Jayaraman J. Thiagarajan

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Leveraging Registers in Vision Transformers for Robust Adaptation 2025 Srikar Yellapragada
Kowshik Thopalli
Vivek Narayanaswamy
Wesam Sakla
Yang Liu
Yamen Mubarka
Dimitris Samaras
Jayaraman J. Thiagarajan
+ PDF Chat Physics-Informed Transformation Toward Improving the Machine-Learned NLTE Models of ICF Simulations 2024 Min Sang Cho
Paul Grabowski
Kowshik Thopalli
T. S. Jayram
Michael J. Barrow
Jayaraman J. Thiagarajan
Rushil Anirudh
Hai Phuong Le
H. A. Scott
Joshua Kallman
+ PDF Chat On The Role of Prompt Construction In Enhancing Efficacy and Efficiency of LLM-Based Tabular Data Generation 2024 Banooqa Banday
Kowshik Thopalli
Tanzima Islam
Jayaraman J. Thiagarajan
+ PDF Chat DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation 2024 Rakshith Subramanyam
Kowshik Thopalli
Vivek Narayanaswamy
Jayaraman J. Thiagarajan
+ PDF Chat Enhancing Accuracy and Parameter-Efficiency of Neural Representations for Network Parameterization 2024 Hongjun Choi
Jayaraman J. Thiagarajan
Ruben Glatt
Shusen Liu
+ PDF Chat Speeding Up Image Classifiers with Little Companions 2024 Yang Liu
Kowshik Thopalli
Jayaraman J. Thiagarajan
+ PDF Chat On the Use of Anchoring for Training Vision Models 2024 Vivek Narayanaswamy
Kowshik Thopalli
Rushil Anirudh
Yamen Mubarka
Wesam Sakla
Jayaraman J. Thiagarajan
+ Transformer-Powered Surrogates Close the ICF Simulation-Experiment Gap with Extremely Limited Data 2024 Matthew Olson
Shusen Liu
Jayaraman J. Thiagarajan
Bogdan Kustowski
Weng‐Keen Wong
Rushil Anirudh
+ PDF Chat `Eyes of a Hawk and Ears of a Fox': Part Prototype Network for Generalized Zero-Shot Learning 2024 Joshua Feinglass
Jayaraman J. Thiagarajan
Rushil Anirudh
T. S. Jayram
Yezhou Yang
+ Accurate and Scalable Estimation of Epistemic Uncertainty for Graph Neural Networks 2024 Puja Trivedi
Mark Heimann
Rushil Anirudh
Danai Koutra
Jayaraman J. Thiagarajan
+ PDF Chat DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle CT Reconstruction 2023 Jiaming Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
Stewart He
Karthika Mohan
Ulugbek S. Kamilov
Hyo-Jin Kim
+ PDF Chat Federated benchmarking of medical artificial intelligence with MedPerf 2023 Alexandros Karargyris
Renato Umeton
Micah Sheller
Alejandro Aristizabal
Johnu George
Anna Wuest
Sarthak Pati
Hasan Kassem
Maximilian Zenk
Ujjwal Baid
+ PDF Chat 2022 Review of Data-Driven Plasma Science 2023 Rushil Anirudh
Richard Archibald
M. Salman Asif
Markus M. Becker
S. Benkadda
Peer‐Timo Bremer
Rick H. S. Budé
C. S. Chang
L. Chen
R.M. Churchill
+ PDF Chat Cross-GAN Auditing: Unsupervised Identification of Attribute Level Similarities and Differences Between Pretrained Generative Models 2023 Matthew Olson
Shusen Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
W. Eric Wong
+ PDF Chat Improving Diversity with Adversarially Learned Transformations for Domain Generalization 2023 Tejas Gokhale
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Chitta Baral
Yezhou Yang
+ Contrastive Knowledge-Augmented Meta-Learning for Few-Shot Classification 2023 Rakshith Subramanyam
Mark Heimann
T.S. Jayram
Rushil Anirudh
Jayaraman J. Thiagarajan
+ Cross-GAN Auditing: Unsupervised Identification of Attribute Level Similarities and Differences between Pretrained Generative Models 2023 Matthew Olson
Shusen Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
W. Eric Wong
+ A Closer Look at Model Adaptation using Feature Distortion and Simplicity Bias 2023 Puja Trivedi
Danai Koutra
Jayaraman J. Thiagarajan
+ On the Efficacy of Generalization Error Prediction Scoring Functions 2023 Puja Trivedi
Danai Koutra
Jayaraman J. Thiagarajan
+ Target-Aware Generative Augmentations for Single-Shot Adaptation 2023 Kowshik Thopalli
Rakshith Subramanyam
Pavan Turaga
Jayaraman J. Thiagarajan
+ CREPE: Learnable Prompting With CLIP Improves Visual Relationship Prediction 2023 Rakshith Subramanyam
T. S. Jayram
Rushil Anirudh
Jayaraman J. Thiagarajan
+ Accurate and Scalable Estimation of Epistemic Uncertainty for Graph Neural Networks 2023 Puja Trivedi
Mark Heimann
Rushil Anirudh
Danai Koutra
Jayaraman J. Thiagarajan
+ PAGER: A Framework for Failure Analysis of Deep Regression Models 2023 Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Puja Trivedi
Rushil Anirudh
+ Transformer-Powered Surrogates Close the ICF Simulation-Experiment Gap with Extremely Limited Data 2023 Matthew Olson
Shusen Liu
Jayaraman J. Thiagarajan
Bogdan Kustowski
Weng‐Keen Wong
Rushil Anirudh
+ PDF Chat Single Model Uncertainty Estimation via Stochastic Data Centering 2022 Jayaraman J. Thiagarajan
+ Exploring the Design of Adaptation Protocols for Improved Generalization and Machine Learning Safety 2022 P Trivedi
D Koutra
Jayaraman J. Thiagarajan
+ Domain Alignment Meets Fully Test-Time Adaptation 2022 K Thopalli
