Kristofer E. Bouchard

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Identifying Feedforward and Feedback Controllable Subspaces of Neural Population Dynamics 2024 Ankit Kumar
Loren M. Frank
Kristofer E. Bouchard
+ PDF Chat Methods for Linking Data to Online Resources and Ontologies with Applications to Neurophysiology 2024 Matthew Avaylon
Ryan Ly
Andrew Tritt
Ben Dichter
Kristofer E. Bouchard
Chris Mungall
Oliver Ruebel
+ PDF Chat The Artificial Intelligence Ontology: LLM-assisted construction of AI concept hierarchies 2024 Marcin P. Joachimiak
Mark A. Miller
J. Harry Caufield
Ryan Ly
Nomi L. Harris
Andrew Tritt
Chris Mungall
Kristofer E. Bouchard
+ PDF Chat Towards Reverse-Engineering the Brain: Brain-Derived Neuromorphic Computing Approach with Photonic, Electronic, and Ionic Dynamicity in 3D integrated circuits 2024 S. J. Ben Yoo
Luis El-Srouji
Suman Datta
Shimeng Yu
Jean Anne C. Incorvia
Alberto Salleo
Volker J. Sorger
Juejun Hu
Lionel C. Kimerling
Kristofer E. Bouchard
+ AutoCT: Automated CT registration, segmentation, and quantification 2024 Zhe Bai
Abdelilah Essiari
Talita Perciano
Kristofer E. Bouchard
+ PDF Chat FAIR for AI: An interdisciplinary and international community building perspective 2023 E. A. Huerta
Ben Blaiszik
L. Catherine Brinson
Kristofer E. Bouchard
D. Díaz
C. Doglioni
J. Duarte
Murali Emani
Ian Foster
Geoffrey Fox
+ Perspectives for self-driving labs in synthetic biology 2023 Héctor García Martín
Tijana Radivojević
Jeremy Zucker
Kristofer E. Bouchard
Jess Sustarich
Sean Peisert
Dan Arnold
Nathan J. Hillson
G. Babnigg
Jose Manuel Martí
+ AutoCT: Automated CT registration, segmentation, and quantification 2023 Zhe Bai
Abdelilah Essiari
Talita Perciano
Kristofer E. Bouchard
+ PDF Chat Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Networks 2023 Rui Meng
Herbert K. H. Lee
Kristofer E. Bouchard
+ PDF Chat Numerical characterization of support recovery in sparse regression with correlated design 2022 Ankit Kumar
Sharmodeep Bhattacharyya
Kristofer E. Bouchard
+ Compressed Predictive Information Coding 2022 Rui Meng
T. David Luo
Kristofer E. Bouchard
+ PDF Chat Hangul Fonts Dataset: A Hierarchical and Compositional Dataset for Investigating Learned Representations 2022 Jesse A. Livezey
Ahyeon Hwang
Jacob Yeung
Kristofer E. Bouchard
+ FAIR for AI: An interdisciplinary and international community building perspective 2022 E. A. Huerta
Ben Blaiszik
L. Catherine Brinson
Kristofer E. Bouchard
D. Díaz
C. Doglioni
J. Duarte
Murali Emani
Ian Foster
Geoffrey Fox
+ Perspectives for self-driving labs in synthetic biology 2022 Héctor García Martín
Tijana Radivojević
Jeremy Zucker
Kristofer E. Bouchard
Jess Sustarich
Sean Peisert
Dan Arnold
Nathan J. Hillson
G. Babnigg
Jose Manuel Martí
+ Numerical characterization of support recovery in sparse regression with correlated design 2022 Ankit Kumar
Sharmodeep Bhattacharyya
Kristofer E. Bouchard
+ Learning from learning machines: a new generation of AI technology to meet the needs of science 2021 Luca Pion-Tonachini
Kristofer E. Bouchard
Héctor García Martín
Sean Peisert
W. Holtz
Anil Aswani
Dipankar Dwivedi
Haruko Wainwright
Ghanshyam Pilania
Benjamin Nachman
+ PDF Chat Bayesian Inference in High-Dimensional Time-Serieswith the Orthogonal Stochastic Linear Mixing Model 2021 Rui Meng
Kristofer E. Bouchard
+ Collaborative Nonstationary Multivariate Gaussian Process Model. 2021 Rui Meng
Herbie Lee
Kristofer E. Bouchard
+ Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses 2021 Charles G. Frye
James B. Simon
Neha S. Wadia
Andrew Ligeralde
Michael R. DeWeese
Kristofer E. Bouchard
+ Bayesian Inference in High-Dimensional Time-Serieswith the Orthogonal Stochastic Linear Mixing Model 2021 Rui Meng
