Author Description

Login to generate an author description

Ask a Question About This Mathematician

Fine-grained image classification is a challenging computer vision task where various species share similar visual appearances, resulting in misclassification if merely based on visual clues. Therefore, it is helpful to … Fine-grained image classification is a challenging computer vision task where various species share similar visual appearances, resulting in misclassification if merely based on visual clues. Therefore, it is helpful to leverage additional information, e.g., the locations and dates for data shooting, which can be easily accessible but rarely exploited. In this paper, we first demonstrate that existing multimodal methods fuse multiple features only on a single dimension, which essentially has insufficient help in feature discrimination. To fully explore the potential of multimodal information, we propose a dynamic MLP on top of the image representation, which interacts with multimodal features at a higher and broader dimension. The dynamic MLP is an efficient structure parameterized by the learned embeddings of variable locations and dates. It can be regarded as an adaptive nonlinear projection for generating more discriminative image representations in visual tasks. To our best knowledge, it is the first attempt to explore the idea of dynamic networks to exploit multimodal information in fine-grained image classification tasks. Extensive experiments demonstrate the effectiveness of our method. The t-SNE algorithm visually indicates that our technique improves the recognizability of image representations that are visually similar but with different categories. Furthermore, among published works across multiple fine-grained datasets, dynamic MLP consistently achieves SOTA results <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> https://paperswithcode.com/dataset/inaturalist and takes third place in the iNaturalist challenge at FGVC8 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> https://www.kaggle.com/c/inaturalist-2021/leaderboard. Code is available at httpsr//glthub.com/megvii-research/DynamicMLPForFinegrained.
We interact with the world with our hands and see it through our own (egocentric) perspective. A holistic 3D understanding of such interactions from egocentric views is important for tasks … We interact with the world with our hands and see it through our own (egocentric) perspective. A holistic 3D understanding of such interactions from egocentric views is important for tasks in robotics, AR/VR, action recognition and motion generation. Accurately reconstructing such interactions in 3D is challenging due to heavy occlusion, viewpoint bias, camera distortion, and motion blur from the head movement. To this end, we designed the HANDS23 challenge based on the AssemblyHands and ARCTIC datasets with carefully designed training and testing splits. Based on the results of the top submitted methods and more recent baselines on the leaderboards, we perform a thorough analysis on 3D hand(-object) reconstruction tasks. Our analysis demonstrates the effectiveness of addressing distortion specific to egocentric cameras, adopting high-capacity transformers to learn complex hand-object interactions, and fusing predictions from different views. Our study further reveals challenging scenarios intractable with state-of-the-art methods, such as fast hand motion, object reconstruction from narrow egocentric views, and close contact between two hands and objects. Our efforts will enrich the community's knowledge foundation and facilitate future hand studies on egocentric hand-object interactions.
Fine-grained image classification is a challenging computer vision task where various species share similar visual appearances, resulting in misclassification if merely based on visual clues. Therefore, it is helpful to … Fine-grained image classification is a challenging computer vision task where various species share similar visual appearances, resulting in misclassification if merely based on visual clues. Therefore, it is helpful to leverage additional information, e.g., the locations and dates for data shooting, which can be easily accessible but rarely exploited. In this paper, we first demonstrate that existing multimodal methods fuse multiple features only on a single dimension, which essentially has insufficient help in feature discrimination. To fully explore the potential of multimodal information, we propose a dynamic MLP on top of the image representation, which interacts with multimodal features at a higher and broader dimension. The dynamic MLP is an efficient structure parameterized by the learned embeddings of variable locations and dates. It can be regarded as an adaptive nonlinear projection for generating more discriminative image representations in visual tasks. To our best knowledge, it is the first attempt to explore the idea of dynamic networks to exploit multimodal information in fine-grained image classification tasks. Extensive experiments demonstrate the effectiveness of our method. The t-SNE algorithm visually indicates that our technique improves the recognizability of image representations that are visually similar but with different categories. Furthermore, among published works across multiple fine-grained datasets, dynamic MLP consistently achieves SOTA results https://paperswithcode.com/dataset/inaturalist and takes third place in the iNaturalist challenge at FGVC8 https://www.kaggle.com/c/inaturalist-2021/leaderboard. Code is available at https://github.com/ylingfeng/DynamicMLP.git
This report introduce our work on Egocentric 3D Hand Pose Estimation workshop. Using AssemblyHands, this challenge focuses on egocentric 3D hand pose estimation from a single-view image. In the competition, … This report introduce our work on Egocentric 3D Hand Pose Estimation workshop. Using AssemblyHands, this challenge focuses on egocentric 3D hand pose estimation from a single-view image. In the competition, we adopt ViT based backbones and a simple regressor for 3D keypoints prediction, which provides strong model baselines. We noticed that Hand-objects occlusions and self-occlusions lead to performance degradation, thus proposed a non-model method to merge multi-view results in the post-process stage. Moreover, We utilized test time augmentation and model ensemble to make further improvement. We also found that public dataset and rational preprocess are beneficial. Our method achieved 12.21mm MPJPE on test dataset, achieve the first place in Egocentric 3D Hand Pose Estimation challenge.
Transformer-based approaches have achieved superior performance in image restoration, since they can model long-term dependencies well. However, the limitation in capturing local information restricts their capacity to remove degradations. While … Transformer-based approaches have achieved superior performance in image restoration, since they can model long-term dependencies well. However, the limitation in capturing local information restricts their capacity to remove degradations. While existing approaches attempt to mitigate this issue by incorporating convolutional operations, the core component in Transformer, i.e., self-attention, which serves as a low-pass filter, could unintentionally dilute or even eliminate the acquired local patterns. In this paper, we propose HIT, a simple yet effective High-frequency Injected Transformer for image restoration. Specifically, we design a window-wise injection module (WIM), which incorporates abundant high-frequency details into the feature map, to provide reliable references for restoring high-quality images. We also develop a bidirectional interaction module (BIM) to aggregate features at different scales using a mutually reinforced paradigm, resulting in spatially and contextually improved representations. In addition, we introduce a spatial enhancement unit (SEU) to preserve essential spatial relationships that may be lost due to the computations carried out across channel dimensions in the BIM. Extensive experiments on 9 tasks (real noise, real rain streak, raindrop, motion blur, moir\'e, shadow, snow, haze, and low-light condition) demonstrate that HIT with linear computational complexity performs favorably against the state-of-the-art methods. The source code and pre-trained models will be available at https://github.com/joshyZhou/HIT.
