Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
Tobias Barker
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Critical norm blow-up rates for the energy supercritical nonlinear heat equation
2024
Tobias Barker
Hideyuki Miura
Jin Takahashi
+
Higher integrability and the number of singular points for the Navier–Stokes equations with a scale-invariant bound
2024
Tobias Barker
+
On Symmetry Breaking for the Navier–Stokes Equations
2024
Tobias Barker
Christophe Prange
Jin Tan
+
From Concentration to Quantitative Regularity: A Short Survey of Recent Developments for the Navier–Stokes Equations
2023
Tobias Barker
Christophe Prange
+
PDF
Chat
Localized Quantitative Estimates and Potential Blow-Up Rates for the Navier–Stokes Equations
2023
Tobias Barker
+
PDF
Chat
Blow-up of dynamically restricted critical norms near a potential Navier–Stokes singularity
2023
Tobias Barker
Pedro Gabriel Fernández-Dalgo
Christophe Prange
+
PDF
Chat
Epsilon Regularity for the Navier–Stokes Equations via Weak-Strong Uniqueness
2023
Dallas Albritton
Tobias Barker
Christophe Prange
+
Estimates of the singular set for the Navier-Stokes equations with supercritical assumptions on the pressure
2023
Tobias Barker
Wendong Wang
+
On symmetry breaking for the Navier-Stokes equations
2023
Tobias Barker
Christophe Prange
Jin Tan
+
Blow-up of dynamically restricted critical norms near a potential Navier-Stokes singularity
2023
Tobias Barker
Pedro Gabriel Fernández-Dalgo
Christophe Prange
+
PDF
Chat
Localized smoothing and concentration for the Navier-Stokes equations in the half space
2022
Dallas Albritton
Tobias Barker
Christophe Prange
+
Localized quantitative estimates and potential blow-up rates for the Navier-Stokes equations
2022
Tobias Barker
+
Epsilon regularity for the Navier-Stokes equations via weak-strong uniqueness
2022
Dallas Albritton
Tobias Barker
Christophe Prange
+
From concentration to quantitative regularity: a short survey of recent developments for the Navier-Stokes equations
2022
Tobias Barker
Christophe Prange
+
Estimates of the singular set for the Navier-Stokes equations with assumptions on the pressure
2021
Tobias Barker
+
PDF
Chat
Higher integrability and the number of singular points for the Navier-Stokes equations with a scale-invariant bound
2021
Tobias Barker
+
PDF
Chat
Quantitative Regularity for the Navier–Stokes Equations Via Spatial Concentration
2021
Tobias Barker
Christophe Prange
+
PDF
Chat
Mild Criticality Breaking for the Navier–Stokes Equations
2021
Tobias Barker
Christophe Prange
+
Estimates of the singular set for the Navier-Stokes equations with supercritical assumptions on the pressure
2021
Tobias Barker
Wendong Wang
+
Localized smoothing and concentration for the Navier-Stokes equations in the half space
2021
Dallas Albritton
Tobias Barker
Christophe Prange
+
Higher integrability and the number of singular points for the Navier-Stokes equations with a scale-invariant bound
2021
Tobias Barker
+
Mild criticality breaking for the Navier-Stokes equations
2020
Tobias Barker
Christophe Prange
+
PDF
Chat
About local continuity with respect to $$L_{2}$$ initial data for energy solutions of the Navier–Stokes equations
2020
Tobias Barker
+
PDF
Chat
Localised necessary conditions for singularity formation in the Navier-Stokes equations with curved boundary
2020
Dallas Albritton
Tobias Barker
+
PDF
Chat
Localized smoothing for the Navier-Stokes equations and concentration of critical norms near singularities
2020
Tobias Barker
Christophe Prange
+
PDF
Chat
Localized Smoothing for the Navier–Stokes Equations and Concentration of Critical Norms Near Singularities
2020
Tobias Barker
Christophe Prange
+
Mild criticality breaking for the Navier-Stokes equations
2020
Tobias Barker
Christophe Prange
+
PDF
Chat
Scale-Invariant Estimates and Vorticity Alignment for Navier–Stokes in the Half-Space with No-Slip Boundary Conditions
2019
Tobias Barker