Kristofer E. Bouchard
+ Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Network 2021 Rui Meng
Herbie Lee
Kristofer E. Bouchard
+ Learning from learning machines: a new generation of AI technology to meet the needs of science 2021 Luca Pion-Tonachini
Kristofer E. Bouchard
Héctor García Martín
Sean Peisert
W. Holtz
Anil Aswani
Dipankar Dwivedi
Haruko Wainwright
Ghanshyam Pilania
Benjamin Nachman
+ Numerical Characterization of Support Recovery in Sparse Regression with Correlated Design 2021 Ankit Kumar
Sharmodeep Bhattacharyya
Kristofer E. Bouchard
+ Sparse and Low-bias Estimation of High Dimensional Vector Autoregressive Models 2020 Trevor Ruiz
Sharmodeep Bhattacharyya
M. Balasubramanian
Kristofer E. Bouchard
+ Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses 2020 Charles G. Frye
James E. Simon
Neha S. Wadia
Andrew Ligeralde
Michael R. DeWeese
Kristofer E. Bouchard
+ PDF Chat PyUoI: The Union of Intersections Framework in Python 2019 Pratik Sachdeva
Jesse A. Livezey
Andrew Tritt
Kristofer E. Bouchard
+ PDF Chat Deep learning as a tool for neural data analysis: Speech classification and cross-frequency coupling in human sensorimotor cortex 2019 Jesse A. Livezey
Kristofer E. Bouchard
Edward F. Chang
+ PDF Chat iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology 2019 Chris Holdgraf
Stefan Appelhoff
Stephan Bickel
Kristofer E. Bouchard
Sasha D’Ambrosio
Olivier David
Orrin Devinsky
Ben Dichter
Adeen Flinker
Brett L. Foster
+ Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis 2019 David G. Clark
Jesse A. Livezey
Kristofer E. Bouchard
+ Hangul Fonts Dataset: a Hierarchical and Compositional Dataset for Interrogating Learned Representations 2019 Jesse A. Livezey
Ahyeon Hwang
Kristofer E. Bouchard
+ Numerically Recovering the Critical Points of a Deep Linear Autoencoder 2019 Charles G. Frye
Neha S. Wadia
Michael R. DeWeese
Kristofer E. Bouchard
+ Sparse, Low-bias, and Scalable Estimation of High Dimensional Vector Autoregressive Models via Union of Intersections 2019 Trevor Ruiz
M. Balasubramanian
Kristofer E. Bouchard
Sharmodeep Bhattacharyya
+ Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis 2019 David G. Clark
Jesse A. Livezey
Kristofer E. Bouchard
+ Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis 2019 David G. Clark
Jesse A. Livezey
Kristofer E. Bouchard
+ Hangul Fonts Dataset: a Hierarchical and Compositional Dataset for Investigating Learned Representations 2019 Jesse A. Livezey
Ahyeon Hwang
Jacob Yeung
Kristofer E. Bouchard
+ BIDS-iEEG: an extension to the brain imaging data structure (BIDS) specification for human intracranial electrophysiology 2018 Chris Holdgraf
Stefan Appelhoff
Stephan Bickel
Kristofer E. Bouchard
Sasha D’Ambrosio
Olivier David
Orrin Devinsky
Ben Dichter
Adeen Flinker
Brett L. Foster
+ Run Procrustes, Run! On the convergence of accelerated Procrustes Flow. 2018 Anastasios Kyrillidis
Shashanka Ubaru
Γεώργιος Κόλλιας
Kristofer E. Bouchard
+ Provably convergent acceleration in factored gradient descent with applications in matrix sensing 2018 Tayo Ajayi
David Mildebrath
Anastasios Kyrillidis
Shashanka Ubaru
Γεώργιος Κόλλιας
Kristofer E. Bouchard
+ Spiking Linear Dynamical Systems on Neuromorphic Hardware for Low-Power Brain-Machine Interfaces 2018 David G. Clark
Jesse A. Livezey
Edward F. Chang
Kristofer E. Bouchard
+ Optimizing the Union of Intersections LASSO ($UoI_{LASSO}$) and Vector Autoregressive ($UoI_{VAR}$) Algorithms for Improved Statistical Estimation at Scale 2018 Mahesh Balasubramanian
Trevor Ruiz
Brandon Cook
Sharmodeep Bhattacharyya
Prabhat
Aviral Shrivastava
Kristofer E. Bouchard
+ Provably convergent acceleration in factored gradient descent with applications in matrix sensing 2018 Tayo Ajayi
David Mildebrath
