G. M. Sofi

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Research Problems in Function Theory 1967 W. K. Hayman
5
+ Analytic Theory of Polynomials 2002 Q I Rahman
Gerhard SchmeiĂźer
4
+ On the Sendov Conjecture for Polynomials with at Most Six Distinct Roots 1996 Iulius Borcea
4
+ On a conjecture of Sendov about the critical points of a polynomial 1985 Borislav Bojanov
Q. I. Rahman
Jan Szynal
4
+ Proof of The Sendov Conjecture for Polynomials of Degree at Most Eight 1999 Johnny E. Brown
Guangping Xiang
4
+ PDF Chat Maximal polynomials and the Ilieff-Sendov conjecture 1990 Michael J. Miller
3
+ Zur Lage der kritischen Punkte eines Polynoms 1971 Gerhard SchmeiĂźer
2
+ PDF Chat Sendov’s Conjecture: A Note on a Paper of Dégot 2020 Taboka Chalebgwa
2
+ Some Classes of Polynomials Satisfying Sendov’s Conjecture 2020 G. M. Sofi
Shabir Ahmad Ahanger
Robert B. Gardner
2
+ PDF Chat On a problem of Ilyeff 1968 Zalman Rubinstein
2
+ Sendov conjecture for high degree polynomials 2014 JĂ©rĂ´me DĂ©got
2
+ On Sendov’s Conjecture 2021 G. M. Sofi
Wali Mohammad Shah
1
+ PDF Chat Inequalities for polynomials with a prescribed zero 1972 John Donaldson
Q. I. Rahman
1
+ PDF Chat Sendov’s conjecture for sufficiently-high-degree polynomials 2022 Terence Tao
1
+ PDF Chat Maximal Polynomials and the Ilieff-Sendov Conjecture 1990 Michael J. Miller
1
+ PDF Chat Unexpected local extrema for the Sendov conjecture 2008 Michael J. Miller
1
+ PDF Chat On the zeros of a polynomial and its derivative 1985 Abdul Aziz
1
+ Hausdorff geometry of polynomials 2001 Bl. Sendov
1
+ Remarque sur un théorème relatif aux racines de l'équation {a_n}{x^n} + {an - 1}{xn - 1} + … + {a_1}x + {a_0} = 0 où tous les coefficientes a sont réels et positifs 1920 Gustaf Eneström
1
+ A Remark on Sendov Conjectur 2018 Prasanna Kumar
1