P Turaga
Jayaraman J. Thiagarajan
+ Revisiting Inlier and Outlier Specification for Improved Out-of-Distribution Detection 2022 V Narayanaswamy
Yamen Mubarka
Rushil Anirudh
D Rajan
A Spanias
Jayaraman J. Thiagarajan
+ PDF Chat Enabling machine learning-ready HPC ensembles with Merlin 2022 J. L. Peterson
Ben Bay
J. M. Koning
Peter Robinson
Jessica Semler
Jeremy White
Rushil Anirudh
Kevin Athey
Peer‐Timo Bremer
Francesco Di Natale
+ Revisiting Deep Subspace Alignment for Unsupervised Domain Adaptation 2022 Kowshik Thopalli
Jayaraman J. Thiagarajan
Rushil Anirudh
Pavan Turaga
+ 2022 Review of Data-Driven Plasma Science 2022 Rushil Anirudh
Richard Archibald
M. Salman Asif
Markus M. Becker
S. Benkadda
Peer‐Timo Bremer
Rick H. S. Budé
C. S. Chang
L. Chen
R M Churchill
+ Improving Diversity with Adversarially Learned Transformations for Domain Generalization 2022 Tejas Gokhale
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Chitta Baral
Yezhou Yang
+ Domain Alignment Meets Fully Test-Time Adaptation 2022 Kowshik Thopalli
Pavan Turaga
Jayaraman J. Thiagarajan
+ Out of Distribution Detection via Neural Network Anchoring 2022 Rushil Anirudh
Jayaraman J. Thiagarajan
+ Know Your Space: Inlier and Outlier Construction for Calibrating Medical OOD Detectors 2022 Vivek Narayanaswamy
Yamen Mubarka
Rushil Anirudh
Deepta Rajan
Andreas Spanias
Jayaraman J. Thiagarajan
+ Single Model Uncertainty Estimation via Stochastic Data Centering 2022 Jayaraman J. Thiagarajan
Rushil Anirudh
Vivek Narayanaswamy
Peer‐Timo Bremer
+ Contrastive Knowledge-Augmented Meta-Learning for Few-Shot Classification 2022 Rakshith Subramanyam
Mark Heimann
Jayram Thathachar
Rushil Anirudh
Jayaraman J. Thiagarajan
+ Exploring the Design of Adaptation Protocols for Improved Generalization and Machine Learning Safety 2022 Puja Trivedi
Danai Koutra
Jayaraman J. Thiagarajan
+ Analyzing Data-Centric Properties for Graph Contrastive Learning 2022 Puja Trivedi
Ekdeep Singh Lubana
Mark Heimann
Danai Koutra
Jayaraman J. Thiagarajan
+ Single-Shot Domain Adaptation via Target-Aware Generative Augmentation 2022 Rakshith Subramanyam
Kowshik Thopalli
Spring Berman
Pavan Turaga
Jayaraman J. Thiagarajan
+ On-the-fly Object Detection using StyleGAN with CLIP Guidance 2022 Yuzhe Lu
Shusen Liu
Jayaraman J. Thiagarajan
Wesam Sakla
Rushil Anirudh
+ DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle CT Reconstruction 2022 Jiaming Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
Stewart He
Karthika Mohan
Ulugbek S. Kamilov
Hyojin Kim
+ Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion 2021 Ankita Shukla
Rushil Anirudh
Eugene Kur
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
B. K. Spears
T. Ma
Pavan Turaga
+ Δ-UQ: Accurate Uncertainty Quantification via Anchor Marginalization. 2021 Rushil Anirudh
Jayaraman J. Thiagarajan
+ MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation. 2021 Alexandros Karargyris
Renato Umeton
Micah Sheller
Alejandro Aristizabal
Johnu George
Srini Bala
Daniel J. Beutel
Victor Bittorf
Akshay Chaudhari
Alexander Chowdhury
+ On the Design of Deep Priors for Unsupervised Audio Restoration 2021 V Narayanaswamy
Jayaraman J. Thiagarajan
A Spanias
+ Designing Counterfactual Generators using Deep Model Inversion 2021 Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Deepta Rajan
Jason Liang
Akshay Chaudhari
Andreas Spanias
+ PDF Chat Accurate and Robust Feature Importance Estimation under Distribution Shifts 2021 Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Rushil Anirudh
Peer‐Timo Bremer
Andreas Spanias
+ PDF Chat Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning Attacks 2021 Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Andreas Spanias
+ PDF Chat Attribute-Guided Adversarial Training for Robustness to Natural Perturbations 2021 Tejas Gokhale
Rushil Anirudh
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Chitta Baral
Yezhou Yang
+ Accurate and Robust Feature Importance Estimation under Distribution Shifts. 2021 Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Rushil Anirudh
Peer‐Timo Bremer
Andreas Spanias
+ Using Deep Image Priors to Generate Counterfactual Explanations 2021 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Andreas Spanias
+ PDF Chat MARGIN: Uncovering Deep Neural Networks Using Graph Signal Analysis 2021 Rushil Anirudh
Jayaraman J. Thiagarajan
Rahul Sridhar
Peer‐Timo Bremer
+ Transfer learning suppresses simulation bias in predictive models built from sparse, multi-modal data. 2021 Bogdan Kustowski
Jim Gaffney
B. K. Spears
Gemma J. Anderson
Rushil Anirudh
Peer‐Timo Bremer
Jayaraman J. Thiagarajan
+ On the Design of Deep Priors for Unsupervised Audio Restoration 2021 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Andreas Spanias
+ Loss Estimators Improve Model Generalization. 2021 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Deepta Rajan