Anastasios Kyrillidis
Shashanka Ubaru
Γεώργιος Κόλλιας
Kristofer E. Bouchard
+ Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction 2017 Kristofer E. Bouchard
Alejandro F. Bujan
Farbod Roosta-Khorasani
Shashanka Ubaru
Prabhat
Antoine M. Snijders
Jian‐Hua Mao
Edward F. Chang
Michael W. Mahoney
Sharmodeep Bhattacharyya
+ Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction 2017 Kristofer E. Bouchard
Alejandro F. Bujan
Farbod Roosta-Khorasani
Shashanka Ubaru
Prabhat
Antoine M. Snijders
Jian‐Hua Mao
Edward F. Chang
Michael W. Mahoney
Sharmodeep Bhattacharyya
+ PDF Chat An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition 2015 Jason D. Wittenbach
Kristofer E. Bouchard
Michael S. Brainard
Dezhe Z. Jin
+ Modeling neural activity at the ensemble level 2015 Joaquín Rapela
Mark Kostuk
Peter F. Rowat
Tim Mullen
Edward F. Chang
Kristofer E. Bouchard
+ Bootstrapped Adaptive Threshold Selection for Statistical Model Selection and Estimation 2015 Kristofer E. Bouchard
+ Modeling neural activity at the ensemble level 2015 Joaquín Rapela
Mark Kostuk
Peter F. Rowat
Tim Mullen
Edward F. Chang
Kristofer E. Bouchard
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Deep learning as a tool for neural data analysis: Speech classification and cross-frequency coupling in human sensorimotor cortex 2019 Jesse A. Livezey
Kristofer E. Bouchard
Edward F. Chang
4
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
4
+ Definitions, methods, and applications in interpretable machine learning 2019 William J. Murdoch
Chandan Singh
Karl Kumbier
Reza Abbasi-Asl
Bin Yu
3
+ Gradient Descent Only Converges to Minimizers 2016 Jason D. Lee
Max Simchowitz
Michael I. Jordan
Benjamin Recht
3
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
3
+ Log Gaussian Cox Processes 1998 Jesper Møller
Anne Randi Syversveen
Rasmus Waagepetersen
3
+ Exact solutions to the nonlinear dynamics of learning in deep linear neural networks 2013 Andrew Saxe
James L. McClelland
Surya Ganguli
3
+ PDF Chat Nonstationary multivariate Gaussian processes for electronic health records 2021 Rui Meng
Braden Soper
Herbert K. H. Lee
Jean‐Louis Vincent
J Greene
Priyadip Ray
3
+ PDF Chat Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints 2016 Laurent Lessard
Benjamin Recht
Andrew Packard
2
+ PDF Chat CosmoFlow: Using Deep Learning to Learn the Universe at Scale 2018 Amrita Mathuriya
Deborah Bard
P. J. Mendygral
Lawrence Meadows
James Arnemann
Lei Shao
Siyu He
Tuomas Kärnä
Diana Moise
S. J. Pennycook
2
+ BIDS-EEG: an extension to the Brain Imaging Data Structure (BIDS) Specification for electroencephalography 2018 Cyril Pernet
Stefan Appelhoff
Guillaume Flandin
Christophe Phillips
Arnaud Delorme
Robert Oostenveld
2
+ Gaussian Process Regression Networks 2011 Andrew Gordon Wilson
David A. Knowles
Zoubin Ghahramani
2
+ Black Box Variational Inference 2014 Rajesh Ranganath
Sean Gerrish
David M. Blei
2
+ A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements 2015 Qinqing Zheng
John Lafferty
2
+ PDF Chat Self-driving laboratory for accelerated discovery of thin-film materials 2020 Benjamin P. MacLeod
Fraser G. L. Parlane
Thomas D. Morrissey
Florian Häse
Loı̈c M. Roch
Kevan E. Dettelbach
Raphaell Moreira
Lars P. E. Yunker
Michael B. Rooney
Joseph R. Deeth
2
+ PDF Chat ADMiRA: Atomic Decomposition for Minimum Rank Approximation 2010 Kiryung Lee
Yoram Bresler
2
+ A Direct Estimation of High Dimensional Stationary Vector Autoregressions 2013 Fang Han
Huanran Lu
Han Liu
2
+ Dynamic reconfiguration of human brain networks during learning 2011 Danielle S. Bassett
Nicholas F. Wymbs
Mason A. Porter
Peter J. Mucha
Jean M. Carlson
Scott T. Grafton
2
+ Inferring high-dimensional poisson autoregressive models 2016 Eric C. Hall
