+
PDF
Chat
|
Leveraging Registers in Vision Transformers for Robust Adaptation
|
2025
|
Srikar Yellapragada
Kowshik Thopalli
Vivek Narayanaswamy
Wesam Sakla
Yang Liu
Yamen Mubarka
Dimitris Samaras
Jayaraman J. Thiagarajan
|
+
PDF
Chat
|
Physics-Informed Transformation Toward Improving the Machine-Learned
NLTE Models of ICF Simulations
|
2024
|
Min Sang Cho
Paul Grabowski
Kowshik Thopalli
T. S. Jayram
Michael J. Barrow
Jayaraman J. Thiagarajan
Rushil Anirudh
Hai Phuong Le
H. A. Scott
Joshua Kallman
|
+
PDF
Chat
|
On The Role of Prompt Construction In Enhancing Efficacy and Efficiency
of LLM-Based Tabular Data Generation
|
2024
|
Banooqa Banday
Kowshik Thopalli
Tanzima Islam
Jayaraman J. Thiagarajan
|
+
PDF
Chat
|
DECIDER: Leveraging Foundation Model Priors for Improved Model Failure
Detection and Explanation
|
2024
|
Rakshith Subramanyam
Kowshik Thopalli
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
|
+
PDF
Chat
|
Enhancing Accuracy and Parameter-Efficiency of Neural Representations
for Network Parameterization
|
2024
|
Hongjun Choi
Jayaraman J. Thiagarajan
Ruben Glatt
Shusen Liu
|
+
PDF
Chat
|
Speeding Up Image Classifiers with Little Companions
|
2024
|
Yang Liu
Kowshik Thopalli
Jayaraman J. Thiagarajan
|
+
PDF
Chat
|
On the Use of Anchoring for Training Vision Models
|
2024
|
Vivek Narayanaswamy
Kowshik Thopalli
Rushil Anirudh
Yamen Mubarka
Wesam Sakla
Jayaraman J. Thiagarajan
|
+
|
Transformer-Powered Surrogates Close the ICF Simulation-Experiment Gap with Extremely Limited Data
|
2024
|
Matthew Olson
Shusen Liu
Jayaraman J. Thiagarajan
Bogdan Kustowski
WengâKeen Wong
Rushil Anirudh
|
+
PDF
Chat
|
`Eyes of a Hawk and Ears of a Fox': Part Prototype Network for
Generalized Zero-Shot Learning
|
2024
|
Joshua Feinglass
Jayaraman J. Thiagarajan
Rushil Anirudh
T. S. Jayram
Yezhou Yang
|
+
|
Accurate and Scalable Estimation of Epistemic Uncertainty for Graph Neural Networks
|
2024
|
Puja Trivedi
Mark Heimann
Rushil Anirudh
Danai Koutra
Jayaraman J. Thiagarajan
|
+
PDF
Chat
|
DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle CT Reconstruction
|
2023
|
Jiaming Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
Stewart He
Karthika Mohan
Ulugbek S. Kamilov
Hyo-Jin Kim
|
+
PDF
Chat
|
Federated benchmarking of medical artificial intelligence with MedPerf
|
2023
|
Alexandros Karargyris
Renato Umeton
Micah Sheller
Alejandro Aristizabal
Johnu George
Anna Wuest
Sarthak Pati
Hasan Kassem
Maximilian Zenk
Ujjwal Baid
|
+
PDF
Chat
|
2022 Review of Data-Driven Plasma Science
|
2023
|
Rushil Anirudh
Richard Archibald
M. Salman Asif
Markus M. Becker
S. Benkadda
PeerâTimo Bremer
Rick H. S. Budé
C. S. Chang
L. Chen
R.M. Churchill
|
+
PDF
Chat
|
Cross-GAN Auditing: Unsupervised Identification of Attribute Level Similarities and Differences Between Pretrained Generative Models
|
2023
|
Matthew Olson
Shusen Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
PeerâTimo Bremer
W. Eric Wong
|
+
PDF
Chat
|
Improving Diversity with Adversarially Learned Transformations for Domain Generalization
|
2023
|
Tejas Gokhale
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Chitta Baral
Yezhou Yang
|
+
|
Contrastive Knowledge-Augmented Meta-Learning for Few-Shot Classification
|
2023
|
Rakshith Subramanyam
Mark Heimann
T.S. Jayram
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
|
Cross-GAN Auditing: Unsupervised Identification of Attribute Level Similarities and Differences between Pretrained Generative Models
|
2023
|
Matthew Olson
Shusen Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
PeerâTimo Bremer
W. Eric Wong
|
+
|
A Closer Look at Model Adaptation using Feature Distortion and Simplicity Bias
|
2023
|
Puja Trivedi
Danai Koutra
Jayaraman J. Thiagarajan
|
+
|
On the Efficacy of Generalization Error Prediction Scoring Functions
|
2023
|
Puja Trivedi
Danai Koutra
Jayaraman J. Thiagarajan
|
+
|
Target-Aware Generative Augmentations for Single-Shot Adaptation
|
2023
|
Kowshik Thopalli
Rakshith Subramanyam
Pavan Turaga
Jayaraman J. Thiagarajan