Andreas Spanias
+ Loss Estimators Improve Model Generalization 2021 V Narayanaswamy
Jayaraman J. Thiagarajan
D Rajan
A Spanias
+ PDF Chat Comparative Code Structure Analysis using Deep Learning for Performance Prediction 2021 Tarek Ramadan
Tanzima Islam
Chase Phelps
Nathan Pinnow
Jayaraman J. Thiagarajan
+ Self-training with improved regularization for sample-efficient chest x-ray classification 2021 Deepta Rajan
Jayaraman J. Thiagarajan
Alexandros Karargyris
Satyananda Kashyap
+ Comparative Code Structure Analysis using Deep Learning for Performance Prediction 2021 Nathan Pinnow
Tarek Ramadan
Tanzima Islam
Chase Phelps
Jayaraman J. Thiagarajan
+ Automated Domain Discovery from Multiple Sources to Improve Zero-Shot Generalization 2021 Kowshik Thopalli
Sameeksha Katoch
Andreas Spanias
Pavan Turaga
Jayaraman J. Thiagarajan
+ Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion 2021 Ankita Shukla
Rushil Anirudh
Eugene Kur
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
B. K. Spears
T. Ma
Pavan Turaga
+ $Δ$-UQ: Accurate Uncertainty Quantification via Anchor Marginalization 2021 Rushil Anirudh
Jayaraman J. Thiagarajan
+ Designing Counterfactual Generators using Deep Model Inversion 2021 Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Deepta Rajan
Jason Liang
Akshay Chaudhari
Andreas Spanias
+ MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence using Federated Evaluation 2021 Alexandros Karargyris
Renato Umeton
Micah Sheller
Alejandro Aristizabal
Johnu George
Srini Bala
Daniel J. Beutel
Victor Bittorf
Akshay Chaudhari
Alexander Chowdhury
+ Suppressing simulation bias using multi-modal data 2021 Bogdan Kustowski
Jim Gaffney
B. K. Spears
Gemma J. Anderson
Rushil Anirudh
Peer‐Timo Bremer
Jayaraman J. Thiagarajan
Michael Kruse
R. Nora
+ On the Design of Deep Priors for Unsupervised Audio Restoration 2021 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Andreas Spanias
+ Comparative Code Structure Analysis using Deep Learning for Performance Prediction 2021 Nathan Pinnow
Tarek A. Ramadan
Tanzima Islam
Chase Phelps
Jayaraman J. Thiagarajan
+ Loss Estimators Improve Model Generalization 2021 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Deepta Rajan
Andreas Spanias
+ PDF Chat Designing accurate emulators for scientific processes using calibration-driven deep models 2020 Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
Peer‐Timo Bremer
Jim Gaffney
Gemma J. Anderson
B. K. Spears
+ Meaningful uncertainties from deep neural network surrogates of large-scale numerical simulations. 2020 Gemma J. Anderson
Jim Gaffney
B. K. Spears
Peer‐Timo Bremer
Rushil Anirudh
Jayaraman J. Thiagarajan
+ PDF Chat Unsupervised Audio Source Separation Using Generative Priors 2020 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Rushil Anirudh
Andreas Spanias
+ Using Deep Image Priors to Generate Counterfactual Explanations 2020 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Andreas Spanias
+ Machine Learning-Powered Mitigation Policy Optimization in Epidemiological Models. 2020 Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Rushil Anirudh
Timothy C. Germann
Sara Y. Del Valle
Frederick H. Streitz
+ Accurate Calibration of Agent-based Epidemiological Models with Neural Network Surrogates. 2020 Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Timothy C. Germann
Sara Y. Del Valle
Frederick H. Streitz
+ Undergraduate Signal Processing Laboratories for the Android Operating System 2020 Suhas Ranganath
Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Shuang Hu
Mahesh K. Banavar
Andreas Spanias
+ Unsupervised Audio Source Separation using Generative Priors 2020 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Rushil Anirudh
Andreas Spanias
+ Self-Training with Improved Regularization for Few-Shot Chest X-Ray Classification. 2020 Deepta Rajan
Jayaraman J. Thiagarajan
Alexandros Karargyris
Satyananda Kashyap
+ Self-Training with Improved Regularization for Sample-Efficient Chest X-Ray Classification 2020 Deepta Rajan
Jayaraman J. Thiagarajan
Alexandros Karargyris
Satyananda Kashyap
+ PDF Chat Improved surrogates in inertial confinement fusion with manifold and cycle consistencies 2020 Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
B. K. Spears
+ PDF Chat Coverage-Based Designs Improve Sample Mining and Hyperparameter Optimization 2020 Gowtham Muniraju
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Cihan Tepedelenlioğlu
Andreas Spanias
+ PDF Chat Learn-By-Calibrating: Using Calibration As A Training Objective 2020 Jayaraman J. Thiagarajan
Bindya Venkatesh
Deepta Rajan
+ PDF Chat A Regularized Attention Mechanism for Graph Attention Networks 2020 Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Andreas Spanias
+ PDF Chat Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors 2020 Jayaraman J. Thiagarajan
