Erico Tjoa

Follow

Generating author description...

Common Coauthors
Coauthor Papers Together
Cuntai Guan 11
Heng Guo 1
Tushar Chouhan 1
Hong Jing Khok 1
Yuhao Lu 1
Commonly Cited References
Action Title Year Authors # of times referenced
+ Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization 2016 Ramprasaath R. Selvaraju
Abhishek Das
Ramakrishna Vedantam
Michael Cogswell
Devi Parikh
Dhruv Batra
6
+ PDF Chat Evaluating the Visualization of What a Deep Neural Network Has Learned 2016 Wojciech Samek
Alexander Binder
Grégoire Montavon
Sebastian Lapuschkin
Klaus‐Robert MĂŒller
5
+ Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) 2017 Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
Fernanda Viégas
Rory Sayres
5
+ PDF Chat Learning Deep Features for Discriminative Localization 2016 Bolei Zhou
Aditya Khosla
Àgata Lapedriza
Aude Oliva
Antonio Torralba
5
+ Striving for Simplicity: The All Convolutional Net 2014 Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
4
+ A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI 2020 Erico Tjoa
Cuntai Guan
4
+ PDF Chat Interpretable Explanations of Black Boxes by Meaningful Perturbation 2017 Ruth Fong
Andrea Vedaldi
4
+ PDF Chat Analyzing Neuroimaging Data Through Recurrent Deep Learning Models 2019 Armin W. Thomas
Hauke R. Heekeren
Klaus‐Robert MĂŒller
Wojciech Samek
3
+ PDF Chat Unmasking Clever Hans predictors and assessing what machines really learn 2019 Sebastian Lapuschkin
Stephan WĂ€ldchen
Alexander Binder
Grégoire Montavon
Wojciech Samek
Klaus‐Robert MĂŒller
3
+ PDF Chat Network Dissection: Quantifying Interpretability of Deep Visual Representations 2017 David Bau
Bolei Zhou
Aditya Khosla
Aude Oliva
Antonio Torralba
3
+ PDF Chat Testing the Robustness of Attribution Methods for Convolutional Neural Networks in MRI-Based Alzheimer’s Disease Classification 2019 Fabian Eitel
Kerstin Ritter
3
+ PDF Chat Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis 2019 Hyebin Lee
Seong Tae Kim
Yong Man Ro
3
+ PDF Chat Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI 2019 Alejandro Barredo Arrieta
Natalia DĂ­az-RodrĂ­guez
Javier Del Ser
Adrien Bennetot
Siham Tabik
Alberto Barbado
Salvador GarcĂ­a
Sergio Gil-LĂłpez
Daniel Molina
Richard Benjamins
3
+ PDF Chat Explaining Explanations: An Overview of Interpretability of Machine Learning 2018 Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
3
+ PDF Chat Autofocus Layer for Semantic Segmentation 2018 Yao Qin
Konstantinos Kamnitsas
Siddharth Ancha
Jay Nanavati
Garrison W. Cottrell
Antonio Criminisi
Aditya Nori
3
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
3
+ Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI 2018 Xiaoxiao Li
Nicha C. Dvornek
Juntang Zhuang
Pamela Ventola
James S. Duncan
3
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
3
+ PDF Chat Multiple Instance Learning for Heterogeneous Images: Training a CNN for Histopathology 2018 Heather D. Couture
J. S. Marron
Charles M. Perou
Melissa A. Troester
Marc Niethammer
3
+ PDF Chat CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison 2019 Jeremy Irvin
Pranav Rajpurkar
Michael Ko
Yifan Yu
Silviana Ciurea-Ilcus
Chris Chute
Henrik Marklund
Behzad Haghgoo
Robyn L. Ball
Katie Shpanskaya
3
+ Learning Important Features Through Propagating Activation Differences 2017 Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
3
+ A Benchmark for Interpretability Methods in Deep Neural Networks 2018 Sara Hooker
Dumitru Erhan
Pieter-Jan Kindermans
Been Kim
3
