Tobias Barker

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Critical norm blow-up rates for the energy supercritical nonlinear heat equation 2024 Tobias Barker
Hideyuki Miura
Jin Takahashi
+ Higher integrability and the number of singular points for the Navier–Stokes equations with a scale-invariant bound 2024 Tobias Barker
+ On Symmetry Breaking for the Navier–Stokes Equations 2024 Tobias Barker
Christophe Prange
Jin Tan
+ From Concentration to Quantitative Regularity: A Short Survey of Recent Developments for the Navier–Stokes Equations 2023 Tobias Barker
Christophe Prange
+ PDF Chat Localized Quantitative Estimates and Potential Blow-Up Rates for the Navier–Stokes Equations 2023 Tobias Barker
+ PDF Chat Blow-up of dynamically restricted critical norms near a potential Navier–Stokes singularity 2023 Tobias Barker
Pedro Gabriel Fernández-Dalgo
Christophe Prange
+ PDF Chat Epsilon Regularity for the Navier–Stokes Equations via Weak-Strong Uniqueness 2023 Dallas Albritton
Tobias Barker
Christophe Prange
+ Estimates of the singular set for the Navier-Stokes equations with supercritical assumptions on the pressure 2023 Tobias Barker
Wendong Wang
+ On symmetry breaking for the Navier-Stokes equations 2023 Tobias Barker
Christophe Prange
Jin Tan
+ Blow-up of dynamically restricted critical norms near a potential Navier-Stokes singularity 2023 Tobias Barker
Pedro Gabriel Fernández-Dalgo
Christophe Prange
+ PDF Chat Localized smoothing and concentration for the Navier-Stokes equations in the half space 2022 Dallas Albritton
Tobias Barker
Christophe Prange
+ Localized quantitative estimates and potential blow-up rates for the Navier-Stokes equations 2022 Tobias Barker
+ Epsilon regularity for the Navier-Stokes equations via weak-strong uniqueness 2022 Dallas Albritton
Tobias Barker
Christophe Prange
+ From concentration to quantitative regularity: a short survey of recent developments for the Navier-Stokes equations 2022 Tobias Barker
Christophe Prange
+ Estimates of the singular set for the Navier-Stokes equations with assumptions on the pressure 2021 Tobias Barker
+ PDF Chat Higher integrability and the number of singular points for the Navier-Stokes equations with a scale-invariant bound 2021 Tobias Barker
+ PDF Chat Quantitative Regularity for the Navier–Stokes Equations Via Spatial Concentration 2021 Tobias Barker
Christophe Prange
+ PDF Chat Mild Criticality Breaking for the Navier–Stokes Equations 2021 Tobias Barker
Christophe Prange
+ Estimates of the singular set for the Navier-Stokes equations with supercritical assumptions on the pressure 2021 Tobias Barker
Wendong Wang
+ Localized smoothing and concentration for the Navier-Stokes equations in the half space 2021 Dallas Albritton
Tobias Barker
Christophe Prange
+ Higher integrability and the number of singular points for the Navier-Stokes equations with a scale-invariant bound 2021 Tobias Barker
+ Mild criticality breaking for the Navier-Stokes equations 2020 Tobias Barker
Christophe Prange
+ PDF Chat About local continuity with respect to $$L_{2}$$ initial data for energy solutions of the Navier–Stokes equations 2020 Tobias Barker
+ PDF Chat Localised necessary conditions for singularity formation in the Navier-Stokes equations with curved boundary 2020 Dallas Albritton
Tobias Barker
+ PDF Chat Localized smoothing for the Navier-Stokes equations and concentration of critical norms near singularities 2020 Tobias Barker
Christophe Prange
+ PDF Chat Localized Smoothing for the Navier–Stokes Equations and Concentration of Critical Norms Near Singularities 2020 Tobias Barker
Christophe Prange
+ Mild criticality breaking for the Navier-Stokes equations 2020 Tobias Barker
Christophe Prange
+ PDF Chat Scale-Invariant Estimates and Vorticity Alignment for Navier–Stokes in the Half-Space with No-Slip Boundary Conditions 2019 Tobias Barker
Christophe Prange
+ PDF Chat On Local Type I Singularities of the Navier–Stokes Equations and Liouville Theorems 2019 Dallas Albritton