How to explore useful features from images as prompts to guide the deep image restoration models is an effective way to solve image restoration. In contrast to mining spatial relations … How to explore useful features from images as prompts to guide the deep image restoration models is an effective way to solve image restoration. In contrast to mining spatial relations within images as prompt, which leads to characteristics of different frequencies being neglected and further remaining subtle or undetectable artifacts in the restored image, we develop a Frequency Prompting image restoration method, dubbed FPro, which can effectively provide prompt components from a frequency perspective to guild the restoration model address these differences. Specifically, we first decompose input features into separate frequency parts via dynamically learned filters, where we introduce a gating mechanism for suppressing the less informative elements within the kernels. To propagate useful frequency information as prompt, we then propose a dual prompt block, consisting of a low-frequency prompt modulator (LPM) and a high-frequency prompt modulator (HPM), to handle signals from different bands respectively. Each modulator contains a generation process to incorporate prompting components into the extracted frequency maps, and a modulation part that modifies the prompt feature with the guidance of the decoder features. Experimental results on commonly used benchmarks have demonstrated the favorable performance of our pipeline against SOTA methods on 5 image restoration tasks, including deraining, deraindrop, demoir\'eing, deblurring, and dehazing. The source code and pre-trained models will be available at https://github.com/joshyZhou/FPro.
Exploring motion information is important for the motion deblurring task. Recent the window-based transformer approaches have achieved decent performance in image deblurring. Note that the motion causing blurry results is … Exploring motion information is important for the motion deblurring task. Recent the window-based transformer approaches have achieved decent performance in image deblurring. Note that the motion causing blurry results is usually composed of translation and rotation movements and the window-shift operation in the Cartesian coordinate system by the window-based transformer approaches only directly explores translation motion in orthogonal directions. Thus, these methods have the limitation of modeling the rotation part. To alleviate this problem, we introduce the polar coordinate-based transformer, which has the angles and distance to explore rotation motion and translation information together. In this paper, we propose a Radial Strip Transformer (RST), which is a transformer-based architecture that restores the blur images in a polar coordinate system instead of a Cartesian one. RST contains a dynamic radial embedding module (DRE) to extract the shallow feature by a radial deformable convolution. We design a polar mask layer to generate the offsets for the deformable convolution, which can reshape the convolution kernel along the radius to better capture the rotation motion information. Furthermore, we proposed a radial strip attention solver (RSAS) as deep feature extraction, where the relationship of windows is organized by azimuth and radius. This attention module contains radial strip windows to reweight image features in the polar coordinate, which preserves more useful information in rotation and translation motion together for better recovering the sharp images. Experimental results on six synthesis and real-world datasets prove that our method performs favorably against other SOTA methods for the image deblurring task.
Transformer-based approaches have achieved superior performance in image restoration, since they can model long-term dependencies well. However, the limitation in capturing local information restricts their capacity to remove degradations. While … Transformer-based approaches have achieved superior performance in image restoration, since they can model long-term dependencies well. However, the limitation in capturing local information restricts their capacity to remove degradations. While existing approaches attempt to mitigate this issue by incorporating convolutional operations, the core component in Transformer, i.e., self-attention, which serves as a low-pass filter, could unintentionally dilute or even eliminate the acquired local patterns. In this paper, we propose HIT, a simple yet effective High-frequency Injected Transformer for image restoration. Specifically, we design a window-wise injection module (WIM), which incorporates abundant high-frequency details into the feature map, to provide reliable references for restoring high-quality images. We also develop a bidirectional interaction module (BIM) to aggregate features at different scales using a mutually reinforced paradigm, resulting in spatially and contextually improved representations. In addition, we introduce a spatial enhancement unit (SEU) to preserve essential spatial relationships that may be lost due to the computations carried out across channel dimensions in the BIM. Extensive experiments on 9 tasks (real noise, real rain streak, raindrop, motion blur, moir\'e, shadow, snow, haze, and low-light condition) demonstrate that HIT with linear computational complexity performs favorably against the state-of-the-art methods. The source code and pre-trained models will be available at https://github.com/joshyZhou/HIT.
How to explore useful features from images as prompts to guide the deep image restoration models is an effective way to solve image restoration. In contrast to mining spatial relations … How to explore useful features from images as prompts to guide the deep image restoration models is an effective way to solve image restoration. In contrast to mining spatial relations within images as prompt, which leads to characteristics of different frequencies being neglected and further remaining subtle or undetectable artifacts in the restored image, we develop a Frequency Prompting image restoration method, dubbed FPro, which can effectively provide prompt components from a frequency perspective to guild the restoration model address these differences. Specifically, we first decompose input features into separate frequency parts via dynamically learned filters, where we introduce a gating mechanism for suppressing the less informative elements within the kernels. To propagate useful frequency information as prompt, we then propose a dual prompt block, consisting of a low-frequency prompt modulator (LPM) and a high-frequency prompt modulator (HPM), to handle signals from different bands respectively. Each modulator contains a generation process to incorporate prompting components into the extracted frequency maps, and a modulation part that modifies the prompt feature with the guidance of the decoder features. Experimental results on commonly used benchmarks have demonstrated the favorable performance of our pipeline against SOTA methods on 5 image restoration tasks, including deraining, deraindrop, demoir\'eing, deblurring, and dehazing. The source code and pre-trained models will be available at https://github.com/joshyZhou/FPro.
Exploring motion information is important for the motion deblurring task. Recent the window-based transformer approaches have achieved decent performance in image deblurring. Note that the motion causing blurry results is … Exploring motion information is important for the motion deblurring task. Recent the window-based transformer approaches have achieved decent performance in image deblurring. Note that the motion causing blurry results is usually composed of translation and rotation movements and the window-shift operation in the Cartesian coordinate system by the window-based transformer approaches only directly explores translation motion in orthogonal directions. Thus, these methods have the limitation of modeling the rotation part. To alleviate this problem, we introduce the polar coordinate-based transformer, which has the angles and distance to explore rotation motion and translation information together. In this paper, we propose a Radial Strip Transformer (RST), which is a transformer-based architecture that restores the blur images in a polar coordinate system instead of a Cartesian one. RST contains a dynamic radial embedding module (DRE) to extract the shallow feature by a radial deformable convolution. We design a polar mask layer to generate the offsets for the deformable convolution, which can reshape the convolution kernel along the radius to better capture the rotation motion information. Furthermore, we proposed a radial strip attention solver (RSAS) as deep feature extraction, where the relationship of windows is organized by azimuth and radius. This attention module contains radial strip windows to reweight image features in the polar coordinate, which preserves more useful information in rotation and translation motion together for better recovering the sharp images. Experimental results on six synthesis and real-world datasets prove that our method performs favorably against other SOTA methods for the image deblurring task.
