Katja Seeliger

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Neural encoding with affine feature response transforms 2025 Lynn Le
Nils Kimman
Thirza Dado
Katja Seeliger
Paolo Papale
Antonio Lozano
Pieter R. Roelfsema
Marcel van Gerven
Yağmur Güçlütürk
Umut Güçlü
+ PDF Chat Inverse receptive field attention for naturalistic image reconstruction from the brain 2025 Lynn Le
Thirza Dado
Katja Seeliger
Paolo Papale
Antonio Lozano
Pieter R. Roelfsema
Yağmur Güçlütürk
Marcel van Gerven
Umut Güçlü
+ PDF Chat The neuroconnectionist research programme 2023 Adrien Doerig
Rowan P. Sommers
Katja Seeliger
Blake A. Richards
Jenann Ismael
Grace W. Lindsay
Konrad P. Körding
Talia Konkle
Marcel van Gerven
Nikolaus Kriegeskorte
+ Deep neural networks are not a single hypothesis but a language for expressing computational hypotheses 2023 Tal Golan
JohnMark Taylor
Heiko H. Schütt
Benjamin Peters
Rowan Paolo Sommers
Katja Seeliger
Adrien Doerig
Paul Linton
Talia Konkle
Marcel van Gerven
+ PDF Chat Deep neural networks are not a single hypothesis but a language for expressing computational hypotheses 2023 Tal Golan
JohnMark Taylor
Heiko H. Schütt
Benjamin Peters
Rowan P. Sommers
Katja Seeliger
Adrien Doerig
Paul Linton
Talia Konkle
Marcel van Gerven
+ The neuroconnectionist research programme 2022 Adrien Doerig
Rowan P. Sommers
Katja Seeliger
Blake A. Richards
Jenann Ismael
Grace Lindsay
Konrad P. Körding
Talia Konkle
Marcel van Gerven
Nikolaus Kriegeskorte
+ From photos to sketches - how humans and deep neural networks process objects across different levels of visual abstraction 2021 Johannes Singer
Katja Seeliger
Tim C. Kietzmann
Martin N. Hebart
+ Generalization of an Upper Bound on the Number of Nodes Needed to Achieve Linear Separability 2018 Marjolein Troost
Katja Seeliger
Marcel van Gerven
+ Deep adversarial neural decoding 2017 Yağmur Güçlütürk
Umut Güçlü
Katja Seeliger
Sander Bosch
Rob van Lier
Marcel van Gerven
+ Deep adversarial neural decoding 2017 Yağmur Güçlütürk
Umut Güçlü
Katja Seeliger
Sander Bosch
Rob van Lier
Marcel van Gerven
+ Deep adversarial neural decoding 2017 Yağmur Güçlütürk
Umut Güçlü
Katja Seeliger
Sander Bosch
Rob van Lier
Marcel van Gerven
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream 2015 Umut Güçlü
Marcel van Gerven
5
+ PDF Chat Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future 2020 Grace W. Lindsay
3
+ PDF Chat Controversial stimuli: Pitting neural networks against each other as models of human cognition 2020 Tal Golan
Prashant C. Raju
Nikolaus Kriegeskorte
3
+ PDF Chat Permuted AdaIN: Reducing the Bias Towards Global Statistics in Image Classification 2021 Oren Nuriel
Sagie Benaim
Lior Wolf
2
+ PDF Chat Capturing the objects of vision with neural networks 2021 Benjamin Peters
Nikolaus Kriegeskorte
2
+ PDF Chat Deep problems with neural network models of human vision 2022 Jeffrey S. Bowers
Gaurav Malhotra
Marin Dujmović
Milton L. Montero
Christian Tsvetkov
Valerio Biscione
Guillermo Puebla
Federico Adolfi
John E. Hummel
Rachel F. Heaton
2
+ PDF Chat Recurrence is required to capture the representational dynamics of the human visual system 2019 Tim C. Kietzmann
Courtney J. Spoerer
Lynn K. A. Sörensen
Radoslaw M. Cichy
Olaf Hauk
Nikolaus Kriegeskorte
2
+ PDF Chat Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks 2017 Umut Güçlü
Marcel van Gerven
2
+ ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness 2018 Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix A. Wichmann
Wieland Brendel
2
+ The Origins and Prevalence of Texture Bias in Convolutional Neural Networks 2019 Katherine L. Hermann
Ting Chen
Simon Kornblith
2
+ Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing 1995 Yoav Benjamini
Yosef Hochberg
1
+ PDF Chat Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision 2017 Haiguang Wen
Junxing Shi
Yizhen Zhang
Kun‐Han Lu
Jiayue Cao
Zhongming Liu
1
+ Towards Deep Symbolic Reinforcement Learning 2016 Marta Garnelo
Kai Arulkumaran
Murray Shanahan
1
+ PsyPhy: A Psychophysics Driven Evaluation Framework for Visual Recognition 2018 Brandon RichardWebster
Samuel Anthony
Walter J. Scheirer
1
+ PDF Chat Deep Neural Networks as a Computational Model for Human Shape Sensitivity 2016 Jonas Kubilius
Stefania Bracci
Hans Op de Beeck
1
+ Note on the sampling error of the difference between correlated proportions or percentages 1947 Quinn McNemar
1
