François Savard

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Describing Videos by Exploiting Temporal Structure 2015 Li Yao
Atousa Torabi
Kyunghyun Cho
Nicolas Ballas
Christopher Pal
Hugo Larochelle
Aaron Courville
1
+ Recurrent Neural Network Regularization 2014 Wojciech Zaremba
Ilya Sutskever
Oriol Vinyals
1
+ One weird trick for parallelizing convolutional neural networks 2014 Alex Krizhevsky
1
+ Theano: new features and speed improvements 2012 Frédéric Bastien
Pascal Lamblin
Razvan Pascanu
James Bergstra
Ian J. Goodfellow
Arnaud Bergeron
Nicolas Bouchard
David Warde-Farley
Yoshua Bengio
1
+ cuDNN: Efficient Primitives for Deep Learning 2014 Sharan Chetlur
Cliff Woolley
Philippe Vandermersch
Jonathan Cohen
John Tran
Bryan Catanzaro
Evan Shelhamer
1
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
1
+ Pylearn2: a machine learning research library 2013 Ian Goodfellow
David Warde-Farley
Pascal Lamblin
Vincent Dumoulin
Mehdi Mirza
Razvan Pascanu
James Bergstra
Frédéric Bastien
Yoshua Bengio
1
+ PDF Chat Going deeper with convolutions 2015 Christian Szegedy
Wei Liu
Yangqing Jia
Pierre Sermanet
Scott Reed
Dragomir Anguelov
Dumitru Erhan
Vincent Vanhoucke
Andrew Rabinovich
1
+ Blocks and Fuel: Frameworks for deep learning 2015 Bart van Merriënboer
Dzmitry Bahdanau
Vincent Dumoulin
Dmitriy Serdyuk
David Warde-Farley
Jan Chorowski
Yoshua Bengio
1
+ PDF Chat The NumPy Array: A Structure for Efficient Numerical Computation 2011 Stéfan van der Walt
Steven C. Colbert
Gaël Varoquaux
1
+ MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems 2015 Tianqi Chen
Mu Li
Yutian Li
Min Lin
Naiyan Wang
Minjie Wang
Tianjun Xiao
Bing Xu
Chiyuan Zhang
Zheng Zhang
1
+ PDF Chat Probabilistic programming in Python using PyMC3 2016 John Salvatier
Thomas V. Wiecki
Christopher Fonnesbeck
1
+ Virtualizing Deep Neural Networks for Memory-Efficient Neural Network Design 2016 Minsoo Rhu
Natalia Gimelshein
Jason Clemons
Arslan Zulfiqar
Stephen W. Keckler
1
+ A guide to convolution arithmetic for deep learning 2016 Vincent Dumoulin
Francesco Visin
1
+ Training Deep Nets with Sublinear Memory Cost 2016 Tianqi Chen
Bing Xu
Chiyuan Zhang
Carlos Guestrin
1
+ OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 2014 Pierre Sermanet
David Eigen
Xiang Zhang
Michaël Mathieu
Rob Fergus
Yann LeCun
1
+ Deep learning with Elastic Averaging SGD 2014 Sixin Zhang
Anna Choromanska
Yann LeCun
1
+ Learning internal representations 1995 Jonathan Baxter
1