /spl Pi/and /spl Sigma/-types. The Type Theory corresponding to this model is decidable, has no irreducible constants and permits large eliminations, which are essential for universes.
Cubical type theory provides a constructive justification to certain aspects of homotopy type theory such as Voevodsky's univalence axiom. This makes many extensionality principles, like function and propositional extensionality, directly … Cubical type theory provides a constructive justification to certain aspects of homotopy type theory such as Voevodsky's univalence axiom. This makes many extensionality principles, like function and propositional extensionality, directly provable in the theory. This paper describes a constructive semantics, expressed in a presheaf topos with suitable structure inspired by cubical sets, of some higher inductive types. It also extends cubical type theory by a syntax for the higher inductive types of spheres, torus, suspensions, truncations, and pushouts. All of these types are justified by the semantics and have judgmental computation rules for all constructors, including the higher dimensional ones, and the universes are closed under these type formers.
Postulating an impredicative universe in dependent type theory allows System F style encodings of finitary inductive types, but these fail to satisfy the relevant η-equalities and consequently do not admit … Postulating an impredicative universe in dependent type theory allows System F style encodings of finitary inductive types, but these fail to satisfy the relevant η-equalities and consequently do not admit dependent eliminators. To recover η and dependent elimination, we present a method to construct refinements of these impredicative encodings, using ideas from homotopy type theory. We then extend our method to construct impredicative encodings of some higher inductive types, such as 1-truncation and the unit circle S1.
Abstract In recent years, we have seen several new models of dependent type theory extended with some form of modal necessity operator, including nominal type theory, guarded and clocked type … Abstract In recent years, we have seen several new models of dependent type theory extended with some form of modal necessity operator, including nominal type theory, guarded and clocked type theory and spatial and cohesive type theory. In this paper, we study modal dependent type theory : dependent type theory with an operator satisfying (a dependent version of) the K axiom of modal logic. We investigate both semantics and syntax. For the semantics, we introduce categories with families with a dependent right adjoint (CwDRA) and show that the examples above can be presented as such. Indeed, we show that any category with finite limits and an adjunction of endofunctors give rise to a CwDRA via the local universe construction. For the syntax, we introduce a dependently typed extension of Fitch-style modal λ -calculus, show that it can be interpreted in any CwDRA, and build a term model. We extend the syntax and semantics with universes.
We present the topos S of trees as a model of guarded recursion. We study the internal dependently-typed higher-order logic of S and show that S models two modal operators, … We present the topos S of trees as a model of guarded recursion. We study the internal dependently-typed higher-order logic of S and show that S models two modal operators, on predicates and types, which serve as guards in recursive definitions of terms, predicates, and types. In particular, we show how to solve recursive type equations involving dependent types. We propose that the internal logic of S provides the right setting for the synthetic construction of abstract versions of step-indexed models of programming languages and program logics. As an example, we show how to construct a model of a programming language with higher-order store and recursive types entirely inside the internal logic of S.
The homotopical approach to intensional type theory views proofs of equality as paths. We explore what is required of an interval-like object I in a topos to give a model … The homotopical approach to intensional type theory views proofs of equality as paths. We explore what is required of an interval-like object I in a topos to give a model of type theory in which elements of identity types are functions with domain I. Cohen, Coquand, Huber and Mortberg give such a model using a particular category of presheaves. We investigate the extent to which their model construction can be expressed in the internal type theory of any topos and identify a collection of quite weak axioms for this purpose. This clarifies the definition and properties of the notion of uniform Kan filling that lies at the heart of their constructive interpretation of Voevodsky's univalence axiom. Furthermore, since our axioms can be satisfied in a number of different ways, we show that there is a range of topos-theoretic models of homotopy type theory in this style.
