Sz. Tengely

Follow

Generating author description...

All published works
Action Title Year Authors
+ Square values of Littlewood polynomials 2024 Lajos Hajdu
O. Herendi
Sz. Tengely
Norbert Varga
+ Cryptanalysis of ITRU 2020 Hayder R. Hashim
Ангелика Молнар
Sz. Tengely
+ Cryptanalysis of ITRU 2020 Hayder R. Hashim
Ангелика Молнар
Sz. Tengely
+ On the Diophantine equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:mo>(</mml:mo><mml:mtable><mml:mtr><mml:mtd><mml:mi>n</mml:mi></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mi>k</mml:mi></mml:mtd></mml:mtr></mml:mtable><mml:mo>)</mml:mo></mml:mrow><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mtable><mml:mtr><mml:mtd><mml:mi>m</mml:mi></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mi>l</mml:mi></mml:… 2019 Homero R. Gallegos-Ruiz
Nikos Katsipis
Sz. Tengely
Maciej Ulas
+ PDF Chat Diophantine equations related to reciprocals of linear recurrence sequences 2019 Hayder R. Hashim
Sz. Tengely
+ Representations of reciprocals of Lucas sequences 2018 Hayder R. Hashim
Sz. Tengely
+ On a problem of Pethő 2017 Sz. Tengely
Maciej Ulas
+ On certain Diophantine equations of the form z2=f(x)2±g(y)2 2016 Sz. Tengely
Maciej Ulas
+ On products of disjoint blocks of arithmetic progressions and related equations 2016 Sz. Tengely
Maciej Ulas
+ Integral Points on Hyperelliptic Curves 2008 Yann Bugeaud
Max Mignotte
Samir Siksek
Michael Stoll
Sz. Tengely
+ PDF Chat Note on the paper ``An extension of a theorem of Euler" by Hirata-Kohno et al. (Acta Arith. 129 (2007), 71–102) 2008 Sz. Tengely
+ PDF Chat On the Diophantine equation x<sup>2</sup>+q<sup>2m</sup>=2y<sup>p</sup> 2007 Sz. Tengely
+ PDF Chat Arithmetic progressions consisting of unlike powers 2006 Nils Bruin
Kálmán Győry
Lajos Hajdu
Sz. Tengely
+ An implementation of Runge's method for Diophantine equations 2005 Frits Beukers
Sz. Tengely
+ Arithmetic progressions consisting of unlike powers 2005 Nils Bruin
Kálmán Győry
Lajos Hajdu
Sz. Tengely
+ PDF Chat On the diophantine equations x2 + a2 = 2yp 2004 Sz. Tengely
+ PDF Chat On the Diophantine equation F(x)=G(y) 2003 Sz. Tengely
+ Full powers in arithmetic progressions 2000 István Pink
Sz. Tengely
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ The Magma Algebra System I: The User Language 1997 Wieb Bosma
John Cannon
Catherine Playoust
6
+ PDF Chat Implementing 2-descent for Jacobians of hyperelliptic curves 2001 Michael Stoll
5
+ PDF Chat On the Diophantine Equation <i>n</i>(<i>n</i> + <i>d</i>) · · · (<i>n</i> + (<i>k</i> − 1)<i>d</i>) = <i>by</i><sup><i>l</i></sup> 2004 Kálmán Győry
Lajos Hajdu
N. Saradha
4
+ PDF Chat Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms 1994 R. J. Stroeker
Nikos Tzanakis
4
+ Full powers in arithmetic progressions 2000 István Pink
Sz. Tengely
4
+ PDF Chat Computing integral points on elliptic curves 1994 Josef Gebel
A. Pethö
Horst G. Zimmer
4
+ Bounds for the solutions of the hyperelliptic equation 1969 A. Baker
4
+ Diophantine equations 1969 L. J. Mordell
4
+ Chabauty methods and covering techniques applied to generalized Fermat equations 2002 Nils Bruin
4
+ PDF Chat Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations 1996 Nikos Tzanakis
3
+ PDF Chat Two-cover descent on hyperelliptic curves 2009 Nils Bruin
Michael Stoll
3
+ Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2 1996 J. W. S. Cassels
E. V. Flynn
3
+ Powers from Products of Consecutive Terms in Arithmetic Progression 2006 Michael A. Bennett
Nils Bruin
Kálmán Győry
Lajos Hajdu
3
+ PDF Chat On the height constant for curves of genus two, II 2002 Michael Stoll
3
+ PDF Chat On the diophantine equation $x^2 - p^m = ±y^n$ 1997 Yann Bugeaud
2