Bindya Venkatesh
Prasanna Sattigeri
Peer‐Timo Bremer
+ MimicGAN: Robust Projection onto Image Manifolds with Corruption Mimicking 2020 Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
+ Calibrate and Prune: Improving Reliability of Lottery Tickets Through Prediction Calibration 2020 Bindya Venkatesh
Jayaraman J. Thiagarajan
Kowshik Thopalli
Prasanna Sattigeri
+ Calibrating Healthcare AI: Towards Reliable and Interpretable Deep Predictive Models 2020 Jayaraman J. Thiagarajan
Prasanna Sattigeri
Deepta Rajan
Bindya Venkatesh
+ Ask-n-Learn: Active Learning via Reliable Gradient Representations for Image Classification 2020 Bindya Venkatesh
Jayaraman J. Thiagarajan
+ Attribute-Guided Adversarial Training for Robustness to Natural Perturbations 2020 Tejas Gokhale
Rushil Anirudh
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Chitta Baral
Yezhou Yang
+ Meaningful uncertainties from deep neural network surrogates of large-scale numerical simulations 2020 Gemma J. Anderson
Jim Gaffney
B. K. Spears
Peer‐Timo Bremer
Rushil Anirudh
Jayaraman J. Thiagarajan
+ Using Deep Image Priors to Generate Counterfactual Explanations 2020 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Andreas Spanias
+ Machine Learning-Powered Mitigation Policy Optimization in Epidemiological Models 2020 Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Rushil Anirudh
Timothy C. Germann
Sara Y. Del Valle
Frederick H. Streitz
+ Accurate Calibration of Agent-based Epidemiological Models with Neural Network Surrogates 2020 Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Timothy C. Germann
Sara Y. Del Valle
Frederick H. Streitz
+ Unsupervised Audio Source Separation using Generative Priors 2020 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Rushil Anirudh
Andreas Spanias
+ Self-Training with Improved Regularization for Sample-Efficient Chest X-Ray Classification 2020 Deepta Rajan
Jayaraman J. Thiagarajan
Alexandros Karargyris
Satyananda Kashyap
+ Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning Attacks 2020 Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Andreas Spanias
+ Accurate and Robust Feature Importance Estimation under Distribution Shifts 2020 Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Rushil Anirudh
Peer‐Timo Bremer
Andreas Spanias
+ Improved Surrogates in Inertial Confinement Fusion with Manifold and Cycle Consistencies 2019 Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
B. K. Spears
+ MimicGAN: Robust Projection onto Image Manifolds with Corruption Mimicking 2019 Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
+ Merlin: Enabling Machine Learning-Ready HPC Ensembles 2019 J. L. Peterson
Rushil Anirudh
Kevin Athey
Benjamin Bay
Peer‐Timo Bremer
Vic Castillo
Francesco Di Natale
David L. Fox
Jim Gaffney
David Hysom
+ PDF Chat Distill-to-Label: Weakly Supervised Instance Labeling Using Knowledge Distillation 2019 Jayaraman J. Thiagarajan
Satyananda Kashyap
Alexandros Karargyris
+ Invenio: Discovering Hidden Relationships Between Tasks/Domains Using Structured Meta Learning 2019 Sameeksha Katoch
Kowshik Thopalli
Jayaraman J. Thiagarajan
Pavan Turaga
Andreas Spanias
+ GrAMME: Semisupervised Learning Using Multilayered Graph Attention Models 2019 Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
+ Learn-By-Calibrating: Using Calibration as a Training Objective 2019 Jayaraman J. Thiagarajan
Bindya Venkatesh
Deepta Rajan
+ Improving Limited Angle CT Reconstruction with a Robust GAN Prior 2019 Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
Karthika Mohan
Kyle Champley
+ Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors 2019 Jayaraman J. Thiagarajan
Bindya Venkatesh
Prasanna Sattigeri
Peer‐Timo Bremer
+ Scalable Topological Data Analysis and Visualization for Evaluating Data-Driven Models in Scientific Applications 2019 Shusen Liu
Jim Gaffney
Luc Peterson
Peter Robinson
Harsh Bhatia
Valerio Pascucci
B. K. Spears
Peer‐Timo Bremer
Di Wang
Dan Maljovec
+ Distill-to-Label: Weakly Supervised Instance Labeling Using Knowledge Distillation 2019 Jayaraman J. Thiagarajan
Satyananda Kashyap
Alexandros Karagyris
+ Multiple Subspace Alignment Improves Domain Adaptation 2019 Kowshik Thopalli
Rushil Anirudh
Jayaraman J. Thiagarajan
Pavan Turaga
+ PDF Chat Designing an Effective Metric Learning Pipeline for Speaker Diarization 2019 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
+ Understanding Deep Neural Networks through Input Uncertainties 2019 Jayaraman J. Thiagarajan
Irene Kim
Rushil Anirudh
Peer‐Timo Bremer
+ Bootstrapping Graph Convolutional Neural Networks for Autism Spectrum Disorder Classification 2019 Rushil Anirudh
Jayaraman J. Thiagarajan
+ Audio Source Separation via Multi-Scale Learning with Dilated Dense U-Nets 2019 Vivek Narayanaswamy
Sameeksha Katoch
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