We propose an abstract notion of a type theory to unify the semantics of various type theories including Martin-Löf type theory, two-level type theory and cubical type theory. We establish … We propose an abstract notion of a type theory to unify the semantics of various type theories including Martin-Löf type theory, two-level type theory and cubical type theory. We establish basic results in the semantics of type theory: every type theory has a bi-initial model; every model of a type theory has its internal language; the category of theories over a type theory is bi-equivalent to a full sub-2-category of the 2-category of models of the type theory.
Following the cubical set model of type theory which validates the univalence axiom, cubical type theories have been developed that interpret the identity type using an interval pretype. These theories … Following the cubical set model of type theory which validates the univalence axiom, cubical type theories have been developed that interpret the identity type using an interval pretype. These theories start from a geometric view of equality. A proof of equality is encoded as a term in a context extended by the interval pretype. Our goal is to develop a cubical theory where the identity type is defined recursively over the type structure, and the geometry arises from these definitions. In this theory, cubes are present explicitly, e.g. a line is a telescope with 3 elements: two endpoints and the connecting equality. This is in line with Bernardy and Moulin's earlier work on internal parametricity. In this paper we present a naive syntax for internal parametricity and by replacing the parametric interpretation of the universe, we extend it to univalence. However, we don't know how to compute in this theory. As a second step, we present a version of the theory for parametricity with named dimensions which has an operational semantics. Extending this syntax to univalence is left as further work.
Homotopy type theory is a new branch of mathematics, based on a recently discovered connection between homotopy theory and type theory, which brings new ideas into the very foundation of … Homotopy type theory is a new branch of mathematics, based on a recently discovered connection between homotopy theory and type theory, which brings new ideas into the very foundation of mathematics. On the one hand, Voevodsky's subtle and beautiful "univalence axiom" implies that isomorphic structures can be identified. On the other hand, "higher inductive types" provide direct, logical descriptions of some of the basic spaces and constructions of homotopy theory. Both are impossible to capture directly in classical set-theoretic foundations, but when combined in homotopy type theory, they permit an entirely new kind of "logic of homotopy types". This suggests a new conception of foundations of mathematics, with intrinsic homotopical content, an "invariant" conception of the objects of mathematics -- and convenient machine implementations, which can serve as a practical aid to the working mathematician. This book is intended as a first systematic exposition of the basics of the resulting "Univalent Foundations" program, and a collection of examples of this new style of reasoning -- but without requiring the reader to know or learn any formal logic, or to use any computer proof assistant.
This paper contributes to recent investigations of the use of homotopy type theory to give machine-checked proofs of constructions from homotopy theory. We present a mechanized proof of a result … This paper contributes to recent investigations of the use of homotopy type theory to give machine-checked proofs of constructions from homotopy theory. We present a mechanized proof of a result called the Blakers-Massey connectivity theorem, which relates the higher-dimensional loop structures of two spaces sharing a common part (represented by a pushout type, which is a generalization of a disjoint sum type) to those of the common part itself. This theorem gives important information about the pushout type, and has a number of useful corollaries, including the Freudenthal suspension theorem, which was used in previous formalizations. The proof is more direct than existing ones that apply in general category-theoretic settings for homotopy theory, and its mechanization is concise and high-level, due to novel combinations of ideas from homotopy theory and from type theory.
Seely's paper "Locally cartesian closed categories and type theory" contains a well-known result in categorical type theory: that the category of locally cartesian closed categories is equivalent to the category … Seely's paper "Locally cartesian closed categories and type theory" contains a well-known result in categorical type theory: that the category of locally cartesian closed categories is equivalent to the category of Martin-L\"of type theories with Pi-types, Sigma-types and extensional identity types. However, Seely's proof relies on the problematic assumption that substitution in types can be interpreted by pullbacks. Here we prove a corrected version of Seely's theorem: that the B\'enabou-Hofmann interpretation of Martin-L\"of type theory in locally cartesian closed categories yields a biequivalence of 2-categories. To facilitate the technical development we employ categories with families as a substitute for syntactic Martin-L\"of type theories. As a second result we prove that if we remove Pi-types the resulting categories with families are biequivalent to left exact categories.