|
+
|
CREPE: Learnable Prompting With CLIP Improves Visual Relationship Prediction
|
2023
|
Rakshith Subramanyam
T. S. Jayram
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
|
Accurate and Scalable Estimation of Epistemic Uncertainty for Graph Neural Networks
|
2023
|
Puja Trivedi
Mark Heimann
Rushil Anirudh
Danai Koutra
Jayaraman J. Thiagarajan
|
+
|
PAGER: A Framework for Failure Analysis of Deep Regression Models
|
2023
|
Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Puja Trivedi
Rushil Anirudh
|
+
|
Transformer-Powered Surrogates Close the ICF Simulation-Experiment Gap with Extremely Limited Data
|
2023
|
Matthew Olson
Shusen Liu
Jayaraman J. Thiagarajan
Bogdan Kustowski
WengâKeen Wong
Rushil Anirudh
|
+
PDF
Chat
|
Single Model Uncertainty Estimation via Stochastic Data Centering
|
2022
|
Jayaraman J. Thiagarajan
|
+
|
Exploring the Design of Adaptation Protocols for Improved Generalization and Machine Learning Safety
|
2022
|
P Trivedi
D Koutra
Jayaraman J. Thiagarajan
|
+
|
Domain Alignment Meets Fully Test-Time Adaptation
|
2022
|
K Thopalli
P Turaga
Jayaraman J. Thiagarajan
|
+
|
Revisiting Inlier and Outlier Specification for Improved Out-of-Distribution Detection
|
2022
|
V Narayanaswamy
Yamen Mubarka
Rushil Anirudh
D Rajan
A Spanias
Jayaraman J. Thiagarajan
|
+
PDF
Chat
|
Enabling machine learning-ready HPC ensembles with Merlin
|
2022
|
J. L. Peterson
Ben Bay
J. M. Koning
Peter Robinson
Jessica Semler
Jeremy White
Rushil Anirudh
Kevin Athey
PeerâTimo Bremer
Francesco Di Natale
|
+
|
Revisiting Deep Subspace Alignment for Unsupervised Domain Adaptation
|
2022
|
Kowshik Thopalli
Jayaraman J. Thiagarajan
Rushil Anirudh
Pavan Turaga
|
+
|
2022 Review of Data-Driven Plasma Science
|
2022
|
Rushil Anirudh
Richard Archibald
M. Salman Asif
Markus M. Becker
S. Benkadda
PeerâTimo Bremer
Rick H. S. Budé
C. S. Chang
L. Chen
R M Churchill
|
+
|
Improving Diversity with Adversarially Learned Transformations for Domain Generalization
|
2022
|
Tejas Gokhale
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Chitta Baral
Yezhou Yang
|
+
|
Domain Alignment Meets Fully Test-Time Adaptation
|
2022
|
Kowshik Thopalli
Pavan Turaga
Jayaraman J. Thiagarajan
|
+
|
Out of Distribution Detection via Neural Network Anchoring
|
2022
|
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
|
Know Your Space: Inlier and Outlier Construction for Calibrating Medical OOD Detectors
|
2022
|
Vivek Narayanaswamy
Yamen Mubarka
Rushil Anirudh
Deepta Rajan
Andreas Spanias
Jayaraman J. Thiagarajan
|
+
|
Single Model Uncertainty Estimation via Stochastic Data Centering
|
2022
|
Jayaraman J. Thiagarajan
Rushil Anirudh
Vivek Narayanaswamy
PeerâTimo Bremer
|
+
|
Contrastive Knowledge-Augmented Meta-Learning for Few-Shot Classification
|
2022
|
Rakshith Subramanyam
Mark Heimann
Jayram Thathachar
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
|
Exploring the Design of Adaptation Protocols for Improved Generalization and Machine Learning Safety
|
2022
|
Puja Trivedi
Danai Koutra
Jayaraman J. Thiagarajan
|
+
|
Analyzing Data-Centric Properties for Graph Contrastive Learning
|
2022
|
Puja Trivedi
Ekdeep Singh Lubana
Mark Heimann
Danai Koutra
Jayaraman J. Thiagarajan
|
+
|
Single-Shot Domain Adaptation via Target-Aware Generative Augmentation
|
2022
|
Rakshith Subramanyam
Kowshik Thopalli
Spring Berman
Pavan Turaga
Jayaraman J. Thiagarajan
|
+
|
On-the-fly Object Detection using StyleGAN with CLIP Guidance
|
2022
|
Yuzhe Lu
Shusen Liu
Jayaraman J. Thiagarajan
Wesam Sakla
Rushil Anirudh
|
+
|
DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle CT Reconstruction
|
2022
|
Jiaming Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
Stewart He
Karthika Mohan
Ulugbek S. Kamilov
Hyojin Kim
|
+
|
Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion
|
2021
|
Ankita Shukla
Rushil Anirudh
Eugene Kur
Jayaraman J. Thiagarajan
PeerâTimo Bremer
B. K. Spears
T. Ma
Pavan Turaga
|
+
|
Î-UQ: Accurate Uncertainty Quantification via Anchor Marginalization.