We interact with the world with our hands and see it through our own (egocentric) perspective. A holistic 3D understanding of such interactions from egocentric views is important for tasks … We interact with the world with our hands and see it through our own (egocentric) perspective. A holistic 3D understanding of such interactions from egocentric views is important for tasks in robotics, AR/VR, action recognition and motion generation. Accurately reconstructing such interactions in 3D is challenging due to heavy occlusion, viewpoint bias, camera distortion, and motion blur from the head movement. To this end, we designed the HANDS23 challenge based on the AssemblyHands and ARCTIC datasets with carefully designed training and testing splits. Based on the results of the top submitted methods and more recent baselines on the leaderboards, we perform a thorough analysis on 3D hand(-object) reconstruction tasks. Our analysis demonstrates the effectiveness of addressing distortion specific to egocentric cameras, adopting high-capacity transformers to learn complex hand-object interactions, and fusing predictions from different views. Our study further reveals challenging scenarios intractable with state-of-the-art methods, such as fast hand motion, object reconstruction from narrow egocentric views, and close contact between two hands and objects. Our efforts will enrich the community's knowledge foundation and facilitate future hand studies on egocentric hand-object interactions.
This report introduce our work on Egocentric 3D Hand Pose Estimation workshop. Using AssemblyHands, this challenge focuses on egocentric 3D hand pose estimation from a single-view image. In the competition, … This report introduce our work on Egocentric 3D Hand Pose Estimation workshop. Using AssemblyHands, this challenge focuses on egocentric 3D hand pose estimation from a single-view image. In the competition, we adopt ViT based backbones and a simple regressor for 3D keypoints prediction, which provides strong model baselines. We noticed that Hand-objects occlusions and self-occlusions lead to performance degradation, thus proposed a non-model method to merge multi-view results in the post-process stage. Moreover, We utilized test time augmentation and model ensemble to make further improvement. We also found that public dataset and rational preprocess are beneficial. Our method achieved 12.21mm MPJPE on test dataset, achieve the first place in Egocentric 3D Hand Pose Estimation challenge.
Fine-grained image classification is a challenging computer vision task where various species share similar visual appearances, resulting in misclassification if merely based on visual clues. Therefore, it is helpful to … Fine-grained image classification is a challenging computer vision task where various species share similar visual appearances, resulting in misclassification if merely based on visual clues. Therefore, it is helpful to leverage additional information, e.g., the locations and dates for data shooting, which can be easily accessible but rarely exploited. In this paper, we first demonstrate that existing multimodal methods fuse multiple features only on a single dimension, which essentially has insufficient help in feature discrimination. To fully explore the potential of multimodal information, we propose a dynamic MLP on top of the image representation, which interacts with multimodal features at a higher and broader dimension. The dynamic MLP is an efficient structure parameterized by the learned embeddings of variable locations and dates. It can be regarded as an adaptive nonlinear projection for generating more discriminative image representations in visual tasks. To our best knowledge, it is the first attempt to explore the idea of dynamic networks to exploit multimodal information in fine-grained image classification tasks. Extensive experiments demonstrate the effectiveness of our method. The t-SNE algorithm visually indicates that our technique improves the recognizability of image representations that are visually similar but with different categories. Furthermore, among published works across multiple fine-grained datasets, dynamic MLP consistently achieves SOTA results <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> https://paperswithcode.com/dataset/inaturalist and takes third place in the iNaturalist challenge at FGVC8 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> https://www.kaggle.com/c/inaturalist-2021/leaderboard. Code is available at httpsr//glthub.com/megvii-research/DynamicMLPForFinegrained.
Fine-grained image classification is a challenging computer vision task where various species share similar visual appearances, resulting in misclassification if merely based on visual clues. Therefore, it is helpful to … Fine-grained image classification is a challenging computer vision task where various species share similar visual appearances, resulting in misclassification if merely based on visual clues. Therefore, it is helpful to leverage additional information, e.g., the locations and dates for data shooting, which can be easily accessible but rarely exploited. In this paper, we first demonstrate that existing multimodal methods fuse multiple features only on a single dimension, which essentially has insufficient help in feature discrimination. To fully explore the potential of multimodal information, we propose a dynamic MLP on top of the image representation, which interacts with multimodal features at a higher and broader dimension. The dynamic MLP is an efficient structure parameterized by the learned embeddings of variable locations and dates. It can be regarded as an adaptive nonlinear projection for generating more discriminative image representations in visual tasks. To our best knowledge, it is the first attempt to explore the idea of dynamic networks to exploit multimodal information in fine-grained image classification tasks. Extensive experiments demonstrate the effectiveness of our method. The t-SNE algorithm visually indicates that our technique improves the recognizability of image representations that are visually similar but with different categories. Furthermore, among published works across multiple fine-grained datasets, dynamic MLP consistently achieves SOTA results https://paperswithcode.com/dataset/inaturalist and takes third place in the iNaturalist challenge at FGVC8 https://www.kaggle.com/c/inaturalist-2021/leaderboard. Code is available at https://github.com/ylingfeng/DynamicMLP.git
With the widespread availability of cellphones and cameras that have GPS capabilities, it is common for images being uploaded to the Internet today to have GPS coordinates associated with them. … With the widespread availability of cellphones and cameras that have GPS capabilities, it is common for images being uploaded to the Internet today to have GPS coordinates associated with them. In addition to research that tries to predict GPS coordinates from visual features, this also opens up the door to problems that are conditioned on the availability of GPS coordinates. In this work, we tackle the problem of performing image classification with location context, in which we are given the GPS coordinates for images in both the train and test phases. We explore different ways of encoding and extracting features from the GPS coordinates, and show how to naturally incorporate these features into a Convolutional Neural Network (CNN), the current state-of-the-art for most image classification and recognition problems. We also show how it is possible to simultaneously learn the optimal pooling radii for a subset of our features within the CNN framework. To evaluate our model and to help promote research in this area, we identify a set of location-sensitive concepts and annotate a subset of the Yahoo Flickr Creative Commons 100M dataset that has GPS coordinates with these concepts, which we make publicly available. By leveraging location context, we are able to achieve almost a 7% gain in mean average precision.