Tobias Barker
+ Local Hadamard well-posedness results for the Navier-Stokes equations 2019 Tobias Barker
+ Localised necessary conditions for singularity formation in the Navier-Stokes equations with curved boundary 2018 Dallas Albritton
Tobias Barker
+ PDF Chat Global Weak Besov Solutions of the Navier–Stokes Equations and Applications 2018 Dallas Albritton
Tobias Barker
+ PDF Chat On stability of weak Navier–Stokes solutions with large<i>L</i><sup>3,∞</sup>initial data 2018 Tobias Barker
G. Serëgin
Vladimír Šverák
+ Localised necessary conditions for singularity formation in the Navier-Stokes equations with curved boundary 2018 Dallas Albritton
Tobias Barker
+ PDF Chat Local Boundary Regularity for the Navier–Stokes Equations in Non-Endpoint Borderline Lorentz Spaces 2017 Tobias Barker
+ PDF Chat Uniqueness Results for Weak Leray–Hopf Solutions of the Navier–Stokes System with Initial Values in Critical Spaces 2017 Tobias Barker
+ Existence and Weak* Stability for the Navier-Stokes System with Initial Values in Critical Besov Spaces 2017 Tobias Barker
+ Uniqueness results for viscous incompressible fluids 2017 Tobias Barker
+ PDF Chat A necessary condition of potential blowup for the Navier–Stokes system in half-space 2016 Tobias Barker
G. Serëgin
+ On global solutions to the Navier-Stokes system with large $L^{3,\infty}$ initial data 2016 Tobias Barker
G. Serëgin
+ PDF Chat Ancient Solutions to Navier–Stokes Equations in Half Space 2015 Tobias Barker
G. Serëgin
+ A necessary condition of possible blowup for the Navier-Stokes system in half-space 2015 Tobias Barker
G. Serëgin
+ Local boundary regularity for the Navier-Stokes equations in nonendpoint borderline Lorentz spaces 2015 Tobias Barker
+ On blowup of nonendpoint borderline Lorentz norms for the Navier-Stokes equations 2015 Tobias Barker
G. Serëgin
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Partial regularity of suitable weak solutions of the navier‐stokes equations 1982 Luis Caffarelli
Robert V. Kohn
Louis Nirenberg
22
+ PDF Chat A Certain Necessary Condition of Potential Blow up for Navier-Stokes Equations 2011 G. Serëgin
21
+ PDF Chat Global Weak Besov Solutions of the Navier–Stokes Equations and Applications 2018 Dallas Albritton
Tobias Barker
13
+ PDF Chat Minimal $L^3$-Initial Data for Potential Navier--Stokes Singularities 2013 Hao Jia
Vladimír Šverák
12
+ Lecture Notes on Regularity Theory for the Navier-Stokes Equations 2014 G. Serëgin
12
+ Existence of weak solutions for the Navier-Stokes equations with initial data in LP. Addendum 1990 Calixto P. Calderón
12
+ PDF Chat Blow-up criteria for the Navier–Stokes equations in non-endpoint critical Besov spaces 2018 Dallas Albritton
11
+ Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system 1986 Yoshikazu Giga
11
+ Minimal initial data for potential Navier–Stokes singularities 2010 Walter Rusin
Vladimír Šverák
11
+ A new proof of the Caffarelli-Kohn-Nirenberg theorem 1998 Fanghua Lin
10
+ PDF Chat Uniqueness Results for Weak Leray–Hopf Solutions of the Navier–Stokes System with Initial Values in Critical Spaces 2017 Tobias Barker
10
+ Local Regularity of Suitable Weak Solutions to the Navier--Stokes Equations Near the Boundary 2002 G. Serëgin
9
+ PDF Chat Localized Smoothing for the Navier–Stokes Equations and Concentration of Critical Norms Near Singularities 2020 Tobias Barker
Christophe Prange
9
+ Well-posedness for the Navier–Stokes Equations 2001 Herbert Koch
Daniel Tataru
9
+ PDF Chat Are the incompressible 3d Navier–Stokes equations locally ill-posed in the natural energy space? 2015 Hao Jia
Vladimír Šverák
9
+ On Partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier—Stokes equations 1999 O. A. Ladyzhenskaya
G. Serëgin
9
+ PDF Chat A necessary condition of potential blowup for the Navier–Stokes system in half-space 2016 Tobias Barker
G. Serëgin
9
+ PDF Chat Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions 2013 Hao Jia