|
2021
|
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
|
MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation.
|
2021
|
Alexandros Karargyris
Renato Umeton
Micah Sheller
Alejandro Aristizabal
Johnu George
Srini Bala
Daniel J. Beutel
Victor Bittorf
Akshay Chaudhari
Alexander Chowdhury
|
+
|
On the Design of Deep Priors for Unsupervised Audio Restoration
|
2021
|
V Narayanaswamy
Jayaraman J. Thiagarajan
A Spanias
|
+
|
Designing Counterfactual Generators using Deep Model Inversion
|
2021
|
Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Deepta Rajan
Jason Liang
Akshay Chaudhari
Andreas Spanias
|
+
PDF
Chat
|
Accurate and Robust Feature Importance Estimation under Distribution Shifts
|
2021
|
Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Rushil Anirudh
PeerâTimo Bremer
Andreas Spanias
|
+
PDF
Chat
|
Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning Attacks
|
2021
|
Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
PDF
Chat
|
Attribute-Guided Adversarial Training for Robustness to Natural Perturbations
|
2021
|
Tejas Gokhale
Rushil Anirudh
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Chitta Baral
Yezhou Yang
|
+
|
Accurate and Robust Feature Importance Estimation under Distribution Shifts.
|
2021
|
Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Rushil Anirudh
PeerâTimo Bremer
Andreas Spanias
|
+
|
Using Deep Image Priors to Generate Counterfactual Explanations
|
2021
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
PDF
Chat
|
MARGIN: Uncovering Deep Neural Networks Using Graph Signal Analysis
|
2021
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Rahul Sridhar
PeerâTimo Bremer
|
+
|
Transfer learning suppresses simulation bias in predictive models built from sparse, multi-modal data.
|
2021
|
Bogdan Kustowski
Jim Gaffney
B. K. Spears
Gemma J. Anderson
Rushil Anirudh
PeerâTimo Bremer
Jayaraman J. Thiagarajan
|
+
|
On the Design of Deep Priors for Unsupervised Audio Restoration
|
2021
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
Loss Estimators Improve Model Generalization.
|
2021
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Deepta Rajan
Andreas Spanias
|
+
|
Loss Estimators Improve Model Generalization
|
2021
|
V Narayanaswamy
Jayaraman J. Thiagarajan
D Rajan
A Spanias
|
+
PDF
Chat
|
Comparative Code Structure Analysis using Deep Learning for Performance Prediction
|
2021
|
Tarek Ramadan
Tanzima Islam
Chase Phelps
Nathan Pinnow
Jayaraman J. Thiagarajan
|
+
|
Self-training with improved regularization for sample-efficient chest x-ray classification
|
2021
|
Deepta Rajan
Jayaraman J. Thiagarajan
Alexandros Karargyris
Satyananda Kashyap
|
+
|
Comparative Code Structure Analysis using Deep Learning for Performance Prediction
|
2021
|
Nathan Pinnow
Tarek Ramadan
Tanzima Islam
Chase Phelps
Jayaraman J. Thiagarajan
|
+
|
Automated Domain Discovery from Multiple Sources to Improve Zero-Shot Generalization
|
2021
|
Kowshik Thopalli
Sameeksha Katoch
Andreas Spanias
Pavan Turaga
Jayaraman J. Thiagarajan
|
+
|
Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion
|
2021
|
Ankita Shukla
Rushil Anirudh
Eugene Kur
Jayaraman J. Thiagarajan
PeerâTimo Bremer
B. K. Spears
T. Ma
Pavan Turaga
|
+
|
$Î$-UQ: Accurate Uncertainty Quantification via Anchor Marginalization
|
2021
|
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
|
Designing Counterfactual Generators using Deep Model Inversion
|
2021
|
Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Deepta Rajan
Jason Liang
Akshay Chaudhari
Andreas Spanias
|
+
|
MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation
|
2021
|
Alexandros Karargyris
Renato Umeton
Micah Sheller
Alejandro Aristizabal
Johnu George
Srini Bala
Daniel J. Beutel
Victor Bittorf
Akshay Chaudhari
Alexander Chowdhury
|
+
|
Suppressing simulation bias using multi-modal data
|
2021
|
Bogdan Kustowski
Jim Gaffney
B. K. Spears
Gemma J. Anderson
Rushil Anirudh
PeerâTimo Bremer
Jayaraman J. Thiagarajan
Michael Kruse
R. Nora
|
+
|
On the Design of Deep Priors for Unsupervised Audio Restoration
|
2021
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
Comparative Code Structure Analysis using Deep Learning for Performance Prediction
|
2021
|
Nathan Pinnow
Tarek A. Ramadan
Tanzima Islam
Chase Phelps
Jayaraman J. Thiagarajan
|
+
|
Loss Estimators Improve Model Generalization
|
2021
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Deepta Rajan
Andreas Spanias
|
+
PDF
Chat
|
Designing accurate emulators for scientific processes using calibration-driven deep models
|
2020
|
Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
PeerâTimo Bremer
Jim Gaffney
Gemma J. Anderson
B. K. Spears
|
+
|
Meaningful uncertainties from deep neural network surrogates of large-scale numerical simulations.