Fine-grained classification is challenging because categories can only be discriminated by subtle and local differences. Variances in the pose, scale or rotation usually make the problem more difficult. Most fine-grained … Fine-grained classification is challenging because categories can only be discriminated by subtle and local differences. Variances in the pose, scale or rotation usually make the problem more difficult. Most fine-grained classification systems follow the pipeline of finding foreground object or object parts (where) to extract discriminative features (what). In this paper, we propose to apply visual attention to fine-grained classification task using deep neural network. Our pipeline integrates three types of attention: the bottom-up attention that propose candidate patches, the object-level top-down attention that selects relevant patches to a certain object, and the part-level top-down attention that localizes discriminative parts. We combine these attentions to train domain-specific deep nets, then use it to improve both the what and where aspects. Importantly, we avoid using expensive annotations like bounding box or part information from end-to-end. The weak supervision constraint makes our work easier to generalize. We have verified the effectiveness of the method on the subsets of ILSVRC2012 dataset and CUB200 2011 dataset. Our pipeline delivered significant improvements and achieved the best accuracy under the weakest supervision condition. The performance is competitive against other methods that rely on additional annotations.
MXNet is a multi-language machine learning (ML) library to ease the development of ML algorithms, especially for deep neural networks. Embedded in the host language, it blends declarative symbolic expression … MXNet is a multi-language machine learning (ML) library to ease the development of ML algorithms, especially for deep neural networks. Embedded in the host language, it blends declarative symbolic expression with imperative tensor computation. It offers auto differentiation to derive gradients. MXNet is computation and memory efficient and runs on various heterogeneous systems, ranging from mobile devices to distributed GPU clusters. This paper describes both the API design and the system implementation of MXNet, and explains how embedding of both symbolic expression and tensor operation is handled in a unified fashion. Our preliminary experiments reveal promising results on large scale deep neural network applications using multiple GPU machines.
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly … Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers - 8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
In this work, we revisit the global average pooling layer proposed in [13], and shed light on how it explicitly enables the convolutional neural network (CNN) to have remarkable localization … In this work, we revisit the global average pooling layer proposed in [13], and shed light on how it explicitly enables the convolutional neural network (CNN) to have remarkable localization ability despite being trained on imagelevel labels. While this technique was previously proposed as a means for regularizing training, we find that it actually builds a generic localizable deep representation that exposes the implicit attention of CNNs on an image. Despite the apparent simplicity of global average pooling, we are able to achieve 37.1% top-5 error for object localization on ILSVRC 2014 without training on any bounding box annotation. We demonstrate in a variety of experiments that our network is able to localize the discriminative image regions despite just being trained for solving classification task1.
We present a simple, highly modularized network architecture for image classification. Our network is constructed by repeating a building block that aggregates a set of transformations with the same topology. … We present a simple, highly modularized network architecture for image classification. Our network is constructed by repeating a building block that aggregates a set of transformations with the same topology. Our simple design results in a homogeneous, multi-branch architecture that has only a few hyper-parameters to set. This strategy exposes a new dimension, which we call cardinality (the size of the set of transformations), as an essential factor in addition to the dimensions of depth and width. On the ImageNet-1K dataset, we empirically show that even under the restricted condition of maintaining complexity, increasing cardinality is able to improve classification accuracy. Moreover, increasing cardinality is more effective than going deeper or wider when we increase the capacity. Our models, named ResNeXt, are the foundations of our entry to the ILSVRC 2016 classification task in which we secured 2nd place. We further investigate ResNeXt on an ImageNet-5K set and the COCO detection set, also showing better results than its ResNet counterpart. The code and models are publicly available online.
We introduce a general-purpose conditioning method for neural networks called FiLM: Feature-wise Linear Modulation. FiLM layers influence neural network computation via a simple, feature-wise affine transformation based on conditioning information. … We introduce a general-purpose conditioning method for neural networks called FiLM: Feature-wise Linear Modulation. FiLM layers influence neural network computation via a simple, feature-wise affine transformation based on conditioning information. We show that FiLM layers are highly effective for visual reasoning - answering image-related questions which require a multi-step, high-level process - a task which has proven difficult for standard deep learning methods that do not explicitly model reasoning. Specifically, we show on visual reasoning tasks that FiLM layers 1) halve state-of-the-art error for the CLEVR benchmark, 2) modulate features in a coherent manner, 3) are robust to ablations and architectural modifications, and 4) generalize well to challenging, new data from few examples or even zero-shot.
Existing image classification datasets used in computer vision tend to have a uniform distribution of images across object categories. In contrast, the natural world is heavily imbalanced, as some species … Existing image classification datasets used in computer vision tend to have a uniform distribution of images across object categories. In contrast, the natural world is heavily imbalanced, as some species are more abundant and easier to photograph than others. To encourage further progress in challenging real world conditions we present the iNaturalist species classification and detection dataset, consisting of 859,000 images from over 5,000 different species of plants and animals. It features visually similar species, captured in a wide variety of situations, from all over the world. Images were collected with different camera types, have varying image quality, feature a large class imbalance, and have been verified by multiple citizen scientists. We discuss the collection of the dataset and present extensive baseline experiments using state-of-the-art computer vision classification and detection models. Results show that current non-ensemble based methods achieve only 67% top one classification accuracy, illustrating the difficulty of the dataset. Specifically, we observe poor results for classes with small numbers of training examples suggesting more attention is needed in low-shot learning.
