Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Kristofer E. Bouchard
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Identifying Feedforward and Feedback Controllable Subspaces of Neural Population Dynamics
2024
Ankit Kumar
Loren M. Frank
Kristofer E. Bouchard
+
PDF
Chat
Methods for Linking Data to Online Resources and Ontologies with Applications to Neurophysiology
2024
Matthew Avaylon
Ryan Ly
Andrew Tritt
Ben Dichter
Kristofer E. Bouchard
Chris Mungall
Oliver Ruebel
+
PDF
Chat
The Artificial Intelligence Ontology: LLM-assisted construction of AI concept hierarchies
2024
Marcin P. Joachimiak
Mark A. Miller
J. Harry Caufield
Ryan Ly
Nomi L. Harris
Andrew Tritt
Chris Mungall
Kristofer E. Bouchard
+
PDF
Chat
Towards Reverse-Engineering the Brain: Brain-Derived Neuromorphic Computing Approach with Photonic, Electronic, and Ionic Dynamicity in 3D integrated circuits
2024
S. J. Ben Yoo
Luis El-Srouji
Suman Datta
Shimeng Yu
Jean Anne C. Incorvia
Alberto Salleo
Volker J. Sorger
Juejun Hu
Lionel C. Kimerling
Kristofer E. Bouchard
+
AutoCT: Automated CT registration, segmentation, and quantification
2024
Zhe Bai
Abdelilah Essiari
Talita Perciano
Kristofer E. Bouchard
+
PDF
Chat
FAIR for AI: An interdisciplinary and international community building perspective
2023
E. A. Huerta
Ben Blaiszik
L. Catherine Brinson
Kristofer E. Bouchard
D. Díaz
C. Doglioni
J. Duarte
Murali Emani
Ian Foster
Geoffrey Fox
+
Perspectives for self-driving labs in synthetic biology
2023
Héctor García Martín
Tijana Radivojević
Jeremy Zucker
Kristofer E. Bouchard
Jess Sustarich
Sean Peisert
Dan Arnold
Nathan J. Hillson
G. Babnigg
Jose Manuel Martí
+
AutoCT: Automated CT registration, segmentation, and quantification
2023
Zhe Bai
Abdelilah Essiari
Talita Perciano
Kristofer E. Bouchard
+
PDF
Chat
Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Networks
2023
Rui Meng
Herbert K. H. Lee
Kristofer E. Bouchard
+
PDF
Chat
Numerical characterization of support recovery in sparse regression with correlated design
2022
Ankit Kumar
Sharmodeep Bhattacharyya
Kristofer E. Bouchard
+
Compressed Predictive Information Coding
2022
Rui Meng
T. David Luo
Kristofer E. Bouchard
+
PDF
Chat
Hangul Fonts Dataset: A Hierarchical and Compositional Dataset for Investigating Learned Representations
2022
Jesse A. Livezey
Ahyeon Hwang
Jacob Yeung
Kristofer E. Bouchard
+
FAIR for AI: An interdisciplinary and international community building perspective
2022
E. A. Huerta
Ben Blaiszik
L. Catherine Brinson
Kristofer E. Bouchard
D. Díaz
C. Doglioni
J. Duarte
Murali Emani
Ian Foster
Geoffrey Fox
+
Perspectives for self-driving labs in synthetic biology
2022
Héctor García Martín
Tijana Radivojević
Jeremy Zucker
Kristofer E. Bouchard
Jess Sustarich
Sean Peisert
Dan Arnold
Nathan J. Hillson
G. Babnigg
Jose Manuel Martí
+
Numerical characterization of support recovery in sparse regression with correlated design
2022
Ankit Kumar
Sharmodeep Bhattacharyya
Kristofer E. Bouchard
+
Learning from learning machines: a new generation of AI technology to meet the needs of science
2021
Luca Pion-Tonachini
Kristofer E. Bouchard
Héctor García Martín
Sean Peisert
W. Holtz
Anil Aswani
Dipankar Dwivedi
Haruko Wainwright
Ghanshyam Pilania
Benjamin Nachman
+
PDF
Chat
Bayesian Inference in High-Dimensional Time-Serieswith the Orthogonal Stochastic Linear Mixing Model
2021
Rui Meng
Kristofer E. Bouchard
+
Collaborative Nonstationary Multivariate Gaussian Process Model.