|
2020
|
Gemma J. Anderson
Jim Gaffney
B. K. Spears
PeerâTimo Bremer
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
PDF
Chat
|
Unsupervised Audio Source Separation Using Generative Priors
|
2020
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Rushil Anirudh
Andreas Spanias
|
+
|
Using Deep Image Priors to Generate Counterfactual Explanations
|
2020
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
Machine Learning-Powered Mitigation Policy Optimization in Epidemiological Models.
|
2020
|
Jayaraman J. Thiagarajan
PeerâTimo Bremer
Rushil Anirudh
Timothy C. Germann
Sara Y. Del Valle
Frederick H. Streitz
|
+
|
Accurate Calibration of Agent-based Epidemiological Models with Neural Network Surrogates.
|
2020
|
Rushil Anirudh
Jayaraman J. Thiagarajan
PeerâTimo Bremer
Timothy C. Germann
Sara Y. Del Valle
Frederick H. Streitz
|
+
|
Undergraduate Signal Processing Laboratories for the Android Operating System
|
2020
|
Suhas Ranganath
Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Shuang Hu
Mahesh K. Banavar
Andreas Spanias
|
+
|
Unsupervised Audio Source Separation using Generative Priors
|
2020
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Rushil Anirudh
Andreas Spanias
|
+
|
Self-Training with Improved Regularization for Few-Shot Chest X-Ray Classification.
|
2020
|
Deepta Rajan
Jayaraman J. Thiagarajan
Alexandros Karargyris
Satyananda Kashyap
|
+
|
Self-Training with Improved Regularization for Sample-Efficient Chest X-Ray Classification
|
2020
|
Deepta Rajan
Jayaraman J. Thiagarajan
Alexandros Karargyris
Satyananda Kashyap
|
+
PDF
Chat
|
Improved surrogates in inertial confinement fusion with manifold and cycle consistencies
|
2020
|
Rushil Anirudh
Jayaraman J. Thiagarajan
PeerâTimo Bremer
B. K. Spears
|
+
PDF
Chat
|
Coverage-Based Designs Improve Sample Mining and Hyperparameter Optimization
|
2020
|
Gowtham Muniraju
Bhavya Kailkhura
Jayaraman J. Thiagarajan
PeerâTimo Bremer
Cihan TepedelenlioÄlu
Andreas Spanias
|
+
PDF
Chat
|
Learn-By-Calibrating: Using Calibration As A Training Objective
|
2020
|
Jayaraman J. Thiagarajan
Bindya Venkatesh
Deepta Rajan
|
+
PDF
Chat
|
A Regularized Attention Mechanism for Graph Attention Networks
|
2020
|
Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
PDF
Chat
|
Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors
|
2020
|
Jayaraman J. Thiagarajan
Bindya Venkatesh
Prasanna Sattigeri
PeerâTimo Bremer
|
+
|
MimicGAN: Robust Projection onto Image Manifolds with Corruption Mimicking
|
2020
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
PeerâTimo Bremer
|
+
|
Calibrate and Prune: Improving Reliability of Lottery Tickets Through Prediction Calibration
|
2020
|
Bindya Venkatesh
Jayaraman J. Thiagarajan
Kowshik Thopalli
Prasanna Sattigeri
|
+
|
Calibrating Healthcare AI: Towards Reliable and Interpretable Deep Predictive Models
|
2020
|
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Deepta Rajan
Bindya Venkatesh
|
+
|
Ask-n-Learn: Active Learning via Reliable Gradient Representations for Image Classification
|
2020
|
Bindya Venkatesh
Jayaraman J. Thiagarajan
|
+
|
Attribute-Guided Adversarial Training for Robustness to Natural Perturbations
|
2020
|
Tejas Gokhale
Rushil Anirudh
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Chitta Baral
Yezhou Yang
|
+
|
Meaningful uncertainties from deep neural network surrogates of large-scale numerical simulations
|
2020
|
Gemma J. Anderson
Jim Gaffney
B. K. Spears
PeerâTimo Bremer
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
|
Using Deep Image Priors to Generate Counterfactual Explanations
|
2020
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
Machine Learning-Powered Mitigation Policy Optimization in Epidemiological Models
|
2020
|
Jayaraman J. Thiagarajan
PeerâTimo Bremer
Rushil Anirudh
Timothy C. Germann
Sara Y. Del Valle
Frederick H. Streitz
|
+
|
Accurate Calibration of Agent-based Epidemiological Models with Neural Network Surrogates
|
2020
|
Rushil Anirudh
Jayaraman J. Thiagarajan
PeerâTimo Bremer
Timothy C. Germann
Sara Y. Del Valle
Frederick H. Streitz
|
+
|
Unsupervised Audio Source Separation using Generative Priors
|
2020
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Rushil Anirudh
Andreas Spanias
|
+
|
Self-Training with Improved Regularization for Sample-Efficient Chest X-Ray Classification
|
2020
|
Deepta Rajan
Jayaraman J. Thiagarajan
Alexandros Karargyris
Satyananda Kashyap