+ A Look at the Effect of Sample Design on Generalization through the Lens of Spectral Analysis 2019 Bhavya Kailkhura
Jayaraman J. Thiagarajan
Qunwei Li
Peer‐Timo Bremer
+ SALT: Subspace Alignment as an Auxiliary Learning Task for Domain Adaptation 2019 Kowshik Thopalli
Jayaraman J. Thiagarajan
Rushil Anirudh
Pavan Turaga
+ Scalable Topological Data Analysis and Visualization for Evaluating Data-Driven Models in Scientific Applications 2019 Shusen Liu
Di Wang
Dan Maljovec
Rushil Anirudh
Jayaraman J. Thiagarajan
Sam Adé Jacobs
Brian C. Van Essen
David Hysom
Jae-Seung Yeom
Jim Gaffney
+ Function Preserving Projection for Scalable Exploration of High-Dimensional Data 2019 Shusen Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
+ Exploring Generative Physics Models with Scientific Priors in Inertial Confinement Fusion 2019 Rushil Anirudh
Jayaraman J. Thiagarajan
Shusen Liu
Peer‐Timo Bremer
B. K. Spears
+ Heteroscedastic Calibration of Uncertainty Estimators in Deep Learning 2019 Bindya Venkatesh
Jayaraman J. Thiagarajan
+ Enabling Machine Learning-Ready HPC Ensembles with Merlin 2019 Peterson Jl
Bay B
J. M. Koning
Peter Robinson
Jessica Semler
Jeremy White
Rushil Anirudh
Kevin Athey
Peer‐Timo Bremer
Natale Fd
+ MimicGAN: Robust Projection onto Image Manifolds with Corruption Mimicking 2019 Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
+ Invenio: Discovering Hidden Relationships Between Tasks/Domains Using Structured Meta Learning 2019 Sameeksha Katoch
Kowshik Thopalli
Jayaraman J. Thiagarajan
Pavan Turaga
Andreas Spanias
+ Learn-By-Calibrating: Using Calibration as a Training Objective 2019 Jayaraman J. Thiagarajan
Bindya Venkatesh
Deepta Rajan
+ Improving Limited Angle CT Reconstruction with a Robust GAN Prior 2019 Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
K. Aditya Mohan
Kyle Champley
+ Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors 2019 Jayaraman J. Thiagarajan
Bindya Venkatesh
Prasanna Sattigeri
Peer‐Timo Bremer
+ Distill-to-Label: Weakly Supervised Instance Labeling Using Knowledge Distillation 2019 Jayaraman J. Thiagarajan
Satyananda Kashyap
Alexandros Karagyris
+ Audio Source Separation via Multi-Scale Learning with Dilated Dense U-Nets 2019 Vivek Narayanaswamy
Sameeksha Katoch
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
+ MimicGAN: Corruption-Mimicking for Blind Image Recovery & Adversarial Defense 2018 Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
+ Designing an Effective Metric Learning Pipeline for Speaker Diarization 2018 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
+ Improving Robustness of Attention Models on Graphs. 2018 Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Andreas Spanias
+ A Regularized Attention Mechanism for Graph Attention Networks. 2018 Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Andreas Spanias
+ Understanding Deep Neural Networks through Input Uncertainties 2018 Jayaraman J. Thiagarajan
Irene Kim
Rushil Anirudh
Peer‐Timo Bremer
+ Attention Models with Random Features for Multi-layered Graph Embeddings. 2018 Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
+ GrAMME: Semi-Supervised Learning using Multi-layered Graph Attention Models 2018 Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
+ Can Deep Clinical Models Handle Real-World Domain Shifts? 2018 Jayaraman J. Thiagarajan
Deepta Rajan
Prasanna Sattigeri
+ PDF Chat Efficient Data-Driven Geologic Feature Characterization from Pre-stack Seismic Measurements using Randomized Machine-Learning Algorithm 2018 Youzuo Lin
Shusen Wang
Jayaraman J. Thiagarajan
George D. Guthrie
David Coblentz
+ Controlled Random Search Improves Hyper-Parameter Optimization 2018 Gowtham Muniraju
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
+ Coverage-Based Designs Improve Sample Mining and Hyper-Parameter Optimization 2018 Gowtham Muniraju
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Cihan Tepedelenlioğlu
Andreas Spanias
+ Triplet Network with Attention for Speaker Diarization 2018 Huan Song
Megan Willi
Jayaraman J. Thiagarajan
Visar Berisha
Andreas Spanias
+ PDF Chat Deep learning: A guide for practitioners in the physical sciences 2018 B. K. Spears
James M. Brase
Peer‐Timo Bremer
Barry Chen
J. E. Field
Jim Gaffney
Michael Kruse
S. Langer
Katie L. Lewis
R. Nora
+ PDF Chat A Generative Modeling Approach to Limited Channel ECG Classification 2018 Deepta Rajan
Jayaraman J. Thiagarajan
+ PDF Chat Exploring High‐Dimensional Structure via Axis‐Aligned Decomposition of Linear Projections 2018 Jayaraman J. Thiagarajan
S. Liu
Karthikeyan Natesan Ramamurthy
Peer‐Timo Bremer
+ PDF Chat Lose the Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion 2018 Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
K. Aditya Mohan
Kyle Champley
Peer‐Timo Bremer