2021
Rui Meng
Herbie Lee
Kristofer E. Bouchard
+
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
2021
Charles G. Frye
James B. Simon
Neha S. Wadia
Andrew Ligeralde
Michael R. DeWeese
Kristofer E. Bouchard
+
Bayesian Inference in High-Dimensional Time-Serieswith the Orthogonal Stochastic Linear Mixing Model
2021
Rui Meng
Kristofer E. Bouchard
+
Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Network
2021
Rui Meng
Herbie Lee
Kristofer E. Bouchard
+
Learning from learning machines: a new generation of AI technology to meet the needs of science
2021
Luca Pion-Tonachini
Kristofer E. Bouchard
Héctor García Martín
Sean Peisert
W. Holtz
Anil Aswani
Dipankar Dwivedi
Haruko Wainwright
Ghanshyam Pilania
Benjamin Nachman
+
Numerical Characterization of Support Recovery in Sparse Regression with Correlated Design
2021
Ankit Kumar
Sharmodeep Bhattacharyya
Kristofer E. Bouchard
+
Sparse and Low-bias Estimation of High Dimensional Vector Autoregressive Models
2020
Trevor Ruiz
Sharmodeep Bhattacharyya
M. Balasubramanian
Kristofer E. Bouchard
+
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
2020
Charles G. Frye
James E. Simon
Neha S. Wadia
Andrew Ligeralde
Michael R. DeWeese
Kristofer E. Bouchard
+
PDF
Chat
PyUoI: The Union of Intersections Framework in Python
2019
Pratik Sachdeva
Jesse A. Livezey
Andrew Tritt
Kristofer E. Bouchard
+
PDF
Chat
Deep learning as a tool for neural data analysis: Speech classification and cross-frequency coupling in human sensorimotor cortex
2019
Jesse A. Livezey
Kristofer E. Bouchard
Edward F. Chang
+
PDF
Chat
iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology
2019
Chris Holdgraf
Stefan Appelhoff
Stephan Bickel
Kristofer E. Bouchard
Sasha D’Ambrosio
Olivier David
Orrin Devinsky
Ben Dichter
Adeen Flinker
Brett L. Foster
+
Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis
2019
David G. Clark
Jesse A. Livezey
Kristofer E. Bouchard
+
Hangul Fonts Dataset: a Hierarchical and Compositional Dataset for Interrogating Learned Representations
2019
Jesse A. Livezey
Ahyeon Hwang
Kristofer E. Bouchard
+
Numerically Recovering the Critical Points of a Deep Linear Autoencoder
2019
Charles G. Frye
Neha S. Wadia
Michael R. DeWeese
Kristofer E. Bouchard
+
Sparse, Low-bias, and Scalable Estimation of High Dimensional Vector Autoregressive Models via Union of Intersections
2019
Trevor Ruiz
M. Balasubramanian
Kristofer E. Bouchard
Sharmodeep Bhattacharyya
+
Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis
2019
David G. Clark
Jesse A. Livezey
Kristofer E. Bouchard
+
Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis
2019
David G. Clark
Jesse A. Livezey
Kristofer E. Bouchard
+
Hangul Fonts Dataset: a Hierarchical and Compositional Dataset for Investigating Learned Representations
2019
Jesse A. Livezey
Ahyeon Hwang
Jacob Yeung
Kristofer E. Bouchard
+
BIDS-iEEG: an extension to the brain imaging data structure (BIDS) specification for human intracranial electrophysiology
2018
Chris Holdgraf
Stefan Appelhoff
Stephan Bickel
Kristofer E. Bouchard
Sasha D’Ambrosio
Olivier David
Orrin Devinsky
Ben Dichter
Adeen Flinker
Brett L. Foster
+
Run Procrustes, Run! On the convergence of accelerated Procrustes Flow.