Transferring the knowledge learned from large scale datasets (e.g., ImageNet) via fine-tuning offers an effective solution for domain-specific fine-grained visual categorization (FGVC) tasks (e.g., recognizing bird species or car make … Transferring the knowledge learned from large scale datasets (e.g., ImageNet) via fine-tuning offers an effective solution for domain-specific fine-grained visual categorization (FGVC) tasks (e.g., recognizing bird species or car make & model). In such scenarios, data annotation often calls for specialized domain knowledge and thus is difficult to scale. In this work, we first tackle a problem in large scale FGVC. Our method won first place in iNaturalist 2017 large scale species classification challenge. Central to the success of our approach is a training scheme that uses higher image resolution and deals with the long-tailed distribution of training data. Next, we study transfer learning via fine-tuning from large scale datasets to small scale, domain-specific FGVC datasets. We propose a measure to estimate domain similarity via Earth Mover's Distance and demonstrate that transfer learning benefits from pre-training on a source domain that is similar to the target domain by this measure. Our proposed transfer learning outperforms ImageNet pre-training and obtains state-of-the-art results on multiple commonly used FGVC datasets.
In standard Convolutional Neural Networks (CNNs), the receptive fields of artificial neurons in each layer are designed to share the same size. It is well-known in the neuroscience community that … In standard Convolutional Neural Networks (CNNs), the receptive fields of artificial neurons in each layer are designed to share the same size. It is well-known in the neuroscience community that the receptive field size of visual cortical neurons are modulated by the stimulus, which has been rarely considered in constructing CNNs. We propose a dynamic selection mechanism in CNNs that allows each neuron to adaptively adjust its receptive field size based on multiple scales of input information. A building block called Selective Kernel (SK) unit is designed, in which multiple branches with different kernel sizes are fused using softmax attention that is guided by the information in these branches. Different attentions on these branches yield different sizes of the effective receptive fields of neurons in the fusion layer. Multiple SK units are stacked to a deep network termed Selective Kernel Networks (SKNets). On the ImageNet and CIFAR benchmarks, we empirically show that SKNet outperforms the existing state-of-the-art architectures with lower model complexity. Detailed analyses show that the neurons in SKNet can capture target objects with different scales, which verifies the capability of neurons for adaptively adjusting their receptive field sizes according to the input. The code and models are available at https://github.com/implus/SKNet.
Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent … Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/.
In a traditional convolutional layer, the learned filters stay fixed after training. In contrast, we introduce a new framework, the Dynamic Filter Network, where filters are generated dynamically conditioned on … In a traditional convolutional layer, the learned filters stay fixed after training. In contrast, we introduce a new framework, the Dynamic Filter Network, where filters are generated dynamically conditioned on an input. We show that this architecture is a powerful one, with increased flexibility thanks to its adaptive nature, yet without an excessive increase in the number of model parameters. A wide variety of filtering operations can be learned this way, including local spatial transformations, but also others like selective (de)blurring or adaptive feature extraction. Moreover, multiple such layers can be combined, e.g. in a recurrent architecture. We demonstrate the effectiveness of the dynamic filter network on the tasks of video and stereo prediction, and reach state-of-the-art performance on the moving MNIST dataset with a much smaller model. By visualizing the learned filters, we illustrate that the network has picked up flow information by only looking at unlabelled training data. This suggests that the network can be used to pretrain networks for various supervised tasks in an unsupervised way, like optical flow and depth estimation.
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those … Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections-one between each layer and its subsequent layer-our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions … This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.
Convolutional layers are one of the basic building blocks of modern deep neural networks. One fundamental assumption is that convolutional kernels should be shared for all examples in a dataset. … Convolutional layers are one of the basic building blocks of modern deep neural networks. One fundamental assumption is that convolutional kernels should be shared for all examples in a dataset. We propose conditionally parameterized convolutions (CondConv), which learn specialized convolutional kernels for each example. Replacing normal convolutions with CondConv enables us to increase the size and capacity of a network, while maintaining efficient inference. We demonstrate that scaling networks with CondConv improves the performance and inference cost trade-off of several existing convolutional neural network architectures on both classification and detection tasks. On ImageNet classification, our CondConv approach applied to EfficientNet-B0 achieves state-of-the-art performance of 78.3% accuracy with only 413M multiply-adds. Code and checkpoints for the CondConv Tensorflow layer and CondConv-EfficientNet models are available at: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv.
Bilinear feature transformation has shown the state-of-the-art performance in learning fine-grained image representations. However, the computational cost to learn pairwise interactions between deep feature channels is prohibitively expensive, which restricts … Bilinear feature transformation has shown the state-of-the-art performance in learning fine-grained image representations. However, the computational cost to learn pairwise interactions between deep feature channels is prohibitively expensive, which restricts this powerful transformation to be used in deep neural networks. In this paper, we propose a deep bilinear transformation (DBT) block, which can be deeply stacked in convolutional neural networks to learn fine-grained image representations. The DBT block can uniformly divide input channels into several semantic groups. As bilinear transformation can be represented by calculating pairwise interactions within each group, the computational cost can be heavily relieved. The output of each block is further obtained by aggregating intra-group bilinear features, with residuals from the entire input features. We found that the proposed network achieves new state-of-the-art in several fine-grained image recognition benchmarks, including CUB-Bird, Stanford-Car, and FGVC-Aircraft.
Appearance information alone is often not sufficient to accurately differentiate between fine-grained visual categories. Human experts make use of additional cues such as where, and when, a given image was … Appearance information alone is often not sufficient to accurately differentiate between fine-grained visual categories. Human experts make use of additional cues such as where, and when, a given image was taken in order to inform their final decision. This contextual information is readily available in many online image collections but has been underutilized by existing image classifiers that focus solely on making predictions based on the image contents. We propose an efficient spatio-temporal prior, that when conditioned on a geographical location and time, estimates the probability that a given object category occurs at that location. Our prior is trained from presence-only observation data and jointly models object categories, their spatio-temporal distributions, and photographer biases. Experiments performed on multiple challenging image classification datasets show that combining our prior with the predictions from image classifiers results in a large improvement in final classification performance.