Category theory in homotopy type theory is intricate as categorical laws can only be stated "up to homotopy", and thus require coherences. The established notion of a univalent category (as … Category theory in homotopy type theory is intricate as categorical laws can only be stated "up to homotopy", and thus require coherences. The established notion of a univalent category (as introduced by Ahrens et al.) solves this by considering only truncated types, roughly corresponding to an ordinary category. This fails to capture many naturally occurring structures, stemming from the fact that the naturally occurring structures in homotopy type theory are not ordinary, but rather higher categories. Out of the large variety of approaches to higher category theory that mathematicians have proposed, we believe that, for type theory, the simplicial strategy is best suited. Work by Lurie and Harpaz motivates the following definition. Given the first ( n +3) levels of a semisimplicial type S , we can equip S with three properties: first, contractibility of the types of certain horn fillers; second, a completeness property; and third, a truncation condition. We call this a complete semi-Segal n -type . This is very similar to an earlier suggestion by Schreiber. The definition of a univalent (1-) category by Ahrens et al. can easily be extended or restricted to the definition of a univalent n -category (more precisely, ( n ,1)-category) for n ∈ {0,1,2}, and we show that the type of complete semi-Segal n -types is equivalent to the type of univalent n -categories in these cases. Thus, we believe that the notion of a complete semi-Segal n -type can be taken as the definition of a univalent n -category. We provide a formalisation in the proof assistant Agda using a completely explicit representation of semi-simplicial types for levels up to 4.
We define and develop two-level type theory (2LTT), a version of Martin-Lof type theory which combines two different type theories. We refer to them as the inner and the outer … We define and develop two-level type theory (2LTT), a version of Martin-Lof type theory which combines two different type theories. We refer to them as the inner and the outer type theory. In our case of interest, the inner theory is homotopy type theory (HoTT) which may include univalent universes and higher inductive types. The outer theory is a traditional form of type theory validating uniqueness of identity proofs (UIP). One point of view on it is as internalised meta-theory of the inner type theory. There are two motivations for 2LTT. Firstly, there are certain results about HoTT which are of meta-theoretic nature, such as the statement that semisimplicial types up to level $n$ can be constructed in HoTT for any externally fixed natural number $n$. Such results cannot be expressed in HoTT itself, but they can be formalised and proved in 2LTT, where $n$ will be a variable in the outer theory. This point of view is inspired by observations about conservativity of presheaf models. Secondly, 2LTT is a framework which is suitable for formulating additional axioms that one might want to add to HoTT. This idea is heavily inspired by Voevodsky's Homotopy Type System (HTS), which constitutes one specific instance of a 2LTT. HTS has an axiom ensuring that the type of natural numbers behaves like the external natural numbers, which allows the construction of a universe of semisimplicial types. In 2LTT, this axiom can be stated simply be asking the inner and outer natural numbers to be isomorphic. After defining 2LTT, we set up a collection of tools with the goal of making 2LTT a convenient language for future developments. As a first such application, we develop the theory of Reedy fibrant diagrams in the style of Shulman. Continuing this line of thought, we suggest a definition of (infinity,1)-category and give some examples.
We introduce and develop the notion of *displayed categories*. A displayed category over a category C is equivalent to "a category D and functor F : D --> C", but … We introduce and develop the notion of *displayed categories*. A displayed category over a category C is equivalent to "a category D and functor F : D --> C", but instead of having a single collection of "objects of D" with a map to the objects of C, the objects are given as a family indexed by objects of C, and similarly for the morphisms. This encapsulates a common way of building categories in practice, by starting with an existing category and adding extra data/properties to the objects and morphisms. The interest of this seemingly trivial reformulation is that various properties of functors are more naturally defined as properties of the corresponding displayed categories. Grothendieck fibrations, for example, when defined as certain functors, use equality on objects in their definition. When defined instead as certain displayed categories, no reference to equality on objects is required. Moreover, almost all examples of fibrations in nature are, in fact, categories whose standard construction can be seen as going via displayed categories. We therefore propose displayed categories as a basis for the development of fibrations in the type-theoretic setting, and similarly for various other notions whose classical definitions involve equality on objects. Besides giving a conceptual clarification of such issues, displayed categories also provide a powerful tool in computer formalisation, unifying and abstracting common constructions and proof techniques of category theory, and enabling modular reasoning about categories of multi-component structures. As such, most of the material of this article has been formalised in Coq over the UniMath library, with the aim of providing a practical library for use in further developments.