|
+
|
Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning Attacks
|
2020
|
Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
Accurate and Robust Feature Importance Estimation under Distribution Shifts
|
2020
|
Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Rushil Anirudh
PeerâTimo Bremer
Andreas Spanias
|
+
|
Improved Surrogates in Inertial Confinement Fusion with Manifold and Cycle Consistencies
|
2019
|
Rushil Anirudh
Jayaraman J. Thiagarajan
PeerâTimo Bremer
B. K. Spears
|
+
|
MimicGAN: Robust Projection onto Image Manifolds with Corruption Mimicking
|
2019
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
PeerâTimo Bremer
|
+
|
Merlin: Enabling Machine Learning-Ready HPC Ensembles
|
2019
|
J. L. Peterson
Rushil Anirudh
Kevin Athey
Benjamin Bay
PeerâTimo Bremer
Vic Castillo
Francesco Di Natale
David L. Fox
Jim Gaffney
David Hysom
|
+
PDF
Chat
|
Distill-to-Label: Weakly Supervised Instance Labeling Using Knowledge Distillation
|
2019
|
Jayaraman J. Thiagarajan
Satyananda Kashyap
Alexandros Karargyris
|
+
|
Invenio: Discovering Hidden Relationships Between Tasks/Domains Using Structured Meta Learning
|
2019
|
Sameeksha Katoch
Kowshik Thopalli
Jayaraman J. Thiagarajan
Pavan Turaga
Andreas Spanias
|
+
|
GrAMME: Semisupervised Learning Using Multilayered Graph Attention Models
|
2019
|
Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
|
+
|
Learn-By-Calibrating: Using Calibration as a Training Objective
|
2019
|
Jayaraman J. Thiagarajan
Bindya Venkatesh
Deepta Rajan
|
+
|
Improving Limited Angle CT Reconstruction with a Robust GAN Prior
|
2019
|
Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
Karthika Mohan
Kyle Champley
|
+
|
Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors
|
2019
|
Jayaraman J. Thiagarajan
Bindya Venkatesh
Prasanna Sattigeri
PeerâTimo Bremer
|
+
|
Scalable Topological Data Analysis and Visualization for Evaluating Data-Driven Models in Scientific Applications
|
2019
|
Shusen Liu
Jim Gaffney
Luc Peterson
Peter Robinson
Harsh Bhatia
Valerio Pascucci
B. K. Spears
PeerâTimo Bremer
Di Wang
Dan Maljovec
|
+
|
Distill-to-Label: Weakly Supervised Instance Labeling Using Knowledge Distillation
|
2019
|
Jayaraman J. Thiagarajan
Satyananda Kashyap
Alexandros Karagyris
|
+
|
Multiple Subspace Alignment Improves Domain Adaptation
|
2019
|
Kowshik Thopalli
Rushil Anirudh
Jayaraman J. Thiagarajan
Pavan Turaga
|
+
PDF
Chat
|
Designing an Effective Metric Learning Pipeline for Speaker Diarization
|
2019
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
|
+
|
Understanding Deep Neural Networks through Input Uncertainties
|
2019
|
Jayaraman J. Thiagarajan
Irene Kim
Rushil Anirudh
PeerâTimo Bremer
|
+
|
Bootstrapping Graph Convolutional Neural Networks for Autism Spectrum Disorder Classification
|
2019
|
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
|
Audio Source Separation via Multi-Scale Learning with Dilated Dense U-Nets
|
2019
|
Vivek Narayanaswamy
Sameeksha Katoch
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
|
+
|
A Look at the Effect of Sample Design on Generalization through the Lens of Spectral Analysis
|
2019
|
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Qunwei Li
PeerâTimo Bremer
|
+
|
SALT: Subspace Alignment as an Auxiliary Learning Task for Domain Adaptation
|
2019
|
Kowshik Thopalli
Jayaraman J. Thiagarajan
Rushil Anirudh
Pavan Turaga
|
+
|
Scalable Topological Data Analysis and Visualization for Evaluating Data-Driven Models in Scientific Applications
|
2019
|
Shusen Liu
Di Wang
Dan Maljovec
Rushil Anirudh
Jayaraman J. Thiagarajan
Sam Adé Jacobs
Brian C. Van Essen
David Hysom
Jae-Seung Yeom
Jim Gaffney
|
+
|
Function Preserving Projection for Scalable Exploration of High-Dimensional Data
|
2019
|
Shusen Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
PeerâTimo Bremer
|
+
|
Exploring Generative Physics Models with Scientific Priors in Inertial Confinement Fusion
|
2019
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Shusen Liu
PeerâTimo Bremer
B. K. Spears
|
+
|
Heteroscedastic Calibration of Uncertainty Estimators in Deep Learning
|
2019
|
Bindya Venkatesh
Jayaraman J. Thiagarajan
|
+
|
Enabling Machine Learning-Ready HPC Ensembles with Merlin
|
2019
|
Peterson Jl
Bay B
J. M. Koning
Peter Robinson
Jessica Semler
Jeremy White
Rushil Anirudh
Kevin Athey
PeerâTimo Bremer
Natale Fd
|
+
|
MimicGAN: Robust Projection onto Image Manifolds with Corruption Mimicking