+ An Unsupervised Approach to Solving Inverse Problems using Generative Adversarial Networks 2018 Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
+ PDF Chat Attend and Diagnose: Clinical Time Series Analysis Using Attention Models 2018 Huan Song
Deepta Rajan
Jayaraman J. Thiagarajan
Andreas Spanias
+ Optimizing Kernel Machines Using Deep Learning 2018 Huan Song
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Andreas Spanias
+ A Generative Modeling Approach to Limited Channel ECG Classification 2018 Deepta Rajan
Jayaraman J. Thiagarajan
+ MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis 2018 Rushil Anirudh
Jayaraman J. Thiagarajan
Rahul Sridhar
Peer‐Timo Bremer
+ Unsupervised Dimension Selection using a Blue Noise Spectrum 2018 Jayaraman J. Thiagarajan
Rushil Anirudh
Rahul Sridhar
Peer‐Timo Bremer
+ Improved Deep Embeddings for Inferencing with Multi-Layered Networks 2018 Huan Song
Jayaraman J. Thiagarajan
+ Triplet Network with Attention for Speaker Diarization 2018 Huan Song
Megan Willi
Jayaraman J. Thiagarajan
Visar Berisha
Andreas Spanias
+ Understanding Behavior of Clinical Models under Domain Shifts 2018 Jayaraman J. Thiagarajan
Deepta Rajan
Prasanna Sattigeri
+ Multiple Subspace Alignment Improves Domain Adaptation 2018 Kowshik Thopalli
Rushil Anirudh
Jayaraman J. Thiagarajan
Pavan Turaga
+ A Regularized Attention Mechanism for Graph Attention Networks 2018 Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Andreas Spanias
+ Understanding Deep Neural Networks through Input Uncertainties 2018 Jayaraman J. Thiagarajan
Irene Kim
Rushil Anirudh
Peer‐Timo Bremer
+ Designing an Effective Metric Learning Pipeline for Speaker Diarization 2018 Vivek Narayanaswamy
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
+ GrAMME: Semi-Supervised Learning using Multi-layered Graph Attention Models 2018 Uday Shankar Shanthamallu
Jayaraman J. Thiagarajan
Huan Song
Andreas Spanias
+ Coverage-Based Designs Improve Sample Mining and Hyper-Parameter Optimization 2018 Gowtham Muniraju
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Cihan Tepedelenlioglu
Andreas Spanias
+ An Unsupervised Approach to Solving Inverse Problems using Generative Adversarial Networks 2018 Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
+ A Generative Modeling Approach to Limited Channel ECG Classification 2018 Deepta Rajan
Jayaraman J. Thiagarajan
+ MimicGAN: Corruption-Mimicking for Blind Image Recovery & Adversarial Defense 2018 Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
+ Exploring High-Dimensional Structure via Axis-Aligned Decomposition of Linear Projections 2017 Jayaraman J. Thiagarajan
Shusen Liu
Karthikeyan Natesan Ramamurthy
Peer‐Timo Bremer
+ Lose The Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion 2017 Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
K. Aditya Mohan
Kyle Champley
Peer‐Timo Bremer
+ Influential Sample Selection: A Graph Signal Processing Approach. 2017 Rushil Anirudh
Jayaraman J. Thiagarajan
Rahul Sridhar
Peer‐Timo Bremer
+ PDF Chat Learning Robust Representations for Computer Vision 2017 Peng Zheng
Aleksandr Y. Aravkin
Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
+ Bootstrapping Graph Convolutional Neural Networks for Autism Spectrum Disorder Classification 2017 Rushil Anirudh
Jayaraman J. Thiagarajan
+ PDF Chat A deep learning approach to multiple kernel fusion 2017 Huan Song
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Karthikeyan Natesan Ramamurthy
Andreas Spanias
+ Data-Driven Metric Learning for History Matching 2017 Jacob Miller
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Nazish Hoda
Dave Stern
Rick T. Mifflin
+ Learning Robust Representations for Computer Vision 2017 Peng Zheng
Aleksandr Y. Aravkin
Karthikeyan Natesan Ramamurthy
Jayaraman J. Thiagarajan
+ Attend and Diagnose: Clinical Time Series Analysis using Attention Models 2017 Huan Song
Deepta Rajan
Jayaraman J. Thiagarajan
Andreas Spanias
+ Optimizing Kernel Machines using Deep Learning 2017 Huan Song
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Andreas Spanias
+ A Spectral Approach for the Design of Experiments: Design, Analysis and Algorithms 2017 Bhavya Kailkhura
Jayaraman J. Thiagarajan
Charvi Rastogi
Pramod K. Varshney
Peer‐Timo Bremer
+ MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis 2017 Rushil Anirudh
Jayaraman J. Thiagarajan
Rahul Sridhar
Peer‐Timo Bremer
+ Exploring High-Dimensional Structure via Axis-Aligned Decomposition of Linear Projections 2017 Jayaraman J. Thiagarajan
Shusen Liu
Karthikeyan Natesan Ramamurthy
Peer‐Timo Bremer
+ Lose The Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion 2017 Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
Karthika Mohan
Kyle Champley
Peer‐Timo Bremer
+ Bootstrapping Graph Convolutional Neural Networks for Autism Spectrum Disorder Classification 2017 Rushil Anirudh