Quotient inductive-inductive types (QIITs) are generalized inductive types which allow sorts to be indexed over previously declared sorts, and allow usage of equality constructors. QIITs are especially useful for algebraic … Quotient inductive-inductive types (QIITs) are generalized inductive types which allow sorts to be indexed over previously declared sorts, and allow usage of equality constructors. QIITs are especially useful for algebraic descriptions of type theories and constructive definitions of real, ordinal and surreal numbers. We develop new metatheory for large QIITs, large elimination, recursive equations and infinitary constructors. As in prior work, we describe QIITs using a type theory where each context represents a QIIT signature. However, in our case the theory of signatures can also describe its own signature, modulo universe sizes. We bootstrap the model theory of signatures using self-description and a Church-coded notion of signature, without using complicated raw syntax or assuming an existing internal QIIT of signatures. We give semantics to described QIITs by modeling each signature as a finitely complete CwF (category with families) of algebras. Compared to the case of finitary QIITs, we additionally need to show invariance under algebra isomorphisms in the semantics. We do this by modeling signature types as isofibrations. Finally, we show by a term model construction that every QIIT is constructible from the syntax of the theory of signatures.
We present a model of type theory with dependent product, sum, and identity, in cubical sets. We describe a universe and explain how to transform an equivalence between two types … We present a model of type theory with dependent product, sum, and identity, in cubical sets. We describe a universe and explain how to transform an equivalence between two types into an equality. We also explain how to model propositional truncation and the circle. While not expressed internally in type theory, the model is expressed in a constructive metalogic. Thus it is a step towards a computational interpretation of Voevodsky's Univalence Axiom.
Presheaf models of dependent type theory have been successfully applied to model HoTT, parametricity, and directed, guarded and nominal type theory. There has been considerable interest in internalizing aspects of … Presheaf models of dependent type theory have been successfully applied to model HoTT, parametricity, and directed, guarded and nominal type theory. There has been considerable interest in internalizing aspects of these presheaf models, either to make the resulting language more expressive, or in order to carry out further reasoning internally, allowing greater abstraction and sometimes automated verification. While the constructions of presheaf models largely follow a common pattern, approaches towards internalization do not. Throughout the literature, various internal presheaf operators ($\surd$, $\Phi/\mathsf{extent}$, $\Psi/\mathsf{Gel}$, $\mathsf{Glue}$, $\mathsf{Weld}$, $\mathsf{mill}$, the strictness axiom and locally fresh names) can be found and little is known about their relative expressivenes. Moreover, some of these require that variables whose type is a shape (representable presheaf, e.g. an interval) be used affinely. We propose a novel type former, the transpension type, which is right adjoint to universal quantification over a shape. Its structure resembles a dependent version of the suspension type in HoTT. We give general typing rules and a presheaf semantics in terms of base category functors dubbed multipliers. Structural rules for shape variables and certain aspects of the transpension type depend on characteristics of the multiplier. We demonstrate how the transpension type and the strictness axiom can be combined to implement all and improve some of the aforementioned internalization operators (without formal claim in the case of locally fresh names).