Christophe Prange
+
PDF
Chat
On Local Type I Singularities of the Navier–Stokes Equations and Liouville Theorems
2019
Dallas Albritton
Tobias Barker
+
Local Hadamard well-posedness results for the Navier-Stokes equations
2019
Tobias Barker
+
Localised necessary conditions for singularity formation in the Navier-Stokes equations with curved boundary
2018
Dallas Albritton
Tobias Barker
+
PDF
Chat
Global Weak Besov Solutions of the Navier–Stokes Equations and Applications
2018
Dallas Albritton
Tobias Barker
+
PDF
Chat
On stability of weak Navier–Stokes solutions with large<i>L</i><sup>3,∞</sup>initial data
2018
Tobias Barker
G. Serëgin
Vladimír Šverák
+
Localised necessary conditions for singularity formation in the Navier-Stokes equations with curved boundary
2018
Dallas Albritton
Tobias Barker
+
PDF
Chat
Local Boundary Regularity for the Navier–Stokes Equations in Non-Endpoint Borderline Lorentz Spaces
2017
Tobias Barker
+
PDF
Chat
Uniqueness Results for Weak Leray–Hopf Solutions of the Navier–Stokes System with Initial Values in Critical Spaces
2017
Tobias Barker
+
Existence and Weak* Stability for the Navier-Stokes System with Initial Values in Critical Besov Spaces
2017
Tobias Barker
+
Uniqueness results for viscous incompressible fluids
2017
Tobias Barker
+
PDF
Chat
A necessary condition of potential blowup for the Navier–Stokes system in half-space
2016
Tobias Barker
G. Serëgin
+
On global solutions to the Navier-Stokes system with large $L^{3,\infty}$ initial data
2016
Tobias Barker
G. Serëgin
+
PDF
Chat
Ancient Solutions to Navier–Stokes Equations in Half Space
2015
Tobias Barker
G. Serëgin
+
A necessary condition of possible blowup for the Navier-Stokes system in half-space
2015
Tobias Barker
G. Serëgin
+
Local boundary regularity for the Navier-Stokes equations in nonendpoint borderline Lorentz spaces
2015
Tobias Barker
+
On blowup of nonendpoint borderline Lorentz norms for the Navier-Stokes equations
2015
Tobias Barker
G. Serëgin
Common Coauthors
Coauthor
Papers Together
Christophe Prange
17
Dallas Albritton
9
G. Serëgin
6
Pedro Gabriel Fernández-Dalgo
2
Wendong Wang
2
Jin Tan
2
Jin Takahashi
1
Vladimír Šverák
1
Hideyuki Miura
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Partial regularity of suitable weak solutions of the navier‐stokes equations
1982
Luis Caffarelli
Robert V. Kohn
Louis Nirenberg
22
+
PDF
Chat
A Certain Necessary Condition of Potential Blow up for Navier-Stokes Equations
2011
G. Serëgin
21
+
PDF
Chat
Global Weak Besov Solutions of the Navier–Stokes Equations and Applications
2018
Dallas Albritton
Tobias Barker
13
+
PDF
Chat
Minimal $L^3$-Initial Data for Potential Navier--Stokes Singularities
2013
Hao Jia
Vladimír Šverák
12
+
Lecture Notes on Regularity Theory for the Navier-Stokes Equations
2014
G. Serëgin
12
+
Existence of weak solutions for the Navier-Stokes equations with initial data in LP. Addendum
1990
Calixto P. Calderón
12
+
PDF
Chat
Blow-up criteria for the Navier–Stokes equations in non-endpoint critical Besov spaces
2018
Dallas Albritton
11
+
Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system
1986
Yoshikazu Giga
11
+
Minimal initial data for potential Navier–Stokes singularities
2010
Walter Rusin
Vladimír Šverák
11
+
A new proof of the Caffarelli-Kohn-Nirenberg theorem
1998
Fanghua Lin
10
+
PDF
Chat
Uniqueness Results for Weak Leray–Hopf Solutions of the Navier–Stokes System with Initial Values in Critical Spaces
2017
Tobias Barker
10
+
Local Regularity of Suitable Weak Solutions to the Navier--Stokes Equations Near the Boundary
2002
G. Serëgin
9
+
PDF
Chat
Localized Smoothing for the Navier–Stokes Equations and Concentration of Critical Norms Near Singularities
2020
Tobias Barker
Christophe Prange
9
+
Well-posedness for the Navier–Stokes Equations
2001
Herbert Koch
Daniel Tataru
9
+
PDF
Chat
Are the incompressible 3d Navier–Stokes equations locally ill-posed in the natural energy space?