2018
Anastasios Kyrillidis
Shashanka Ubaru
Γεώργιος Κόλλιας
Kristofer E. Bouchard
+
Provably convergent acceleration in factored gradient descent with applications in matrix sensing
2018
Tayo Ajayi
David Mildebrath
Anastasios Kyrillidis
Shashanka Ubaru
Γεώργιος Κόλλιας
Kristofer E. Bouchard
+
Spiking Linear Dynamical Systems on Neuromorphic Hardware for Low-Power Brain-Machine Interfaces
2018
David G. Clark
Jesse A. Livezey
Edward F. Chang
Kristofer E. Bouchard
+
Optimizing the Union of Intersections LASSO ($UoI_{LASSO}$) and Vector Autoregressive ($UoI_{VAR}$) Algorithms for Improved Statistical Estimation at Scale
2018
Mahesh Balasubramanian
Trevor Ruiz
Brandon Cook
Sharmodeep Bhattacharyya
Prabhat
Aviral Shrivastava
Kristofer E. Bouchard
+
Provably convergent acceleration in factored gradient descent with applications in matrix sensing
2018
Tayo Ajayi
David Mildebrath
Anastasios Kyrillidis
Shashanka Ubaru
Γεώργιος Κόλλιας
Kristofer E. Bouchard
+
Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction
2017
Kristofer E. Bouchard
Alejandro F. Bujan
Farbod Roosta-Khorasani
Shashanka Ubaru
Prabhat
Antoine M. Snijders
Jian‐Hua Mao
Edward F. Chang
Michael W. Mahoney
Sharmodeep Bhattacharyya
+
Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction
2017
Kristofer E. Bouchard
Alejandro F. Bujan
Farbod Roosta-Khorasani
Shashanka Ubaru
Prabhat
Antoine M. Snijders
Jian‐Hua Mao
Edward F. Chang
Michael W. Mahoney
Sharmodeep Bhattacharyya
+
PDF
Chat
An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition
2015
Jason D. Wittenbach
Kristofer E. Bouchard
Michael S. Brainard
Dezhe Z. Jin
+
Modeling neural activity at the ensemble level
2015
Joaquín Rapela
Mark Kostuk
Peter F. Rowat
Tim Mullen
Edward F. Chang
Kristofer E. Bouchard
+
Bootstrapped Adaptive Threshold Selection for Statistical Model Selection and Estimation
2015
Kristofer E. Bouchard
+
Modeling neural activity at the ensemble level
2015
Joaquín Rapela
Mark Kostuk
Peter F. Rowat
Tim Mullen
Edward F. Chang
Kristofer E. Bouchard
Common Coauthors
Coauthor
Papers Together
Jesse A. Livezey
9
Sharmodeep Bhattacharyya
8
Edward F. Chang
6
Shashanka Ubaru
5
Prabhat
5
Héctor García Martín
4
David G. Clark
4
Sean Peisert
4
Michael W. Mahoney
4
Rui Meng
4
Chris Mungall
4
Neha S. Wadia
3
Michael R. DeWeese
3
Anastasios Kyrillidis
3
Andrew Tritt
3
Charles G. Frye
3
Γεώργιος Κόλλιας
3
Ahyeon Hwang
3
Trevor Ruiz
3
Jeremy Zucker
2
Orrin Devinsky
2
Alejandro F. Bujan
2
Anil Aswani
2
Brett L. Foster
2
Jacob Yeung
2
W. Holtz
2
Jonathan Winawer
2
Abdelilah Essiari
2
Ian Foster
2
Rui Meng
2
David Mildebrath
2
Murali Emani
2
Olivier David
2
L. Heinrich
2
Zhe Bai
2
Ravi Madduri
2
Stephan Bickel
2
Stefan Appelhoff
2
Krzysztof J. Gorgolewski
2
Oliver Rübel
2
Deepti Tanjore
2
Peter J. Bickel
2
Amy C. Justice
2
Tim Mullen
2
Haruko Wainwright
2
Iris I.A. Groen
2
Ryan Ly
2
D. Agarwal
2
L. Catherine Brinson
2
Bobbie‐Jo Webb‐Robertson
2