Vladimír Šverák
9
+ PDF Chat On stability of weak Navier–Stokes solutions with large<i>L</i><sup>3,∞</sup>initial data 2018 Tobias Barker
G. Serëgin
Vladimír Šverák
8
+ Regularity Criteria for Navier-Stokes Solutions 2018 G. Serëgin
Vladimír Šverák
8
+ Recent developments in the Navier-Stokes problem 2002 Pierre Gilles Lemarié–Rieusset
8
+ StrongL p -solutions of the Navier-Stokes equation inR m , with applications to weak solutions 1984 Tosio Kato
8
+ A note on local boundary regularity for the stokes system 2010 G. Serëgin
8
+ PDF Chat On global weak solutions to the Cauchy problem for the Navier–Stokes equations with large <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>-initial data 2016 G. Serëgin
Vladimír Šverák
8
+ PDF Chat The Navier–Stokes Equations in Nonendpoint Borderline Lorentz Spaces 2015 Nguyen Cong Phuc
8
+ PDF Chat On Leray's self-similar solutions of the Navier-Stokes equations 1996 J. Nečas
Michael Růžička
Vladimír Šverák
8
+ PDF Chat Existence of weak solutions for the Navier-Stokes equations with initial data in 𝐿^{𝑝} 1990 Calixto P. Calderón
8
+ Fourier Analysis and Nonlinear Partial Differential Equations 2011 Hajer Bahouri
Jean-Yves Chemin
Raphaël Danchin
7
+ Convolution operators and L(p,q) spaces 1963 Richard O’Neil
7
+ PDF Chat A generalization of a theorem by Kato on Navier-Stokes equations 1997 Marco Cannone
7
+ Blow-up of Critical Besov Norms at a Potential Navier–Stokes Singularity 2016 Isabelle Gallagher
Gabriel S. Koch
Fabrice Planchon
7
+ PDF Chat On smoothness of L3,?-solutions to the Navier?Stokes equations up to boundary 2005 G. Serëgin
7
+ PDF Chat On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier–Stokes Equations 2009 G. Serëgin
Vladimír Šverák
7
+ PDF Chat A Liouville Theorem for the Planer Navier-Stokes Equations with the No-Slip Boundary Condition and Its Application to a Geometric Regularity Criterion 2014 Yoshikazu Giga
Pen-Yuan Hsu
Yasunori Maekawa
6
+ <i>L</i><sub>3,∞</sub>-solutions of the Navier-Stokes equations and backward uniqueness 2003 Luis Escauriaza
G. Serëgin
Vladimír Šverák
6
+ Existence of Weak Solutions for the Navier-Stokes Equations with Initial Data in L p 1990 Calixto P. Calderón
6
+ Estimates for the Navier–Stokes equations in the half-space for nonlocalized data 2020 Yasunori Maekawa
Hideyuki Miura
Christophe Prange
6
+ PDF Chat Numerical Investigations of Non-uniqueness for the Navier–Stokes Initial Value Problem in Borderline Spaces 2023 Julien Guillod
Vladimír Šverák
6
+ PDF Chat Dynamical behavior for the solutions of the Navier-Stokes equation 2018 Kuijie Li
Tohru Ozawa
Baoxiang Wang
6
+ PDF Chat On Local Type I Singularities of the Navier–Stokes Equations and Liouville Theorems 2019 Dallas Albritton
Tobias Barker
6
+ Uniqueness for some Leray–Hopf solutions to the Navier–Stokes equations 2003 Sandrine Dubois
6
+ PDF Chat On Leray's Self-Similar Solutions of the Navier-Stokes Equations Satisfying Local Energy Estimates 1998 Tai‐Peng Tsai
6
+ PDF Chat Generalised Gagliardo–Nirenberg Inequalities Using Weak Lebesgue Spaces and BMO 2013 David S. McCormick
James C. Robinson
José L. Rodrigo
6
+ On the interior regularity of weak solutions of the Navier-Stokes equations 1962 James Serrin
6
+ Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality 2007 Norio Kikuchi
G. Serëgin
6
+ Interior regularity criteria in weak spaces for the Navier-Stokes equations 2004 Hyunseok Kim
Hideo Kozono
6
+ PDF Chat Liouville theorems for the Navier–Stokes equations and applications 2009 Gabriel S. Koch
Nikolaï Nadirashvili
G. Serëgin
Vladimír Šverák
6
+ PDF Chat Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in ℝ3 1996 Fabrice Planchon
6
+ THE NAVIER-STOKES EQUATIONS WITH INITIAL VALUES IN BESOV SPACES OF TYPE B -1+3/q q, ∞ 2017 Reinhard Farwig
Yoshikazu Giga
Pen-Yuan Hsu
5
+ PDF Chat Asymptotics and stability for global solutions to the Navier-Stokes equations 2003 Isabelle Gallagher
Dragoş Iftimie
Fabrice Planchon
5