Jayaraman J. Thiagarajan
+ Robust Local Scaling using Conditional Quantiles of Graph Similarities 2016 Jayaraman J. Thiagarajan
Prasanna Sattigeri
Karthikeyan Natesan Ramamurthy
Bhavya Kailkhura
+ Robust Local Scaling Using Conditional Quantiles of Graph Similarities 2016 Jayaraman J. Thiagarajan
Prasanna Sattigeri
Karthikeyan Natesan Ramamurthy
Bhavya Kailkhura
+ Autism Spectrum Disorder Classification using Graph Kernels on Multidimensional Time Series 2016 Rushil Anirudh
Jayaraman J. Thiagarajan
I Kim
Wolfgang Polonik
+ Data-driven performance modeling of linear solvers for sparse matrices 2016 Jae-Seung Yeom
Jayaraman J. Thiagarajan
Abhinav Bhatelé
Greg Bronevetsky
Tzanio Kolev
+ Data-Driven Performance Modeling of Linear Solvers for Sparse Matrices 2016 J Yeom
Jayaraman J. Thiagarajan
Abhinav Bhatelé
G Bronevetsky
Tzanio Kolev
+ PDF Chat Universal Collaboration Strategies for Signal Detection: A Sparse Learning Approach 2016 Prashant Khanduri
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Pramod K. Varshney
+ Beyond L2-loss functions for learning sparse models 2016 Karthikeyan Natesan Ramamurthy
Aleksandr Y. Aravkin
Jayaraman J. Thiagarajan
+ TreeView: Peeking into Deep Neural Networks Via Feature-Space Partitioning 2016 Jayaraman J. Thiagarajan
Bhavya Kailkhura
Prasanna Sattigeri
Karthikeyan Natesan Ramamurthy
+ A Deep Learning Approach To Multiple Kernel Fusion 2016 Huan Song
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Karthikeyan Natesan Ramamurthy
Andreas Spanias
+ Influential Node Detection in Implicit Social Networks using Multi-task Gaussian Copula Models 2016 Qunwei Li
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Zhenliang Zhang
Pramod K. Varshney
+ Autism Spectrum Disorder Classification using Graph Kernels on Multidimensional Time Series 2016 Rushil Anirudh
Jayaraman J. Thiagarajan
Irene Kim
Wolfgang Polonik
+ Robust Local Scaling using Conditional Quantiles of Graph Similarities 2016 Jayaraman J. Thiagarajan
Prasanna Sattigeri
Karthikeyan Natesan Ramamurthy
Bhavya Kailkhura
+ Automatic Inference of the Quantile Parameter 2015 Karthikeyan Natesan Ramamurthy
Aleksandr Y. Aravkin
Jayaraman J. Thiagarajan
+ Automatic Inference of the Quantile Parameter 2015 Karthikeyan Natesan Ramamurthy
Aleksandr Y. Aravkin
Jayaraman J. Thiagarajan
+ PDF Chat Learning Stable Multilevel Dictionaries for Sparse Representations 2014 Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Andreas Spanias
+ PDF Chat Kernel Sparse Models for Automated Tumor Segmentation 2014 Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Deepta Rajan
Andreas Spanias
Anup Puri
David Frakes
+ PDF Chat Multiple Kernel Sparse Representations for Supervised and Unsupervised Learning 2014 Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Andreas Spanias
+ Beyond L2-Loss Functions for Learning Sparse Models 2014 Karthikeyan Natesan Ramamurthy
Aleksandr Y. Aravkin
Jayaraman J. Thiagarajan
+ Beyond L2-Loss Functions for Learning Sparse Models 2014 Karthikeyan Natesan Ramamurthy
Aleksandr Y. Aravkin
Jayaraman J. Thiagarajan
+ PDF Chat Recovering non-negative and combined sparse representations 2013 Karthikeyan Natesan Ramamurthy
Jayaraman J. Thiagarajan
Andreas Spanias
+ Recovering Non-negative and Combined Sparse Representations 2013 Karthikeyan Natesan Ramamurthy
Jayaraman J. Thiagarajan
Andreas Spanias
+ Learning Stable Multilevel Dictionaries for Sparse Representations 2013 Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Andreas Spanias
+ Ensemble Sparse Models for Image Analysis 2013 Karthikeyan Natesan Ramamurthy
Jayaraman J. Thiagarajan
Prasanna Sattigeri
Andreas Spanias
+ Recovering Non-negative and Combined Sparse Representations 2013 Karthikeyan Natesan Ramamurthy
Jayaraman J. Thiagarajan
Andreas Spanias
+ Kernel Sparse Models for Automated Tumor Segmentation 2013 Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Deepta Rajan
Anup Puri
David Frakes
Andreas Spanias
+ Learning Stable Multilevel Dictionaries for Sparse Representations 2013 Jayaraman J. Thiagarajan
Karthikeyan Natesan Ramamurthy
Andreas Spanias
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
16
+ PDF Chat Improved surrogates in inertial confinement fusion with manifold and cycle consistencies 2020 Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
B. K. Spears
10
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
10
+ Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering 2016 Michaël Defferrard
Xavier Bresson
Pierre Vandergheynst
10
+ PDF Chat Semantic Image Inpainting with Deep Generative Models 2017 Raymond A. Yeh
Chen Chen
Teck Yian Lim
Alexander G. Schwing
Mark Hasegawa–Johnson
N. Minh
9
+ PDF Chat Solving Linear Inverse Problems Using Gan Priors: An Algorithm with Provable Guarantees 2018 Viraj Shah
Chinmay Hegde
9
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