We define a general class of dependent type theories, encompassing Martin-Löf's intuitionistic type theories and variants and extensions. The primary aim is pragmatic: to unify and organise their study, allowing … We define a general class of dependent type theories, encompassing Martin-Löf's intuitionistic type theories and variants and extensions. The primary aim is pragmatic: to unify and organise their study, allowing results and constructions to be given in reasonable generality, rather than just for specific theories. Compared to other approaches, our definition stays closer to the direct or naive reading of syntax, yielding the traditional presentations of specific theories as closely as possible. Specifically, we give three main definitions: raw type theories, a minimal setup for discussing dependently typed derivability; acceptable type theories, including extra conditions ensuring well-behavedness; and well-presented type theories, generalising how in traditional presentations, the well-behavedness of a type theory is established step by step as the type theory is built up. Following these, we show that various fundamental fitness-for-purpose metatheorems hold in this generality. Much of the present work has been formalised in the proof assistant Coq.
We develop a dependent type theory that is based purely on inductive and coinductive types, and the corresponding recursion and corecursion principles. This results in a type theory with a … We develop a dependent type theory that is based purely on inductive and coinductive types, and the corresponding recursion and corecursion principles. This results in a type theory with a small set of rules, while still being fairly expressive. For example, all well-known basic types and type formers that are needed for using this type theory as a logic are definable: propositional connectives, like falsity, conjunction, disjunction, and function space, dependent function space, existential quantification, equality, natural numbers, vectors etc. The reduction relation on terms consists solely of a rule for recursion and a rule for corecursion. The reduction relations for well-known types arise from that. To further support the introduction of this new type theory, we also prove fundamental properties of its term calculus. Most importantly, we prove subject reduction and strong normalisation of the reduction relation, which gives computational meaning to the terms.
We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated in the metalanguage of type theory using quotient inductive types. We use a … We develop normalisation by evaluation (NBE) for dependent types based on presheaf categories. Our construction is formulated in the metalanguage of type theory using quotient inductive types. We use a typed presentation hence there are no preterms or realizers in our construction, and every construction respects the conversion relation. NBE for simple types uses a logical relation between the syntax and the presheaf interpretation. In our construction, we merge the presheaf interpretation and the logical relation into a proof-relevant logical predicate. We prove normalisation, completeness, stability and decidability of definitional equality. Most of the constructions were formalized in Agda.
Higher inductive types are a class of type-forming rules, introduced to provide basic (and not-so-basic) homotopy-theoretic constructions in a type-theoretic style. They have proven very fruitful for the "synthetic" development … Higher inductive types are a class of type-forming rules, introduced to provide basic (and not-so-basic) homotopy-theoretic constructions in a type-theoretic style. They have proven very fruitful for the "synthetic" development of homotopy theory within type theory, as well as in formalizing ordinary set-level mathematics in type theory. In this article, we construct models of a wide range of higher inductive types in a fairly wide range of settings. We introduce the notion of cell monad with parameters: a semantically-defined scheme for specifying homotopically well-behaved notions of structure. We then show that any suitable model category has *weakly stable typal initial algebras* for any cell monad with parameters. When combined with the local universes construction to obtain strict stability, this specializes to give models of specific higher inductive types, including spheres, the torus, pushout types, truncations, the James construction, and general localisations. Our results apply in any sufficiently nice Quillen model category, including any right proper, simplicially locally cartesian closed, simplicial Cisinski model category (such as simplicial sets) and any locally presentable locally cartesian closed category (such as sets) with its trivial model structure. In particular, any locally presentable locally cartesian closed $(\infty,1)$-category is presented by some model category to which our results apply.
We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We … We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion --- demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations.
We consider the problem of defining the integers in Homotopy Type Theory (HoTT). We can define the type of integers as signed natural numbers (i.e., using a coproduct), but its … We consider the problem of defining the integers in Homotopy Type Theory (HoTT). We can define the type of integers as signed natural numbers (i.e., using a coproduct), but its induction principle is very inconvenient to work with, since it leads to an explosion of cases. An alternative is to use set-quotients, but here we need to use set-truncation to avoid non-trivial higher equalities. This results in a recursion principle that only allows us to define function into sets (types satisfying UIP). In this paper we consider higher inductive types using either a small universe or bi-invertible maps. These types represent integers without explicit set-truncation that are equivalent to the usual coproduct representation. This is an interesting example since it shows how some coherence problems can be handled in HoTT. We discuss some open questions triggered by this work. The proofs have been formally verified using cubical Agda.