Garvesh Raskutti
Rebecca Willett
2
+ PDF Chat CUR matrix decompositions for improved data analysis 2009 Michael W. Mahoney
Petros Drineas
2
+ A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization 2003 Samuel Burer
Renato D. C. Monteiro
2
+ Finding Low-rank Solutions to Matrix Problems, Efficiently and Provably. 2016 Dohyung Park
Anastasios Kyrillidis
Constantine Caramanis
Sujay Sanghavi
2
+ Geometry of neural network loss surfaces via random matrix theory 2017 Jeffrey Pennington
Yasaman Bahri
2
+ Provable quantum state tomography via non-convex methods 2017 Anastasios Kyrillidis
Amir Kalev
Dohyung Park
Srinadh Bhojanapalli
Constantine Caramanis
Sujay Sanghavi
2
+ Newton-MR: Newton's Method Without Smoothness or Convexity 2018 Fred Roosta
Yang Liu
Peng Xu
Michael W. Mahoney
2
+ Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees 2015 Yudong Chen
Martin J. Wainwright
2
+ Guaranteed Minimum Rank Approximation from Linear Observations by Nuclear Norm Minimization with an Ellipsoidal Constraint 2009 Kiryung Lee
Yoram Bresler
2
+ Universal low-rank matrix recovery from Pauli measurements 2011 Yikai Liu
2
+ PDF Chat Nearly unbiased variable selection under minimax concave penalty 2010 Cun‐Hui Zhang
2
+ PDF Chat A rank minimization heuristic with application to minimum order system approximation 2001 Maryam Fazel
H. Hindi
Stephen Boyd
2
+ Regularization Paths for Generalized Linear Models via Coordinate Descent. 2010 Jerome H. Friedman
Trevor Hastie
Rob Tibshirani
2
+ PDF Chat Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization 2010 Benjamin Recht
Maryam Fazel
Pablo A. Parrilo
2
+ Some methods of speeding up the convergence of iteration methods 1964 B. T. Polyak
2
+ Guaranteed Rank Minimization via Singular Value Projection 2010 Prateek Jain
Raghu Meka
Inderjit S. Dhillon
2
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
2
+ PDF Chat Going deeper with convolutions 2015 Christian Szegedy
Wei Liu
Yangqing Jia
Pierre Sermanet
Scott Reed
Dragomir Anguelov
Dumitru Erhan
Vincent Vanhoucke
Andrew Rabinovich
2
+ PDF Chat Deep Learning Face Attributes in the Wild 2015 Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
2
+ Analysis of Newton’s Method at Irregular Singularities 1983 Andreas Griewank
M. R. Osborne
2
+ PDF Chat Joint Estimation of Multiple Graphical Models from High Dimensional Time Series 2015 Huitong Qiu
Fang Han
Han Liu
Brian Caffo
2
+ Multivariable variogram and its application to the linear model of coregionalization 1991 Gilles Bourgault
Denis Marcotte
2
+ PDF Chat Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators 2012 Steven T. Flammia
David Groß
Yi-Kai Liu
Jens Eisert
2
+ PDF Chat Matrix Recipes for Hard Thresholding Methods 2013 Anastasios Kyrillidis
Volkan Cevher
2
+ PDF Chat The Jackknife and the Bootstrap for General Stationary Observations 1989 Hans R. Künsch
2
+ PDF Chat Robust principal component analysis? 2011 Emmanuel J. Candès
Xiaodong Li
Yi Ma
John Wright
2
+ PDF Chat The Joint Graphical Lasso for Inverse Covariance Estimation Across Multiple Classes 2013 Patrick Danaher
Pei Wang
Daniela Witten
2
+ Stochastic variational inference 2013 Matthew D. Hoffman
David M. Blei
Chong Wang
John Paisley
2
+ Guaranteed Matrix Completion via Non-Convex Factorization 2016 Ruoyu Sun
Zhi‐Quan Luo
2
+ No spurious local minima in nonconvex low rank problems: a unified geometric analysis 2017 Rong Ge
Chi Jin
Yi Zheng
2
+ Interior-Point Method for Nuclear Norm Approximation with Application to System Identification 2009 Zhang Liu
Lieven Vandenberghe
2
+ Provable Burer-Monteiro factorization for a class of norm-constrained matrix problems 2016 Dohyung Park
Anastasios Kyrillidis
Srinadh Bhojanapalli
Constantine Caramanis
Sujay Sanghavi
2