Convolution operator is the core of convolutional neural networks (CNNs) and occupies the most computation cost. To make CNNs more efficient, many methods have been proposed to either design lightweight … Convolution operator is the core of convolutional neural networks (CNNs) and occupies the most computation cost. To make CNNs more efficient, many methods have been proposed to either design lightweight networks or compress models. Although some efficient network structures have been proposed, such as MobileNet or ShuffleNet, we find that there still exists redundant information between convolution kernels. To address this issue, we propose a novel dynamic convolution method to adaptively generate convolution kernels based on image contents. To demonstrate the effectiveness, we apply dynamic convolution on multiple state-of-the-art CNNs. On one hand, we can reduce the computation cost remarkably while maintaining the performance. For ShuffleNetV2/MobileNetV2/ResNet18/ResNet50, DyNet can reduce 37.0/54.7/67.2/71.3% FLOPs without loss of accuracy. On the other hand, the performance can be largely boosted if the computation cost is maintained. Based on the architecture MobileNetV3-Small/Large, DyNet achieves 70.3/77.1% Top-1 accuracy on ImageNet with an improvement of 2.9/1.9%. To verify the scalability, we also apply DyNet on segmentation task, the results show that DyNet can reduce 69.3% FLOPs while maintaining Mean IoU on segmentation task.
Fine-grained image categorization is challenging due to the subtle inter-class differences. We posit that exploiting the rich relationships between channels can help capture such differences since different channels correspond to … Fine-grained image categorization is challenging due to the subtle inter-class differences. We posit that exploiting the rich relationships between channels can help capture such differences since different channels correspond to different semantics. In this paper, we propose a channel interaction network (CIN), which models the channel-wise interplay both within an image and across images. For a single image, a self-channel interaction (SCI) module is proposed to explore channel-wise correlation within the image. This allows the model to learn the complementary features from the correlated channels, yielding stronger fine-grained features. Furthermore, given an image pair, we introduce a contrastive channel interaction (CCI) module to model the cross-sample channel interaction with a metric learning framework, allowing the CIN to distinguish the subtle visual differences between images. Our model can be trained efficiently in an end-to-end fashion without the need of multi-stage training and testing. Finally, comprehensive experiments are conducted on three publicly available benchmarks, where the proposed method consistently outperforms the state-of-the-art approaches, such as DFL-CNN(Wang, Morariu, and Davis 2018) and NTS(Yang et al. 2018).
Unsupervised text encoding models have recently fueled substantial progress in NLP. The key idea is to use neural networks to convert words in texts to vector space representations based on … Unsupervised text encoding models have recently fueled substantial progress in NLP. The key idea is to use neural networks to convert words in texts to vector space representations based on word positions in a sentence and their contexts, which are suitable for end-to-end training of downstream tasks. We see a strikingly similar situation in spatial analysis, which focuses on incorporating both absolute positions and spatial contexts of geographic objects such as POIs into models. A general-purpose representation model for space is valuable for a multitude of tasks. However, no such general model exists to date beyond simply applying discretization or feed-forward nets to coordinates, and little effort has been put into jointly modeling distributions with vastly different characteristics, which commonly emerges from GIS data. Meanwhile, Nobel Prize-winning Neuroscience research shows that grid cells in mammals provide a multi-scale periodic representation that functions as a metric for location encoding and is critical for recognizing places and for path-integration. Therefore, we propose a representation learning model called Space2Vec to encode the absolute positions and spatial relationships of places. We conduct experiments on two real-world geographic data for two different tasks: 1) predicting types of POIs given their positions and context, 2) image classification leveraging their geo-locations. Results show that because of its multi-scale representations, Space2Vec outperforms well-established ML approaches such as RBF kernels, multi-layer feed-forward nets, and tile embedding approaches for location modeling and image classification tasks. Detailed analysis shows that all baselines can at most well handle distribution at one scale but show poor performances in other scales. In contrast, Space2Vec's multi-scale representation can handle distributions at different scales.
Key for solving fine-grained image categorization is finding discriminate and local regions that correspond to subtle visual traits. Great strides have been made, with complex networks designed specifically to learn … Key for solving fine-grained image categorization is finding discriminate and local regions that correspond to subtle visual traits. Great strides have been made, with complex networks designed specifically to learn part-level discriminate feature representations. In this paper, we show it is possible to cultivate subtle details without the need for overly complicated network designs or training mechanisms -- a single loss is all it takes. The main trick lies with how we delve into individual feature channels early on, as opposed to the convention of starting from a consolidated feature map. The proposed loss function, termed as mutual-channel loss (MC-Loss), consists of two channel-specific components: a discriminality component and a diversity component. The discriminality component forces all feature channels belonging to the same class to be discriminative, through a novel channel-wise attention mechanism. The diversity component additionally constraints channels so that they become mutually exclusive on spatial-wise. The end result is therefore a set of feature channels that each reflects different locally discriminative regions for a specific class. The MC-Loss can be trained end-to-end, without the need for any bounding-box/part annotations, and yields highly discriminative regions during inference. Experimental results show our MC-Loss when implemented on top of common base networks can achieve state-of-the-art performance on all four fine-grained categorization datasets (CUB-Birds, FGVC-Aircraft, Flowers-102, and Stanford-Cars). Ablative studies further demonstrate the superiority of MC-Loss when compared with other recently proposed general-purpose losses for visual classification, on two different base networks. Code available at https://github.com/dongliangchang/Mutual-Channel-Loss
Fine-grained recognition distinguishes among categories with subtle visual differences. In order to differentiate between these challenging visual categories, it is helpful to leverage additional information. Geolocation is a rich source … Fine-grained recognition distinguishes among categories with subtle visual differences. In order to differentiate between these challenging visual categories, it is helpful to leverage additional information. Geolocation is a rich source of additional information that can be used to improve fine-grained classification accuracy, but has been understudied. Our contributions to this field are twofold. First, to the best of our knowledge, this is the first paper which systematically examined various ways of incorporating geolocation information into fine-grained image classification through the use of geolocation priors, post-processing or feature modulation. Secondly, to overcome the situation where no fine-grained dataset has complete geolocation information, we release two fine-grained datasets with geolocation by providing complementary information to existing popular datasets - iNaturalist and YFCC100M. By leveraging geolocation information we improve top-1 accuracy in iNaturalist from 70.1% to 79.0% for a strong baseline image-only model. Comparing several models, we found that best performance was achieved by a post-processing model that consumed the output of the image-only baseline alongside geolocation. However, for a resource-constrained model (MobileNetV2), performance was better with a feature modulation model that trains jointly over pixels and geolocation: accuracy increased from 59.6% to 72.2%. Our work makes a strong case for incorporating geolocation information in fine-grained recognition models for both server and on-device.