+ PDF Chat Thue equations with composite fields 1999 Yuri Bilu
Guillaume Hanrot
2
+ PDF Chat A quantitative version of Runge's theorem on diophantine equations 1992 Peter Walsh
2
+ On the Diophantine equation $x^2+p^2=y^n$ 2003 LE Mao-hua
2
+ PDF Chat Perfect powers in arithmetic progression. A note on the inhomogeneous case 2004 Lajos Hajdu
2
+ PDF Chat The diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$x^2 + 3^m = y^n$" id="E1"><mml:mrow><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mn>3</mml:mn><mml:mi>m</mml:mi></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:math> 1996 Salmawaty Arif
Fadwa S. Abu Muriefah
2
+ PDF Chat On the diophantine equation $px^2+3^n=y^p$ 2000 Fadwa S. Abu Muriefah
2
+ Effective analysis of integral points on algebraic curves 1995 Yuri Bilu
2
+ PDF Chat None 1997 Yann Bugeaud
2
+ Computing integral points on genus 2 curves estimating hyperelliptic logarithms 2019 Homero R. Gallegos-Ruiz
2
+ PDF Chat On the Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$Ax^2 + 2^{2m} = y^n" id="E1"><mml:mi>A</mml:mi><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mrow><mml:mn>2</mml:mn><mml:mi>m</mml:mi></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math> 2001 Fadwa S. Abu Muriefah
2
+ PDF Chat On the height constant for curves of genus two 1999 Michael Stoll
2
+ PDF Chat The product of consecutive integers is never a power 1975 Paul Erdős
J. L. Selfridge
2
+ Effective Methods for Diophantine Equations 2005 Szabolcs Tengely
2
+ PDF Chat On the diophantine equations x2 + a2 = 2yp 2004 Sz. Tengely
2
+ PDF Chat On the equation <i>x</i><sup>2</sup> + 2<sup><i>a</i></sup> · 3<sup><i>b</i></sup> = <i>y</i><sup><i>n</i></sup> 2002 Florian Luca
2
+ Elliptic binomial diophantine equations 1999 R. J. Stroeker
Benjamin de Weger
2
+ On the Diophantine Equation x2+q2k+1=yn 2002 Salmawaty Arif
Fadwa S. Abu Muriefah
2
+ PDF Chat Solving Thue equations without the full unit group 1999 Guillaume Hanrot
2
+ PDF Chat On the integer solutions of<i>y</i>(<i>y</i>+ 1) =<i>x</i>(<i>x</i>+ 1)(<i>x</i>+ 2) 1963 L. J. Mordell
2
+ PDF Chat An extension of a theorem of Euler 2007 Noriko Hirata-Kohno
Shanta Laishram
T. N. Shorey
R. Tijdeman
2
+ PDF Chat None 1997 E. V. Flynn
2
+ Chabauty methods using elliptic curves 2003 Nils Bruin
2
+ PDF Chat On the Equations <i>z<sup>m</sup> </i> = <i>F</i> (<i>x, y</i> ) and <i>Ax<sup>p</sup> </i> + <i>By<sup>q</sup> </i> = <i>Cz<sup>r</sup> </i> 1995 Henri Darmon
Andrew Granville
2
+ On the diophantine equationD 1 x 2+D 2 m =4y n 1995 LE Mao-hua
2
+ PDF Chat Canonical heights on the Jacobians of curves of genus 2 and the infinite descent 1997 E. V. Flynn
Nigel P. Smart
2
+ PDF Chat On a diophantine equation 1998 Fadwa S. Abu Muriefah
Salmawaty Arif
2
+ PDF Chat Existence of primitive divisors of Lucas and Lehmer numbers 2001 Yonatan Bilu
Guillaume Hanrot
Paul Voutier
2
+ PDF Chat On the Diophantine equation<i>Cx</i><sup>2</sup>+<i>D</i>=<i>y</i><sup><i>n</i></sup> 1964 W. Ljunggren
2
+ Solving Thue Equations of High Degree 1996 Yuri Bilu
Guillaume Hanrot
2
+ A BINOMIAL DIOPHANTINE EQUATION 1996 B.M.M. de Weger
2
+ PDF Chat On the Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$x^2 + 2^k = y^n $" id="E1"><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mi>k</mml:mi></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math> 1995 Salmawaty Arif
Fadwa S. Abu Muriefah
2
+ Powers in Arithmetic Progression 2002 T. N. Shorey
1
+ Elementary Theory of Numbers 1988 Wacław Sierpiński
1
+ PDF Chat The Arithmetic of Elliptic Curves 1986 Joseph H. Silverman
1
+ The classification of rational preperiodic points of quadratic polynomials over ${\Bbb Q}$ : a refined conjecture 1998 Bjorn Poonen
1