2015
Hao Jia
Vladimír Šverák
9
+
On Partial Regularity of Suitable Weak Solutions to the Three-Dimensional NavierStokes equations
1999
O. A. Ladyzhenskaya
G. Serëgin
9
+
PDF
Chat
A necessary condition of potential blowup for the Navier–Stokes system in half-space
2016
Tobias Barker
G. Serëgin
9
+
PDF
Chat
Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions
2013
Hao Jia
Vladimír Šverák
9
+
PDF
Chat
On stability of weak Navier–Stokes solutions with large<i>L</i><sup>3,∞</sup>initial data
2018
Tobias Barker
G. Serëgin
Vladimír Šverák
8
+
Regularity Criteria for Navier-Stokes Solutions
2018
G. Serëgin
Vladimír Šverák
8
+
Recent developments in the Navier-Stokes problem
2002
Pierre Gilles Lemarié–Rieusset
8
+
StrongL p -solutions of the Navier-Stokes equation inR m , with applications to weak solutions
1984
Tosio Kato
8
+
A note on local boundary regularity for the stokes system
2010
G. Serëgin
8
+
PDF
Chat
On global weak solutions to the Cauchy problem for the Navier–Stokes equations with large <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>-initial data
2016
G. Serëgin
Vladimír Šverák
8
+
PDF
Chat
The Navier–Stokes Equations in Nonendpoint Borderline Lorentz Spaces
2015
Nguyen Cong Phuc
8
+
PDF
Chat
On Leray's self-similar solutions of the Navier-Stokes equations
1996
J. Nečas
Michael Růžička
Vladimír Šverák
8
+
PDF
Chat
Existence of weak solutions for the Navier-Stokes equations with initial data in 𝐿^{𝑝}
1990
Calixto P. Calderón
8
+
Fourier Analysis and Nonlinear Partial Differential Equations
2011
Hajer Bahouri
Jean-Yves Chemin
Raphaël Danchin
7
+
Convolution operators and L(p,q) spaces
1963
Richard O’Neil
7
+
PDF
Chat
A generalization of a theorem by Kato on Navier-Stokes equations
1997
Marco Cannone
7
+
Blow-up of Critical Besov Norms at a Potential Navier–Stokes Singularity
2016
Isabelle Gallagher
Gabriel S. Koch
Fabrice Planchon
7
+
PDF
Chat
On smoothness of L3,?-solutions to the Navier?Stokes equations up to boundary
2005
G. Serëgin
7
+
PDF
Chat
On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier–Stokes Equations
2009
G. Serëgin
Vladimír Šverák
7
+
PDF
Chat
A Liouville Theorem for the Planer Navier-Stokes Equations with the No-Slip Boundary Condition and Its Application to a Geometric Regularity Criterion
2014
Yoshikazu Giga
Pen-Yuan Hsu
Yasunori Maekawa
6
+
<i>L</i><sub>3,∞</sub>-solutions of the Navier-Stokes equations and backward uniqueness
2003
Luis Escauriaza
G. Serëgin
Vladimír Šverák
6
+
Existence of Weak Solutions for the Navier-Stokes Equations with Initial Data in L p
1990
Calixto P. Calderón
6
+
Estimates for the Navier–Stokes equations in the half-space for nonlocalized data
2020
Yasunori Maekawa
Hideyuki Miura
Christophe Prange
6
+
PDF
Chat
Numerical Investigations of Non-uniqueness for the Navier–Stokes Initial Value Problem in Borderline Spaces
2023
Julien Guillod
Vladimír Šverák
6
+
PDF
Chat
Dynamical behavior for the solutions of the Navier-Stokes equation
2018
Kuijie Li
Tohru Ozawa
Baoxiang Wang
6
+
PDF
Chat
On Local Type I Singularities of the Navier–Stokes Equations and Liouville Theorems
2019
Dallas Albritton
Tobias Barker
6
+
Uniqueness for some Leray–Hopf solutions to the Navier–Stokes equations
2003
Sandrine Dubois
6
+
PDF
Chat
On Leray's Self-Similar Solutions of the Navier-Stokes Equations Satisfying Local Energy Estimates
1998
Tai‐Peng Tsai
6
+
PDF
Chat
Generalised Gagliardo–Nirenberg Inequalities Using Weak Lebesgue Spaces and BMO
2013
David S. McCormick
James C. Robinson
José L. Rodrigo
6
+
On the interior regularity of weak solutions of the Navier-Stokes equations
1962
James Serrin
6
+
Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality
2007
Norio Kikuchi
G. Serëgin
6
+
Interior regularity criteria in weak spaces for the Navier-Stokes equations
2004
Hyunseok Kim
Hideo Kozono
6
+
PDF
Chat
Liouville theorems for the Navier–Stokes equations and applications
2009
Gabriel S. Koch
Nikolaï Nadirashvili
G. Serëgin
Vladimír Šverák
6
+
PDF
Chat
Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in ℝ3
1996
Fabrice Planchon
6
+
THE NAVIER-STOKES EQUATIONS WITH INITIAL VALUES IN BESOV SPACES OF TYPE B -1+3/q q, ∞
2017
Reinhard Farwig
Yoshikazu Giga
Pen-Yuan Hsu
5
+
PDF
Chat
Asymptotics and stability for global solutions to the Navier-Stokes equations
2003
Isabelle Gallagher
Dragoş Iftimie
Fabrice Planchon
5