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
Deep learning as a tool for neural data analysis: Speech classification and cross-frequency coupling in human sensorimotor cortex
2019
Jesse A. Livezey
Kristofer E. Bouchard
Edward F. Chang
4
+
Regression Shrinkage and Selection Via the Lasso
1996
Robert Tibshirani
4
+
Definitions, methods, and applications in interpretable machine learning
2019
William J. Murdoch
Chandan Singh
Karl Kumbier
Reza Abbasi-Asl
Bin Yu
3
+
Gradient Descent Only Converges to Minimizers
2016
Jason D. Lee
Max Simchowitz
Michael I. Jordan
Benjamin Recht
3
+
Scikit-learn: Machine Learning in Python
2012
Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
3
+
Log Gaussian Cox Processes
1998
Jesper Møller
Anne Randi Syversveen
Rasmus Waagepetersen
3
+
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
2013
Andrew Saxe
James L. McClelland
Surya Ganguli
3
+
PDF
Chat
Nonstationary multivariate Gaussian processes for electronic health records
2021
Rui Meng
Braden Soper
Herbert K. H. Lee
Jean‐Louis Vincent
J Greene
Priyadip Ray
3
+
PDF
Chat
Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints
2016
Laurent Lessard
Benjamin Recht
Andrew Packard
2
+
PDF
Chat
CosmoFlow: Using Deep Learning to Learn the Universe at Scale
2018
Amrita Mathuriya
Deborah Bard
P. J. Mendygral
Lawrence Meadows
James Arnemann
Lei Shao
Siyu He
Tuomas Kärnä
Diana Moise
S. J. Pennycook
2
+
BIDS-EEG: an extension to the Brain Imaging Data Structure (BIDS) Specification for electroencephalography
2018
Cyril Pernet
Stefan Appelhoff
Guillaume Flandin
Christophe Phillips
Arnaud Delorme
Robert Oostenveld
2
+
Gaussian Process Regression Networks
2011
Andrew Gordon Wilson
David A. Knowles
Zoubin Ghahramani
2
+
Black Box Variational Inference
2014
Rajesh Ranganath
Sean Gerrish
David M. Blei
2
+
A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements
2015
Qinqing Zheng
John Lafferty
2
+
PDF
Chat
Self-driving laboratory for accelerated discovery of thin-film materials
2020
Benjamin P. MacLeod
Fraser G. L. Parlane
Thomas D. Morrissey
Florian Häse
Loı̈c M. Roch
Kevan E. Dettelbach
Raphaell Moreira
Lars P. E. Yunker
Michael B. Rooney
Joseph R. Deeth
2
+
PDF
Chat
ADMiRA: Atomic Decomposition for Minimum Rank Approximation
2010
Kiryung Lee
Yoram Bresler
2
+
A Direct Estimation of High Dimensional Stationary Vector Autoregressions
2013
Fang Han
Huanran Lu
Han Liu
2
+
Dynamic reconfiguration of human brain networks during learning
2011
Danielle S. Bassett
Nicholas F. Wymbs
Mason A. Porter
Peter J. Mucha
Jean M. Carlson
Scott T. Grafton
2
+
Inferring high-dimensional poisson autoregressive models
2016
Eric C. Hall
Garvesh Raskutti
Rebecca Willett
2
+
PDF
Chat
CUR matrix decompositions for improved data analysis
2009
Michael W. Mahoney
Petros Drineas
2
+
A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization
2003
Samuel Burer
Renato D. C. Monteiro
2
+
Finding Low-rank Solutions to Matrix Problems, Efficiently and Provably.
