V Varshaneya

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Direct and Indirect Effects 2001 Judea Pearl
1
+ Explaining nonlinear classification decisions with deep Taylor decomposition 2016 Grégoire Montavon
Sebastian Lapuschkin
Alexander Binder
Wojciech Samek
Klaus‐Robert MĂŒller
1
+ “Why Should I Trust You?”: Explaining the Predictions of Any Classifier 2016 Marco Ribeiro
Sameer Singh
Carlos Guestrin
1
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
1
+ PDF Chat Grounding Visual Explanations 2018 Lisa Anne Hendricks
Ronghang Hu
Trevor Darrell
Zeynep Akata
1
+ Explaining Classifiers with Causal Concept Effect (CaCE) 2019 Yash Goyal
Amir Feder
Uri Shalit
Been Kim
1
+ Estimating individual treatment effect: generalization bounds and algorithms 2016 Uri Shalit
Fredrik Johansson
David Sontag
1
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
1
+ PDF Chat Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization 2017 Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
1
+ PDF Chat Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR 2017 Sandra Wachter
Brent Mittelstadt
Chris Russell
1
+ Counterfactual Visual Explanations 2019 Yash Goyal
Ziyan Wu
Jan Ernst
Dhruv Batra
Devi Parikh
Stefan Lee
1
+ Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) 2017 Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
Fernanda Viégas
Rory Sayres
1
+ Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations 2017 Andrew Slavin Ross
Michael C. Hughes
Finale Doshi‐Velez
1
+ Feature relevance quantification in explainable AI: A causal problem 2019 Dominik Janzing
Lenon Minorics
Patrick Blöbaum
1
+ Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers 2019 Divyat Mahajan
Chenhao Tan
Amit Sharma
1
+ PDF Chat Learning Counterfactual Representations for Estimating Individual Dose-Response Curves 2020 Patrick Schwab
Lorenz Linhardt
Stefan Bauer
Joachim M. Buhmann
Walter Karlen
1
+ Deep Structural Causal Models for Tractable Counterfactual Inference 2020 Nick Pawlowski
Daniel C. Castro
Ben Glocker
1
+ Concept Bottleneck Models 2020 Pang Wei Koh
Thao Nguyen
Yew Siang Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
1
+ CASTLE: Regularization via Auxiliary Causal Graph Discovery 2020 Trent Kyono
Yao Zhang
Mihaela van der Schaar
1
+ Multi-Objective Counterfactual Explanations 2020 Susanne Dandl
Christoph Molnar
Martin Binder
Bernd Bischl
1
+ Recurrent Independent Mechanisms 2019 Anirudh Goyal
Alex Lamb
Jordan Hoffmann
Shagun Sodhani
Sergey Levine
Yoshua Bengio
Bernhard Schölkopf
1
+ PDF Chat Interpretable machine learning: Fundamental principles and 10 grand challenges 2022 Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
1
+ PDF Chat Treatment Effect Estimation with Disentangled Latent Factors 2021 Weijia Zhang
Lin Liu
Jiuyong Li
1
+ PDF Chat Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End 2021 Ramaravind Kommiya Mothilal
Divyat Mahajan
Chenhao Tan
Amit Sharma
1
+ PDF Chat Interpretable Counterfactual Explanations Guided by Prototypes 2021 Arnaud Van Looveren
Janis Klaise
1
+ PDF Chat Comprehensible Convolutional Neural Networks via Guided Concept Learning 2021 Sandareka Wickramanayake
Wynne Hsu
Mong Li Lee
1
+ The Causal-Neural Connection: Expressiveness, Learnability, and Inference 2021 Kevin Xia
Kai-Zhan Lee
Yoshua Bengio
Elias Bareinboim
1
+ Generative causal explanations of black-box classifiers 2020 Matthew O’Shaughnessy
Gregory Canal
Marissa Connor
Mark Davenport
Christopher J. Rozell
1
+ CXPlain: Causal Explanations for Model Interpretation under Uncertainty 2019 Patrick Schwab
Walter Karlen
1
+ Neural Network Attributions: A Causal Perspective 2019 Aditya Chattopadhyay
Piyushi Manupriya
Anirban Sarkar
Vineeth N Balasubramanian
1
+ Language Models are Few-Shot Learners 2020 T. B. Brown
Benjamin F. Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam
Girish Sastry
Amanda Askell
1
+ SmoothGrad: removing noise by adding noise 2017 Daniel Smilkov
Nikhil Thorat
Been Kim
Fernanda Viégas
Martin Wattenberg
1
+ CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training 2017 Murat Kocaoğlu
Chris Snyder
Alexandros G. Dimakis
Sriram Vishwanath
1
+ Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models 2020 Tom Heskes
Evi Sijben
Ioan Gabriel Bucur
Tom Claassen
1
+ Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off 2022 Mateo Espinosa Zarlenga
Pietro Barbiero
Gabriele Ciravegna
Giuseppe Marra
Francesco Giannini
Michelangelo Diligenti
Zohreh Shams
Fƕed́eric Precioso
Stefano Melacci
Adrian Weller
1
+ Causal Regularization 2019 Dominik Janzing
1
+ A Causal Lens for Peeking into Black Box Predictive Models: Predictive Model Interpretation via Causal Attribution 2020 Aria Khademi
Vasant Honavar
1
+ Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review 2020 Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan Hines
John P. Dickerson
Chirag Shah
1
+ Matching Learned Causal Effects of Neural Networks with Domain Priors 2021 Sai Srinivas Kancheti
Abbavaram Gowtham Reddy
Vineeth N Balasubramanian
Amit Sharma
1
+ PDF Chat Contrastive-ACE: Domain Generalization Through Alignment of Causal Mechanisms 2022 Yunqi Wang
Furui Liu
Zhitang Chen
Yik‐Chung Wu
Jianye Hao
Guangyong Chen
Pheng‐Ann Heng
1
+ LM-Debugger: An Interactive Tool for Inspection and Intervention in Transformer-Based Language Models 2022 Mor Geva
Avi Caciularu
Guy Dar
Paul Roit
Shoval Sadde
Micah Shlain
Bar Tamir
Yoav Goldberg
1
+ Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction 2015 Guido W. Imbens
Donald B. Rubin
1