Light-weight convolutional neural networks (CNNs) suffer performance degradation as their low computational budgets constrain both the depth (number of convolution layers) and the width (number of channels) of CNNs, resulting … Light-weight convolutional neural networks (CNNs) suffer performance degradation as their low computational budgets constrain both the depth (number of convolution layers) and the width (number of channels) of CNNs, resulting in limited representation capability. To address this issue, we present Dynamic Convolution, a new design that increases model complexity without increasing the network depth or width. Instead of using a single convolution kernel per layer, dynamic convolution aggregates multiple parallel convolution kernels dynamically based upon their attentions, which are input dependent. Assembling multiple kernels is not only computationally efficient due to the small kernel size, but also has more representation power since these kernels are aggregated in a non-linear way via attention. By simply using dynamic convolution for the state-of-the-art architecture MobileNetV3-Small, the top-1 accuracy of ImageNet classification is boosted by 2.9% with only 4% additional FLOPs and 2.9 AP gain is achieved on COCO keypoint detection.
The appearance of the world varies dramatically not only from place to place but also from hour to hour and month to month. Every day billions of images capture this … The appearance of the world varies dramatically not only from place to place but also from hour to hour and month to month. Every day billions of images capture this complex relationship, many of which are associated with precise time and location metadata. We propose to use these images to construct a global-scale, dynamic map of visual appearance attributes. Such a map enables fine-grained understanding of the expected appearance at any geographic location and time. Our approach integrates dense overhead imagery with location and time metadata into a general framework capable of mapping a wide variety of visual attributes. A key feature of our approach is that it requires no manual data annotation. We demonstrate how this approach can support various applications, including image-driven mapping, image geolocalization, and metadata verification.
In this work, we aim at building a simple, direct, and fast instance segmentation framework with strong performance. We follow the principle of the SOLO method of Wang et al. … In this work, we aim at building a simple, direct, and fast instance segmentation framework with strong performance. We follow the principle of the SOLO method of Wang et al. "SOLO: segmenting objects by locations". Importantly, we take one step further by dynamically learning the mask head of the object segmenter such that the mask head is conditioned on the location. Specifically, the mask branch is decoupled into a mask kernel branch and mask feature branch, which are responsible for learning the convolution kernel and the convolved features respectively. Moreover, we propose Matrix NMS (non maximum suppression) to significantly reduce the inference time overhead due to NMS of masks. Our Matrix NMS performs NMS with parallel matrix operations in one shot, and yields better results. We demonstrate a simple direct instance segmentation system, outperforming a few state-of-the-art methods in both speed and accuracy. A light-weight version of SOLOv2 executes at 31.3 FPS and yields 37.1% AP. Moreover, our state-of-the-art results in object detection (from our mask byproduct) and panoptic segmentation show the potential to serve as a new strong baseline for many instance-level recognition tasks besides instance segmentation. Code is available at: https://git.io/AdelaiDet
This paper tackles the problem of learning a finer representation than the one provided by training labels. This enables fine-grained category retrieval of images in a collection annotated with coarse … This paper tackles the problem of learning a finer representation than the one provided by training labels. This enables fine-grained category retrieval of images in a collection annotated with coarse labels only. Our network is learned with a nearest-neighbor classifier objective, and an instance loss inspired by self-supervised learning. By jointly leveraging the coarse labels and the underlying fine-grained latent space, it significantly improves the accuracy of category-level retrieval methods. Our strategy outperforms all competing methods for retrieving or classifying images at a finer granularity than that available at train time. It also improves the accuracy for transfer learning tasks to fine-grained datasets, thereby establishing the new state of the art on five public benchmarks, like iNaturalist-2018.
Collecting fine-grained labels usually requires expert-level domain knowledge and is prohibitive to scale up. In this paper, we propose Attribute Mix, a data augmentation strategy at attribute level to expand … Collecting fine-grained labels usually requires expert-level domain knowledge and is prohibitive to scale up. In this paper, we propose Attribute Mix, a data augmentation strategy at attribute level to expand the fine-grained samples. The principle lies in that attribute features are shared among fine-grained sub-categories, and can be seamlessly transferred among images. Toward this goal, we propose an automatic attribute mining approach to discover attributes that belong to the same supercategory, and Attribute Mix is operated by mixing semantically meaningful attribute features from two images. Attribute Mix is a simple but effective data augmentation strategy that can significantly improve the recognition performance without increasing the inference budgets. Extensive experiments and ablation studies show that the proposed method consistently outperforms the state-of-the-art methods on challenging benchmarks including CUB-200-2011, FGVC-Aircraft, and Stanford Cars.
Deep convolutional neural networks (CNNs) have shown a strong ability in mining discriminative object pose and parts information for image recognition. For fine-grained recognition, context-aware rich feature representation of object/scene … Deep convolutional neural networks (CNNs) have shown a strong ability in mining discriminative object pose and parts information for image recognition. For fine-grained recognition, context-aware rich feature representation of object/scene plays a key role since it exhibits a significant variance in the same subcategory and subtle variance among different subcategories. Finding the subtle variance that fully characterizes the object/scene is not straightforward. To address this, we propose a novel context-aware attentional pooling (CAP) that effectively captures subtle changes via sub-pixel gradients, and learns to attend informative integral regions and their importance in discriminating different subcategories without requiring the bounding-box and/or distinguishable part annotations. We also introduce a novel feature encoding by considering the intrinsic consistency between the informativeness of the integral regions and their spatial structures to capture the semantic correlation among them. Our approach is simple yet extremely effective and can be easily applied on top of a standard classification backbone network. We evaluate our approach using six state-of-the-art (SotA) backbone networks and eight benchmark datasets. Our method significantly outperforms the SotA approaches on six datasets and is very competitive with the remaining two.