+ Quantitative Evaluations on Saliency Methods: An Experimental Study 2020 Xiaohui Li
Yuhan Shi
Haoyang Li
Wei Bai
Yuanwei Song
Caleb Chen Cao
Lei Chen
2
+ SmoothGrad: removing noise by adding noise 2017 Daniel Smilkov
Nikhil Thorat
Been Kim
Fernanda Viégas
Martin Wattenberg
2
+ PDF Chat Understanding the role of individual units in a deep neural network 2020 David Bau
Jun-Yan Zhu
Hendrik Strobelt
Àgata Lapedriza
Bolei Zhou
Antonio Torralba
2
+ PDF Chat 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation 2016 ÖzgĂŒn Çiçek
Ahmed Abdulkadir
Soeren S. Lienkamp
Thomas Brox
Olaf Ronneberger
2
+ Understanding Neural Networks Through Deep Visualization 2015 Jason Yosinski
Jeff Clune
Anh Mai Nguyen
Thomas J. Fuchs
Hod Lipson
2
+ PDF Chat There and Back Again: Revisiting Backpropagation Saliency Methods 2020 Sylvestre-Alvise Rebuffi
Ruth Fong
Xu Ji
Andrea Vedaldi
2
+ Towards Automatic Concept-based Explanations 2019 Amirata Ghorbani
James Wexler
James Zou
Been Kim
2
+ Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models 2017 Wojciech Samek
Thomas Wiegand
Klaus‐Robert MĂŒller
2
+ SmoothGrad: removing noise by adding noise 2017 Daniel Smilkov
Nikhil Thorat
Been Kim
Fernanda Viégas
Martin Wattenberg
2
+ Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks 2016 Anh Mai Nguyen
Jason Yosinski
Jeff Clune
2
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
2
+ PDF Chat Interpretation of Neural Networks Is Fragile 2019 Amirata Ghorbani
Abubakar Abid
James Zou
2
+ Striving for Simplicity: The All Convolutional Net 2014 Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
2
+ Visualizing Deep Neural Network Decisions: Prediction Difference Analysis 2017 Luisa Zintgraf
Taco Cohen
Tameem Adel
Max Welling
2
+ How to Explain Individual Classification Decisions 2009 David Baehrens
Timon Schroeter
Stefan Harmeling
Motoaki Kawanabe
Katja Hansen
Klaus‐Robert MĂŒller
2
+ Visual Explanation by Interpretation: Improving Visual Feedback Capabilities of Deep Neural Networks 2017 José Oramas
Kaili Wang
Tinne Tuytelaars
2
+ One weird trick for parallelizing convolutional neural networks 2014 Alex Krizhevsky
2
+ Enhancing the Extraction of Interpretable Information for Ischemic Stroke Imaging from Deep Neural Networks 2019 Erico Tjoa
Heng Guo
Yuhao Lu
Cuntai Guan
2
+ Investigating the influence of noise and distractors on the interpretation of neural networks 2016 Pieter-Jan Kindermans
Kristof T. SchĂŒtt
Klaus‐Robert MĂŒller
Sven DĂ€hne
1
+ Pattern Theory: From Representation to Inference 2007 Ulf Grenander
Michael I. Miller
1
+ PDF Chat A Pattern-Theoretic Characterization of Biological Growth 2007 Ulf Grenander
Anuj Srivastava
Sanjay Saini
1
+ PDF Chat Quantum-chemical insights from deep tensor neural networks 2017 Kristof T. SchĂŒtt
Farhad Arbabzadah
Stefan Chmiela
K. MĂŒller
Alexandre Tkatchenko
1
+ “Why Should I Trust You?”: Explaining the Predictions of Any Classifier 2016 Marco Ribeiro
Sameer Singh
Carlos Guestrin
1
+ PDF Chat Understanding deep image representations by inverting them 2015 Aravindh Mahendran
Andrea Vedaldi
1
+ Hierarchical Question-Image Co-Attention for Visual Question Answering 2016 Jiasen Lu
Jianwei Yang
Dhruv Batra
Devi Parikh
1
+ Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model 2015 Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
David Madigan
1
+ Learning how to explain neural networks: PatternNet and PatternAttribution 2017 Pieter Jan Kindermans
Kristof T. SchĂŒtt
Maximilian Alber
K. MĂŒller
Dumitru Erhan
Been Kim
Sven DĂ€hne
1