|
2019
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
PeerâTimo Bremer
|
+
|
Invenio: Discovering Hidden Relationships Between Tasks/Domains Using Structured Meta Learning
|
2019
|
Sameeksha Katoch
Kowshik Thopalli
Jayaraman J. Thiagarajan
Pavan Turaga
Andreas Spanias
|
+
|
Learn-By-Calibrating: Using Calibration as a Training Objective
|
2019
|
Jayaraman J. Thiagarajan
Bindya Venkatesh
Deepta Rajan
|
+
|
Improving Limited Angle CT Reconstruction with a Robust GAN Prior
|
2019
|
Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
K. Aditya Mohan
Kyle Champley
|
+
|
Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors
|
2019
|
Jayaraman J. Thiagarajan
Bindya Venkatesh
Prasanna Sattigeri
PeerâTimo Bremer
|
+
|
Distill-to-Label: Weakly Supervised Instance Labeling Using Knowledge Distillation
|
2019
|
Jayaraman J. Thiagarajan
Satyananda Kashyap
Alexandros Karagyris
|
+
|
Audio Source Separation via Multi-Scale Learning with Dilated Dense U-Nets
|
2019
|
Vivek Narayanaswamy
Sameeksha Katoch
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
|
+
|
MimicGAN: Corruption-Mimicking for Blind Image Recovery & Adversarial Defense
|
2018
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
PeerâTimo Bremer
|
+
|
Designing an Effective Metric Learning Pipeline for Speaker Diarization
|
2018
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
|
+
|
Improving Robustness of Attention Models on Graphs.
|
2018
|
Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
A Regularized Attention Mechanism for Graph Attention Networks.
|
2018
|
Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
Understanding Deep Neural Networks through Input Uncertainties
|
2018
|
Jayaraman J. Thiagarajan
Irene Kim
Rushil Anirudh
PeerâTimo Bremer
|
+
|
Attention Models with Random Features for Multi-layered Graph Embeddings.
|
2018
|
Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
|
+
|
GrAMME: Semi-Supervised Learning using Multi-layered Graph Attention Models
|
2018
|
Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
|
+
|
Can Deep Clinical Models Handle Real-World Domain Shifts?
|
2018
|
Jayaraman J. Thiagarajan
Deepta Rajan
Prasanna Sattigeri
|
+
PDF
Chat
|
Efficient Data-Driven Geologic Feature Characterization from Pre-stack Seismic Measurements using Randomized Machine-Learning Algorithm
|
2018
|
Youzuo Lin
Shusen Wang
Jayaraman J. Thiagarajan
George D. Guthrie
David Coblentz
|
+
|
Controlled Random Search Improves Hyper-Parameter Optimization
|
2018
|
Gowtham Muniraju
Bhavya Kailkhura
Jayaraman J. Thiagarajan
PeerâTimo Bremer
|
+
|
Coverage-Based Designs Improve Sample Mining and Hyper-Parameter Optimization
|
2018
|
Gowtham Muniraju
Bhavya Kailkhura
Jayaraman J. Thiagarajan
PeerâTimo Bremer
Cihan TepedelenlioÄlu
Andreas Spanias
|
+
|
Triplet Network with Attention for Speaker Diarization
|
2018
|
Huan Song
Megan Willi
Jayaraman J. Thiagarajan
Visar Berisha
Andreas Spanias
|
+
PDF
Chat
|
Deep learning: A guide for practitioners in the physical sciences
|
2018
|
B. K. Spears
James M. Brase
PeerâTimo Bremer
Barry Chen
J. E. Field
Jim Gaffney
Michael Kruse
S. Langer
Katie L. Lewis
R. Nora
|
+
PDF
Chat
|
A Generative Modeling Approach to Limited Channel ECG Classification
|
2018
|
Deepta Rajan
Jayaraman J. Thiagarajan
|
+
PDF
Chat
|
Exploring HighâDimensional Structure via AxisâAligned Decomposition of Linear Projections
|
2018
|
Jayaraman J. Thiagarajan
S. Liu
Karthikeyan Natesan Ramamurthy
PeerâTimo Bremer
|
+
PDF
Chat
|
Lose the Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion
|
2018
|
Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
K. Aditya Mohan
Kyle Champley
PeerâTimo Bremer
|
+
|
An Unsupervised Approach to Solving Inverse Problems using Generative Adversarial Networks
|
2018
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
PeerâTimo Bremer
|
+
PDF
Chat
|
Attend and Diagnose: Clinical Time Series Analysis Using Attention Models
|
2018
|
Huan Song
Deepta Rajan
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
Optimizing Kernel Machines Using Deep Learning
|
2018
|
Huan Song
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Andreas Spanias
|
+
|
A Generative Modeling Approach to Limited Channel ECG Classification
|
2018
|
Deepta Rajan
Jayaraman J. Thiagarajan
|
+
|
MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis
|
2018
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Rahul Sridhar