We argue that locally Cartesian closed categories form a suitable doctrine for defining dependent type theories, including non-extensional ones. Using the theory of sketches, one may define syntactic categories for … We argue that locally Cartesian closed categories form a suitable doctrine for defining dependent type theories, including non-extensional ones. Using the theory of sketches, one may define syntactic categories for type theories in a style that resembles the use of Martin-Lof's Logical Framework, following the as types principle. The concentration of type theories into their locally Cartesian closed categories of judgments is particularly convenient for proving syntactic metatheorems by semantic means (canonicity, normalization, etc.). Perhaps surprisingly, the notion of a context plays no role in the definitions of type theories in this sense, but the structure of a class of display maps can be imposed on a theory post facto wherever needed, as advocated by the Edinburgh school and realized by the %worlds declarations of the Twelf proof assistant. Uemura has proposed representable map categories together with a stratified logical framework for similar purposes. The stratification in Uemura's framework restricts the use of dependent products to be strictly positive, in contrast to the tradition of Martin-Lof's logical framework and Schroeder-Heister's analysis of higher-level deductions. We prove a semantic adequacy result for locally Cartesian closed categories relative to Uemura's representable map categories: if a theory is definable in the framework of Uemura, the locally Cartesian closed category that it generates is a conservative (fully faithful) extension of its syntactic representable map category. On this basis, we argue for the use of locally Cartesian closed categories as a simpler alternative to Uemura's representable map categories.
We prove normalization for (univalent, Cartesian) cubical type theory, closing the last major open problem in the syntactic metatheory of cubical type theory. Our normalization result is reduction-free, in the … We prove normalization for (univalent, Cartesian) cubical type theory, closing the last major open problem in the syntactic metatheory of cubical type theory. Our normalization result is reduction-free, in the sense of yielding a bijection between equivalence classes of terms in context and a tractable language of $\beta/\eta$-normal forms. As corollaries we obtain both decidability of judgmental equality and the injectivity of type constructors.
We prove normalization for (univalent, Cartesian) cubical type theory, closing the last major open problem in the syntactic metatheory of cubical type theory. Our normalization result is reduction-free, in the … We prove normalization for (univalent, Cartesian) cubical type theory, closing the last major open problem in the syntactic metatheory of cubical type theory. Our normalization result is reduction-free, in the sense of yielding a bijection between equivalence classes of terms in context and a tractable language of $β/η$-normal forms. As corollaries we obtain both decidability of judgmental equality and the injectivity of type constructors.
We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We … We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations.
We define a computational type theory combining the contentful equality structure of cartesian cubical type theory with internal parametricity primitives. The combined theory supports both univalence and its relational equivalent, … We define a computational type theory combining the contentful equality structure of cartesian cubical type theory with internal parametricity primitives. The combined theory supports both univalence and its relational equivalent, which we call relativity. We demonstrate the use of the theory by analyzing polymorphic functions between higher inductive types, observe how cubical equality regularizes parametric type theory, and examine the similarities and discrepancies between cubical and parametric type theory, which are closely related. We also abstract a formal interface to the computational interpretation and show that this also has a presheaf model.