2016
Dohyung Park
Anastasios Kyrillidis
Constantine Caramanis
Sujay Sanghavi
2
+
Geometry of neural network loss surfaces via random matrix theory
2017
Jeffrey Pennington
Yasaman Bahri
2
+
Provable quantum state tomography via non-convex methods
2017
Anastasios Kyrillidis
Amir Kalev
Dohyung Park
Srinadh Bhojanapalli
Constantine Caramanis
Sujay Sanghavi
2
+
Newton-MR: Newton's Method Without Smoothness or Convexity
2018
Fred Roosta
Yang Liu
Peng Xu
Michael W. Mahoney
2
+
Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees
2015
Yudong Chen
Martin J. Wainwright
2
+
Guaranteed Minimum Rank Approximation from Linear Observations by Nuclear Norm Minimization with an Ellipsoidal Constraint
2009
Kiryung Lee
Yoram Bresler
2
+
Universal low-rank matrix recovery from Pauli measurements
2011
Yikai Liu
2
+
PDF
Chat
Nearly unbiased variable selection under minimax concave penalty
2010
Cun‐Hui Zhang
2
+
PDF
Chat
A rank minimization heuristic with application to minimum order system approximation
2001
Maryam Fazel
H. Hindi
Stephen Boyd
2
+
Regularization Paths for Generalized Linear Models via Coordinate Descent.
2010
Jerome H. Friedman
Trevor Hastie
Rob Tibshirani
2
+
PDF
Chat
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
2010
Benjamin Recht
Maryam Fazel
Pablo A. Parrilo
2
+
Some methods of speeding up the convergence of iteration methods
1964
B. T. Polyak
2
+
Guaranteed Rank Minimization via Singular Value Projection
2010
Prateek Jain
Raghu Meka
Inderjit S. Dhillon
2
+
Distilling the Knowledge in a Neural Network
2015
Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
2
+
PDF
Chat
Going deeper with convolutions
2015
Christian Szegedy
Wei Liu
Yangqing Jia
Pierre Sermanet
Scott Reed
Dragomir Anguelov
Dumitru Erhan
Vincent Vanhoucke
Andrew Rabinovich
2
+
PDF
Chat
Deep Learning Face Attributes in the Wild
2015
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
2
+
Analysis of Newton’s Method at Irregular Singularities
1983
Andreas Griewank
M. R. Osborne
2
+
PDF
Chat
Joint Estimation of Multiple Graphical Models from High Dimensional Time Series
2015
Huitong Qiu
Fang Han
Han Liu
Brian Caffo
2
+
Multivariable variogram and its application to the linear model of coregionalization
1991
Gilles Bourgault
Denis Marcotte
2
+
PDF
Chat
Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators
2012
Steven T. Flammia
David Groß
Yi-Kai Liu
Jens Eisert
2
+
PDF
Chat
Matrix Recipes for Hard Thresholding Methods
2013
Anastasios Kyrillidis
Volkan Cevher
2
+
PDF
Chat
The Jackknife and the Bootstrap for General Stationary Observations
1989
Hans R. Künsch
2
+
PDF
Chat
Robust principal component analysis?
2011
Emmanuel J. Candès
Xiaodong Li
Yi Ma
John Wright
2
+
PDF
Chat
The Joint Graphical Lasso for Inverse Covariance Estimation Across Multiple Classes
2013
Patrick Danaher
Pei Wang
Daniela Witten
2
+
Stochastic variational inference
2013
Matthew D. Hoffman
David M. Blei
Chong Wang
John Paisley
2
+
Guaranteed Matrix Completion via Non-Convex Factorization
2016
Ruoyu Sun
Zhi‐Quan Luo
2
+
No spurious local minima in nonconvex low rank problems: a unified geometric analysis
2017
Rong Ge
Chi Jin
Yi Zheng
2
+
Interior-Point Method for Nuclear Norm Approximation with Application to System Identification
2009
Zhang Liu
Lieven Vandenberghe
2
+
Provable Burer-Monteiro factorization for a class of norm-constrained matrix problems
2016
Dohyung Park
Anastasios Kyrillidis
Srinadh Bhojanapalli
Constantine Caramanis
Sujay Sanghavi
2