8
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
7
+ Deep Convolutional Networks on Graph-Structured Data 2015 Mikael Henaff
Joan Bruna
Yann LeCun
7
+ PDF Chat Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 2017 Christian Ledig
Lucas Theis
Ferenc HuszĂĄr
José Caballero
Andrew Cunningham
Alejandro Acosta
Andrew P. Aitken
Alykhan Tejani
Johannes Totz
Zehan Wang
7
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
7
+ PDF Chat Learning for Single-Shot Confidence Calibration in Deep Neural Networks Through Stochastic Inferences 2019 Seonguk Seo
Paul Hongsuck Seo
Bohyung Han
7
+ On Calibration of Modern Neural Networks 2017 Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
6
+ TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems 2016 Martı́n Abadi
Ashish Agarwal
Paul Barham
Eugene Brevdo
Zhifeng Chen
Craig Citro
Gregory S. Corrado
Andy Davis
Jay B. Dean
Matthieu Devin
6
+ Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms 2017 Xiao Han
Kashif Rasul
Roland Vollgraf
6
+ PDF Chat Least angle regression 2004 Bradley Efron
Trevor Hastie
Iain M. Johnstone
Robert Tibshirani
6
+ PDF Chat Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing 2017 Laurence Perreault-Levasseur
Yashar Hezaveh
Risa H. Wechsler
6
+ Convolutional Networks on Graphs for Learning Molecular Fingerprints 2015 David Duvenaud
Dougal Maclaurin
Jorge Aguilera‐Iparraguirre
Rafael Gómez‐Bombarelli
Timothy Hirzel
Alán Aspuru‐Guzik
Ryan P. Adams
6
+ Accurate Uncertainties for Deep Learning Using Calibrated Regression 2018 Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
6
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
6
+ Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles 2016 Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
6
+ Explaining and Harnessing Adversarial Examples 2014 Ian Goodfellow
Jonathon Shlens
Christian Szegedy
6
+ Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 2015 Alec Radford
Luke Metz
Soumith Chintala
5
+ PDF Chat Deep Learning Face Attributes in the Wild 2015 Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
5
+ PDF Chat Towards Evaluating the Robustness of Neural Networks 2017 Nicholas Carlini
David Wagner
5
+ Attention is All you Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Ɓukasz Kaiser
Illia Polosukhin
5
+ PDF Chat CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks 2018 M. Paganini
Luke de Oliveira
Benjamin Nachman
5
+ Attention Is All You Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Ɓukasz Kaiser
Illia Polosukhin
5
+ PDF Chat Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization 2017 Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
5
+ PDF Chat DeepWalk 2014 Bryan Perozzi
Rami Al‐Rfou
Steven Skiena
5
+ PDF Chat Learning Loss for Active Learning 2019 Donggeun Yoo
In So Kweon
5
+ Weight Uncertainty in Neural Networks 2015 Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
5
+ PDF Chat Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks 2017 Jun-Yan Zhu
Taesung Park
Phillip Isola
Alexei A. Efros
5
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
5
+ Spectral Networks and Locally Connected Networks on Graphs 2013 Joan Bruna
Wojciech Zaremba
Arthur Szlam
Yann LeCun
5
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
5
+ PDF Chat The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains 2013 David I Shuman
Sunil K. Narang
Pascal Frossard
Antonio Ortega
Pierre Vandergheynst
5
+ PDF Chat Image-to-Image Translation with Conditional Adversarial Networks 2017 Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
5
+ What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 2017 Alex Kendall
Yarin Gal
5
+ Searching for exotic particles in high-energy physics with deep learning 2014 Pierre Baldi
Peter Sadowski
D. Whiteson
5
+ Wasserstein Auto-Encoders 2018 Ilya Tolstikhin
Olivier Bousquet
Sylvain Gelly
Bernhard Schölkopf
4
+ Monte Carlo and Quasi-Monte Carlo for Statistics 2009 Art B. Owen
4
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
4
+ Methods for interpreting and understanding deep neural networks 2017 Grégoire Montavon
Wojciech Samek
Klaus‐Robert MĂŒller
4
+ Learning Important Features Through Propagating Activation Differences 2017 Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
4
+ PDF Chat Attend and Diagnose: Clinical Time Series Analysis Using Attention Models 2018 Huan Song
Deepta Rajan
Jayaraman J. Thiagarajan
Andreas Spanias
4
+ Graph Attention Networks 2018 Petar Veličković
Guillem Cucurull
Arantxa Casanova
Adriana Romero
PĂ­etro LiĂł
Yoshua Bengio
4
+ Orthogonal Matching Pursuit for Sparse Quantile Regression 2014 Aleksandr Y. Aravkin
Aurélie Lozano
Ronny Luss
Prabhajan Kambadur
4
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
4
+ Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference 2016 Vinay Venkataraman
Pavan Turaga
4