Fine-grained visual classification (FGVC) which aims at recognizing objects from subcategories is a very challenging task due to the inherently subtle inter-class differences. Most existing works mainly tackle this problem … Fine-grained visual classification (FGVC) which aims at recognizing objects from subcategories is a very challenging task due to the inherently subtle inter-class differences. Most existing works mainly tackle this problem by reusing the backbone network to extract features of detected discriminative regions. However, this strategy inevitably complicates the pipeline and pushes the proposed regions to contain most parts of the objects thus fails to locate the really important parts. Recently, vision transformer (ViT) shows its strong performance in the traditional classification task. The self-attention mechanism of the transformer links every patch token to the classification token. In this work, we first evaluate the effectiveness of the ViT framework in the fine-grained recognition setting. Then motivated by the strength of the attention link can be intuitively considered as an indicator of the importance of tokens, we further propose a novel Part Selection Module that can be applied to most of the transformer architectures where we integrate all raw attention weights of the transformer into an attention map for guiding the network to effectively and accurately select discriminative image patches and compute their relations. A contrastive loss is applied to enlarge the distance between feature representations of confusing classes. We name the augmented transformer-based model TransFG and demonstrate the value of it by conducting experiments on five popular fine-grained benchmarks where we achieve state-of-the-art performance. Qualitative results are presented for better understanding of our model.
We present Sparse R-CNN, a purely sparse method for object detection in images. Existing works on object detection heavily rely on dense object candidates, such as k anchor boxes pre-defined … We present Sparse R-CNN, a purely sparse method for object detection in images. Existing works on object detection heavily rely on dense object candidates, such as k anchor boxes pre-defined on all grids of image feature map of size H × W. In our method, however, a fixed sparse set of learned object proposals, total length of N, are provided to object recognition head to perform classification and location. By eliminating HWk (up to hundreds of thousands) hand-designed object candidates to N (e.g. 100) learnable proposals, Sparse R-CNN completely avoids all efforts related to object candidates design and many-to-one label assignment. More importantly, final predictions are directly output without non-maximum suppression post-procedure. Sparse R-CNN demonstrates accuracy, run-time and training convergence performance on par with the well-established detector baselines on the challenging COCO dataset, e.g., achieving 45.0 AP in standard 3× training schedule and running at 22 fps using ResNet-50 FPN model. We hope our work could inspire re-thinking the convention of dense prior in object detectors. The code is available at: https://github.com/PeizeSun/SparseR-CNN.
How should representations from complementary sensors be integrated for autonomous driving? Geometry-based sensor fusion has shown great promise for perception tasks such as object detection and motion forecasting. However, for … How should representations from complementary sensors be integrated for autonomous driving? Geometry-based sensor fusion has shown great promise for perception tasks such as object detection and motion forecasting. However, for the actual driving task, the global context of the 3D scene is key, e.g. a change in traffic light state can affect the behavior of a vehicle geometrically distant from that traffic light. Geometry alone may therefore be insufficient for effectively fusing representations in end-to-end driving models. In this work, we demonstrate that imitation learning policies based on existing sensor fusion methods under-perform in the presence of a high density of dynamic agents and complex scenarios, which require global contextual reasoning, such as handling traffic oncoming from multiple directions at uncontrolled intersections. Therefore, we propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention. We experimentally validate the efficacy of our approach in urban settings involving complex scenarios using the CARLA urban driving simulator. Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
Data mixing augmentation has proved effective in training deep models. Recent methods mix labels mainly according to the mixture proportion of image pixels. Due to the major discriminative information of … Data mixing augmentation has proved effective in training deep models. Recent methods mix labels mainly according to the mixture proportion of image pixels. Due to the major discriminative information of a fine-grained image usually resides in subtle regions, these methods tend to introduce heavy label noise in fine-grained recognition. We propose Semantically Proportional Mixing (SnapMix) that exploits class activation map (CAM) to lessen the label noise in augmenting fine-grained data. SnapMix generates the target label for a mixed image by estimating its intrinsic semantic composition. This strategy can adapt to asymmetric mixing operations and ensure semantic correspondence between synthetic images and target labels. Experiments show that our method consistently outperforms existing mixed-based approaches regardless of different datasets or network depths. Further, by incorporating the mid-level features, the proposed SnapMix achieves top-level performance, demonstrating its potential to serve as a strong baseline for fine-grained recognition.
Recent progress in self-supervised learning has resulted in models that are capable of extracting rich representations from image collections without requiring any explicit label supervision. However, to date the vast … Recent progress in self-supervised learning has resulted in models that are capable of extracting rich representations from image collections without requiring any explicit label supervision. However, to date the vast majority of these approaches have restricted themselves to training on standard benchmark datasets such as ImageNet. We argue that fine-grained visual categorization problems, such as plant and animal species classification, provide an informative testbed for self-supervised learning. In order to facilitate progress in this area we present two new natural world visual classification datasets, iNat2021 and NeWT. The former consists of 2.7M images from 10k different species up-loaded by users of the citizen science application iNaturalist. We designed the latter, NeWT, in collaboration with domain experts with the aim of benchmarking the performance of representation learning algorithms on a suite of challenging natural world binary classification tasks that go beyond standard species classification. These two new datasets allow us to explore questions related to large-scale representation and transfer learning in the context of fine-grained categories. We provide a comprehensive analysis of feature extractors trained with and without supervision on ImageNet and iNat2021, shedding light on the strengths and weaknesses of different learned features across a diverse set of tasks. We find that features produced by standard supervised methods still outperform those produced by self-supervised approaches such as SimCLR. However, improved self-supervised learning methods are constantly being released and the iNat2021 and NeWT datasets are a valuable resource for tracking their progress.
Data-augmentation is key to the training of neural networks for image classification. This paper first shows that existing augmentations induce a significant discrepancy between the typical size of the objects … Data-augmentation is key to the training of neural networks for image classification. This paper first shows that existing augmentations induce a significant discrepancy between the typical size of the objects seen by the classifier at train and test time. We experimentally validate that, for a target test resolution, using a lower train resolution offers better classification at test time. We then propose a simple yet effective and efficient strategy to optimize the classifier performance when the train and test resolutions differ. It involves only a computationally cheap fine-tuning of the network at the test resolution. This enables training strong classifiers using small training images. For instance, we obtain 77.1% top-1 accuracy on ImageNet with a ResNet-50 trained on 128x128 images, and 79.8% with one trained on 224x224 image. In addition, if we use extra training data we get 82.5% with the ResNet-50 train with 224x224 images. Conversely, when training a ResNeXt-101 32x48d pre-trained in weakly-supervised fashion on 940 million public images at resolution 224x224 and further optimizing for test resolution 320x320, we obtain a test top-1 accuracy of 86.4% (top-5: 98.0%) (single-crop). To the best of our knowledge this is the highest ImageNet single-crop, top-1 and top-5 accuracy to date.