PeerâTimo Bremer
|
+
|
Unsupervised Dimension Selection using a Blue Noise Spectrum
|
2018
|
Jayaraman J. Thiagarajan
Rushil Anirudh
Rahul Sridhar
PeerâTimo Bremer
|
+
|
Improved Deep Embeddings for Inferencing with Multi-Layered Networks
|
2018
|
Huan Song
Jayaraman J. Thiagarajan
|
+
|
Triplet Network with Attention for Speaker Diarization
|
2018
|
Huan Song
Megan Willi
Jayaraman J. Thiagarajan
Visar Berisha
Andreas Spanias
|
+
|
Understanding Behavior of Clinical Models under Domain Shifts
|
2018
|
Jayaraman J. Thiagarajan
Deepta Rajan
Prasanna Sattigeri
|
+
|
Multiple Subspace Alignment Improves Domain Adaptation
|
2018
|
Kowshik Thopalli
Rushil Anirudh
Jayaraman J. Thiagarajan
Pavan Turaga
|
+
|
A Regularized Attention Mechanism for Graph Attention Networks
|
2018
|
Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
Understanding Deep Neural Networks through Input Uncertainties
|
2018
|
Jayaraman J. Thiagarajan
Irene Kim
Rushil Anirudh
PeerâTimo Bremer
|
+
|
Designing an Effective Metric Learning Pipeline for Speaker Diarization
|
2018
|
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
|
+
|
GrAMME: Semi-Supervised Learning using Multi-layered Graph Attention Models
|
2018
|
Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
|
+
|
Coverage-Based Designs Improve Sample Mining and Hyper-Parameter Optimization
|
2018
|
Gowtham Muniraju
Bhavya Kailkhura
Jayaraman J. Thiagarajan
PeerâTimo Bremer
Cihan Tepedelenlioglu
Andreas Spanias
|
+
|
An Unsupervised Approach to Solving Inverse Problems using Generative Adversarial Networks
|
2018
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
PeerâTimo Bremer
|
+
|
A Generative Modeling Approach to Limited Channel ECG Classification
|
2018
|
Deepta Rajan
Jayaraman J. Thiagarajan
|
+
|
MimicGAN: Corruption-Mimicking for Blind Image Recovery & Adversarial Defense
|
2018
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
PeerâTimo Bremer
|
+
|
Exploring High-Dimensional Structure via Axis-Aligned Decomposition of Linear Projections
|
2017
|
Jayaraman J. Thiagarajan
Shusen Liu
Karthikeyan Natesan Ramamurthy
PeerâTimo Bremer
|
+
|
Lose The Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion
|
2017
|
Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
K. Aditya Mohan
Kyle Champley
PeerâTimo Bremer
|
+
|
Influential Sample Selection: A Graph Signal Processing Approach.
|
2017
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Rahul Sridhar
PeerâTimo Bremer
|
+
PDF
Chat
|
Learning Robust Representations for Computer Vision
|
2017
|
Peng Zheng
Aleksandr Y. Aravkin
Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
|
+
|
Bootstrapping Graph Convolutional Neural Networks for Autism Spectrum Disorder Classification
|
2017
|
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
PDF
Chat
|
A deep learning approach to multiple kernel fusion
|
2017
|
Huan Song
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Karthikeyan Natesan Ramamurthy
Andreas Spanias
|
+
|
Data-Driven Metric Learning for History Matching
|
2017
|
Jacob Miller
Jayaraman J. Thiagarajan
PeerâTimo Bremer
Nazish Hoda
Dave Stern
Rick T. Mifflin
|
+
|
Learning Robust Representations for Computer Vision
|
2017
|
Peng Zheng
Aleksandr Y. Aravkin
Karthikeyan Natesan Ramamurthy
Jayaraman J. Thiagarajan
|
+
|
Attend and Diagnose: Clinical Time Series Analysis using Attention Models
|
2017
|
Huan Song
Deepta Rajan
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
Optimizing Kernel Machines using Deep Learning
|
2017
|
Huan Song
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Andreas Spanias
|
+
|
A Spectral Approach for the Design of Experiments: Design, Analysis and Algorithms
|
2017
|
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Charvi Rastogi
Pramod K. Varshney
PeerâTimo Bremer
|
+
|
MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis
|
2017
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Rahul Sridhar
PeerâTimo Bremer
|
+
|
Exploring High-Dimensional Structure via Axis-Aligned Decomposition of Linear Projections
|
2017
|
Jayaraman J. Thiagarajan
Shusen Liu
Karthikeyan Natesan Ramamurthy
PeerâTimo Bremer
|
+
|
Lose The Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion
|
2017
|
Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
Karthika Mohan
Kyle Champley
PeerâTimo Bremer
|
+
|
Bootstrapping Graph Convolutional Neural Networks for Autism Spectrum Disorder Classification