+ PDF Chat Deep neural networks are easily fooled: High confidence predictions for unrecognizable images 2015 Anh‐Tu Nguyen
Jason Yosinski
Jeff Clune
1
+ PDF Chat Generating Visual Explanations 2016 Lisa Anne Hendricks
Zeynep Akata
Marcus Rohrbach
Jeff Donahue
Bernt Schiele
Trevor Darrell
1
+ Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks 2018 Francesca Mastrogiuseppe
Srdjan Ostojic
1
+ PDF Chat Evaluating (and Improving) the Correspondence Between Deep Neural Networks and Human Representations 2018 Joshua C. Peterson
Joshua T. Abbott
Thomas L. Griffiths
1
+ A rotation-equivariant convolutional neural network model of primary visual cortex 2018 Alexander S. Ecker
Fabian H. Sinz
Emmanouil Froudarakis
Paul G. Fahey
Santiago A. Cadena
Edgar Y. Walker
Erick Cobos
Jacob Reimer
Andreas S. Tolias
Matthias Bethge
1
+ PDF Chat A mathematical theory of semantic development in deep neural networks 2019 Andrew Saxe
James L. McClelland
Surya Ganguli
1
+ Towards a Definition of Disentangled Representations 2018 Irina Higgins
David Amos
David Pfau
Sébastien Racanière
Löıc Matthey
Danilo Jimenez Rezende
Alexander Lerchner
1
+ Proceedings of the 25th international conference on Machine learning 2008 William W. Cohen
Andrew McCallum
Sam T. Roweis
1
+ Representation Similarity Analysis for Efficient Task taxonomy & Transfer Learning 2019 Kshitij Dwivedi
Gemma Roig
1
+ Learning Robust Global Representations by Penalizing Local Predictive Power 2019 Haohan Wang
Songwei Ge
Eric P. Xing
Zachary C. Lipton
1
+ Certified Adversarial Robustness via Randomized Smoothing 2019 Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
1
+ PDF Chat Toward an Integration of Deep Learning and Neuroscience 2016 Adam Marblestone
Greg Wayne
Konrad P. Körding
1
+ Generalisation in humans and deep neural networks 2018 Robert Geirhos
Carlos R. Medina Temme
Jonas Rauber
Heiko H. Schütt
Matthias Bethge
Felix A. Wichmann
1
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ PDF Chat Deep learning in neural networks: An overview 2014 Jürgen Schmidhuber
1
+ PDF Chat Equivalence Tests 2017 Daniël Lakens
1
+ Crowding reveals fundamental differences in local vs. global processing in humans and machines 2020 Adrien Doerig
Alban Bornet
Oh-Hyeon Choung
Michael H. Herzog
1
+ Sharing deep generative representation for perceived image reconstruction from human brain activity 2017 Changde Du
Changying Du
Huiguang He
1
+ Exact solutions to the nonlinear dynamics of learning in deep linear neural networks 2013 Andrew Saxe
James L. McClelland
Surya Ganguli
1
+ Towards Deep Learning Models Resistant to Adversarial Attacks. 2018 Aleksander Mądry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
1
+ Going in circles is the way forward: the role of recurrence in visual inference 2020 Ruben S. van Bergen
Nikolaus Kriegeskorte
1
+ A neural network walks into a lab: towards using deep nets as models for human behavior 2020 Wei Ji
Benjamin Peters
1
+ PDF Chat Artificial Neural Networks for Neuroscientists: A Primer 2020 Guangyu Robert Yang
Xiao‐Jing Wang
1
+ Generic decoding of seen and imagined objects using hierarchical visual features 2017 Tomoyasu Horikawa
Yukiyasu Kamitani
1
+ Deep Reinforcement Learning and Its Neuroscientific Implications 2020 Matthew Botvinick
Jane X. Wang
Will Dabney
Kevin J Miller
Zeb Kurth‐Nelson
1
+ PDF Chat SAYCam: A Large, Longitudinal Audiovisual Dataset Recorded From the Infant’s Perspective 2021 Jessica Sullivan
Michelle Mei
Andrew Perfors
Erica H. Wojcik
Michael C. Frank
1
+ On the surprising similarities between supervised and self-supervised models 2020 Robert Geirhos
Kantharaju Narayanappa
Benjamin Mitzkus
Matthias Bethge
Felix A. Wichmann
Wieland Brendel
1
+ An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 2020 Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
Thomas Unterthiner
Mostafa Dehghani
Matthias Minderer
Georg Heigold
Sylvain Gelly
1
+ Opening the Black Box of Deep Neural Networks via Information 2017 Ravid Shwartz-Ziv
Naftali Tishby
1
+ PDF Chat Interpretable Explanations of Black Boxes by Meaningful Perturbation 2017 Ruth Fong
Andrea Vedaldi
1
+ PDF Chat SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks 2018 Friedemann Zenke
Surya Ganguli
1
+ PDF Chat Humans can decipher adversarial images 2019 Zhenglong Zhou
Chaz Firestone
1
+ Analyzing biological and artificial neural networks: challenges with opportunities for synergy? 2019 David G. T. Barrett
Ari S. Morcos
Jakob H. Macke
1