Abstract We present a cubical type theory based on the Cartesian cube category (faces, degeneracies, symmetries, diagonals, but no connections or reversal) with univalent universes, each containing Π, Σ, path, … Abstract We present a cubical type theory based on the Cartesian cube category (faces, degeneracies, symmetries, diagonals, but no connections or reversal) with univalent universes, each containing Π, Σ, path, identity, natural number, boolean, suspension, and glue (equivalence extension) types. The type theory includes a syntactic description of a uniform Kan operation, along with judgmental equality rules defining the Kan operation on each type. The Kan operation uses both a different set of generating trivial cofibrations and a different set of generating cofibrations than the Cohen, Coquand, Huber, and Mörtberg (CCHM) model. Next, we describe a constructive model of this type theory in Cartesian cubical sets. We give a mechanized proof, using Agda as the internal language of cubical sets in the style introduced by Orton and Pitts, that glue, Π, Σ, path, identity, boolean, natural number, suspension types, and the universe itself are Kan in this model, and that the universe is univalent. An advantage of this formal approach is that our construction can also be interpreted in a range of other models, including cubical sets on the connections cube category and the De Morgan cube category, as used in the CCHM model, and bicubical sets, as used in directed type theory.
Topologists are sometimes interested in space-valued diagrams over a given index category, but it is tricky to say what such a diagram even is if we look for a notion … Topologists are sometimes interested in space-valued diagrams over a given index category, but it is tricky to say what such a diagram even is if we look for a notion that is stable under equivalence. The same happens in (homotopy) type theory, where it is known only for special cases how one can define a type of type-valued diagrams over a given index category. We offer several constructions. We first show how to define homotopy coherent diagrams which come with all higher coherence laws explicitly, with two variants that come with assumption on the index category or on the type theory. Further, we present a construction of diagrams over certain Reedy categories. As an application, we add the degeneracies to the well-known construction of semisimplicial types, yielding a construction of simplicial types up to any given finite level. The current paper is only an extended abstract, and a full version is to follow. In the full paper, we will show that the different notions of diagrams are equivalent to each other and to the known notion of Reedy fibrant diagrams whenever the statement makes sense. In the current paper, we only sketch some core ideas of the proofs.
We prove normalization for MTT, a general multimodal dependent type theory capable of expressing modal type theories for guarded recursion, internalized parametricity, and various other prototypical modal situations. We prove … We prove normalization for MTT, a general multimodal dependent type theory capable of expressing modal type theories for guarded recursion, internalized parametricity, and various other prototypical modal situations. We prove that deciding type checking and conversion in MTT can be reduced to deciding the equality of modalities in the underlying modal situation, immediately yielding a type checking algorithm for all instantiations of MTT in the literature. This proof uses a generalization of synthetic Tait computability -- an abstract approach to gluing proofs -- to account for modalities. This extension is based on MTT itself, so that this proof also constitutes a significant case study of MTT.
We define and develop two-level type theory (2LTT), a version of Martin-L\"of type theory which combines two different type theories. We refer to them as the inner and the outer … We define and develop two-level type theory (2LTT), a version of Martin-L\"of type theory which combines two different type theories. We refer to them as the inner and the outer type theory. In our case of interest, the inner theory is homotopy type theory (HoTT) which may include univalent universes and higher inductive types. The outer theory is a traditional form of type theory validating uniqueness of identity proofs (UIP). One point of view on it is as internalised meta-theory of the inner type theory. There are two motivations for 2LTT. Firstly, there are certain results about HoTT which are of meta-theoretic nature, such as the statement that semisimplicial types up to level $n$ can be constructed in HoTT for any externally fixed natural number $n$. Such results cannot be expressed in HoTT itself, but they can be formalised and proved in 2LTT, where $n$ will be a variable in the outer theory. This point of view is inspired by observations about conservativity of presheaf models. Secondly, 2LTT is a framework which is suitable for formulating additional axioms that one might want to add to HoTT. This idea is heavily inspired by Voevodsky's Homotopy Type System (HTS), which constitutes one specific instance of a 2LTT. HTS has an axiom ensuring that the type of natural numbers behaves like the external natural numbers, which allows the construction of a universe of semisimplicial types. In 2LTT, this axiom can be stated simply be asking the inner and outer natural numbers to be isomorphic. After defining 2LTT, we set up a collection of tools with the goal of making 2LTT a convenient language for future developments. As a first such application, we develop the theory of Reedy fibrant diagrams in the style of Shulman. Continuing this line of thought, we suggest a definition of (infinity,1)-category and give some examples.