|
2017
|
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
|
Robust Local Scaling using Conditional Quantiles of Graph Similarities
|
2016
|
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Karthikeyan Natesan Ramamurthy
Bhavya Kailkhura
|
+
|
Robust Local Scaling Using Conditional Quantiles of Graph Similarities
|
2016
|
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Karthikeyan Natesan Ramamurthy
Bhavya Kailkhura
|
+
|
Autism Spectrum Disorder Classification using Graph Kernels on Multidimensional Time Series
|
2016
|
Rushil Anirudh
Jayaraman J. Thiagarajan
I Kim
Wolfgang Polonik
|
+
|
Data-driven performance modeling of linear solvers for sparse matrices
|
2016
|
Jae-Seung Yeom
Jayaraman J. Thiagarajan
Abhinav Bhatelé
Greg Bronevetsky
Tzanio Kolev
|
+
|
Data-Driven Performance Modeling of Linear Solvers for Sparse Matrices
|
2016
|
J Yeom
Jayaraman J. Thiagarajan
Abhinav Bhatelé
G Bronevetsky
Tzanio Kolev
|
+
PDF
Chat
|
Universal Collaboration Strategies for Signal Detection: A Sparse Learning Approach
|
2016
|
Prashant Khanduri
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Pramod K. Varshney
|
+
|
Beyond L2-loss functions for learning sparse models
|
2016
|
Karthikeyan Natesan Ramamurthy
Aleksandr Y. Aravkin
Jayaraman J. Thiagarajan
|
+
|
TreeView: Peeking into Deep Neural Networks Via Feature-Space Partitioning
|
2016
|
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Prasanna Sattigeri
Karthikeyan Natesan Ramamurthy
|
+
|
A Deep Learning Approach To Multiple Kernel Fusion
|
2016
|
Huan Song
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Karthikeyan Natesan Ramamurthy
Andreas Spanias
|
+
|
Influential Node Detection in Implicit Social Networks using Multi-task Gaussian Copula Models
|
2016
|
Qunwei Li
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Zhenliang Zhang
Pramod K. Varshney
|
+
|
Autism Spectrum Disorder Classification using Graph Kernels on Multidimensional Time Series
|
2016
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Irene Kim
Wolfgang Polonik
|
+
|
Robust Local Scaling using Conditional Quantiles of Graph Similarities
|
2016
|
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Karthikeyan Natesan Ramamurthy
Bhavya Kailkhura
|
+
|
Automatic Inference of the Quantile Parameter
|
2015
|
Karthikeyan Natesan Ramamurthy
Aleksandr Y. Aravkin
Jayaraman J. Thiagarajan
|
+
|
Automatic Inference of the Quantile Parameter
|
2015
|
Karthikeyan Natesan Ramamurthy
Aleksandr Y. Aravkin
Jayaraman J. Thiagarajan
|
+
PDF
Chat
|
Learning Stable Multilevel Dictionaries for Sparse Representations
|
2014
|
Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Andreas Spanias
|
+
PDF
Chat
|
Kernel Sparse Models for Automated Tumor Segmentation
|
2014
|
Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Deepta Rajan
Andreas Spanias
Anup Puri
David Frakes
|
+
PDF
Chat
|
Multiple Kernel Sparse Representations for Supervised and Unsupervised Learning
|
2014
|
Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Andreas Spanias
|
+
|
Beyond L2-Loss Functions for Learning Sparse Models
|
2014
|
Karthikeyan Natesan Ramamurthy
Aleksandr Y. Aravkin
Jayaraman J. Thiagarajan
|
+
|
Beyond L2-Loss Functions for Learning Sparse Models
|
2014
|
Karthikeyan Natesan Ramamurthy
Aleksandr Y. Aravkin
Jayaraman J. Thiagarajan
|
+
PDF
Chat
|
Recovering non-negative and combined sparse representations
|
2013
|
Karthikeyan Natesan Ramamurthy
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
Recovering Non-negative and Combined Sparse Representations
|
2013
|
Karthikeyan Natesan Ramamurthy
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
Learning Stable Multilevel Dictionaries for Sparse Representations
|
2013
|
Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Andreas Spanias
|
+
|
Ensemble Sparse Models for Image Analysis
|
2013
|
Karthikeyan Natesan Ramamurthy
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Andreas Spanias
|
+
|
Recovering Non-negative and Combined Sparse Representations
|
2013
|
Karthikeyan Natesan Ramamurthy
Jayaraman J. Thiagarajan
Andreas Spanias
|
+
|
Kernel Sparse Models for Automated Tumor Segmentation
|
2013
|
Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Deepta Rajan
Anup Puri
David Frakes
Andreas Spanias
|
+
|
Learning Stable Multilevel Dictionaries for Sparse Representations
|
2013
|
Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Andreas Spanias
|