Abstract We propose an abstract notion of a type theory to unify the semantics of various type theories including Martin–Löf type theory, two-level type theory, and cubical type theory. We … Abstract We propose an abstract notion of a type theory to unify the semantics of various type theories including Martin–Löf type theory, two-level type theory, and cubical type theory. We establish basic results in the semantics of type theory: every type theory has a bi-initial model; every model of a type theory has its internal language; the category of theories over a type theory is bi-equivalent to a full sub-2-category of the 2-category of models of the type theory.
Abstract Our principal goal in this chapter is to establish the characterization of exponentiable objects in the 2-category ℬℐℴ𝓅/𝒮, for a general base topos 𝒮, as those which are ‘locally … Abstract Our principal goal in this chapter is to establish the characterization of exponentiable objects in the 2-category ℬℐℴ𝓅/𝒮, for a general base topos 𝒮, as those which are ‘locally compact’ in an appropriate sense. We have already made some observations about exponentiability in ℬℐℴ𝓅/𝒮 in Section B4.3; and we shall assume that the reader of this chapter is familiar with them. In this and the next section we shall take our base topos to be Set, in order to simplify the notation; but virtually all that we do can be extended to a general base topos S with a natural number object, using an appropriate internal finiteness notion in S to interpret the finiteness conditions which appear below.
Received by the editors 2004-10-30. Transmitted by Steve Lack, Ross Street and RJ Wood. Reprint published on 2005-04-23. Several typographical errors corrected 2012-05-13. 2000 Mathematics Subject Classification: 18-02, 18D10, 18D20. Received by the editors 2004-10-30. Transmitted by Steve Lack, Ross Street and RJ Wood. Reprint published on 2005-04-23. Several typographical errors corrected 2012-05-13. 2000 Mathematics Subject Classification: 18-02, 18D10, 18D20.
Dependently typed programs contain an excessive amount of static terms which are necessary to please the type checker but irrelevant for computation. To separate static and dynamic code, several static … Dependently typed programs contain an excessive amount of static terms which are necessary to please the type checker but irrelevant for computation. To separate static and dynamic code, several static analyses and type systems have been put forward. We consider Pfenning's type theory with irrelevant quantification which is compatible with a type-based notion of equality that respects eta-laws. We extend Pfenning's theory to universes and large eliminations and develop its meta-theory. Subject reduction, normalization and consistency are obtained by a Kripke model over the typed equality judgement. Finally, a type-directed equality algorithm is described whose completeness is proven by a second Kripke model.
We show that terms witnessing a groupoid law from the ω-groupoid structure of types are all propositionally equal. Our proof reduce this problem to the unicity of the canonical point … We show that terms witnessing a groupoid law from the ω-groupoid structure of types are all propositionally equal. Our proof reduce this problem to the unicity of the canonical point in the n-th loop space and conclude using Bernardy's parametricity theory for dependent types.
Decidability of definitional equality and conversion of terms into canonical form play a central role in the meta-theory of a type-theoretic logical framework. Most studies of definitional equality are based … Decidability of definitional equality and conversion of terms into canonical form play a central role in the meta-theory of a type-theoretic logical framework. Most studies of definitional equality are based on a confluent, strongly normalizing notion of reduction. Coquand has considered a different approach, directly proving the correctness of a practical equivalance algorithm based on the shape of terms. Neither approach appears to scale well to richer languages with, for example, unit types or subtyping, and neither provides a notion of canonical form suitable for proving adequacy of encodings.In this article, we present a new, type-directed equivalence algorithm for the LF type theory that overcomes the weaknesses of previous approaches. The algorithm is practical, scales to richer languages, and yields a new notion of canonical form sufficient for adequate encodings of logical systems. The algorithm is proved complete by a Kripke-style logical relations argument similar to that suggested by Coquand. Crucially, both the algorithm itself and the logical relations rely only on the shapes of types, ignoring dependencies on terms.