Prudencio Tossou

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Implicit Delta Learning of High Fidelity Neural Network Potentials 2024 Stephan Thaler
Cristian Gabellini
Nikhil Shenoy
Prudencio Tossou
+ PDF Chat OpenQDC: Open Quantum Data Commons 2024 Cristian Gabellini
Nikhil Shenoy
Stephan Thaler
Semih Cantürk
Daniel McNeela
Dominique Beaini
Michael Bronstein
Prudencio Tossou
+ PDF Chat Gotta be SAFE: a new framework for molecular design 2024 Emmanuel Noutahi
Cristian Gabellini
Michael Craig
Jonathan S. C. Lim
Prudencio Tossou
+ Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets 2023 Dominique Beaini
Shenyang Huang
Joao Alex Cunha
Gabriela Moisescu-Pareja
Oleksandr Dymov
Samuel Maddrell-Mander
Callum McLean
Frederik Wenkel
Luis T. Díaz Müller
Jama Hussein Mohamud
+ Gotta be SAFE: A New Framework for Molecular Design 2023 Emmanuel Noutahi
Cristian Gabellini
Michael Craig
Jonathan S. C. Lim
Prudencio Tossou
+ Role of Structural and Conformational Diversity for Machine Learning Potentials 2023 Nikhil Shenoy
Prudencio Tossou
Emmanuel Noutahi
Hadrien Mary
Dominique Beaini
Jiarui Ding
+ Rethinking Graph Transformers with Spectral Attention 2021 Devin Kreuzer
Dominique Beaini
William L. Hamilton
Vincent Létourneau
Prudencio Tossou
+ 3D Infomax improves GNNs for Molecular Property Prediction 2021 H. Stärk
Dominique Beaini
Gabriele Corso
Prudencio Tossou
Christian Dallago
Stephan Günnemann
Píetro Lió
+ 3D Infomax improves GNNs for Molecular Property Prediction 2021 H. Stärk
Dominique Beaini
Gabriele Corso
Prudencio Tossou
Christian Dallago
Stephan Günnemann
Píetro Lió
+ Rethinking Graph Transformers with Spectral Attention 2021 Devin Kreuzer
Dominique Beaini
William L. Hamilton
Vincent Létourneau
Prudencio Tossou
+ 3D Infomax improves GNNs for Molecular Property Prediction 2021 H. Stärk
Dominique Beaini
Gabriele Corso
Prudencio Tossou
Christian Dallago
Stephan Günnemann
Píetro Lió
+ Rethinking Graph Transformers with Spectral Attention 2021 Devin Kreuzer
Dominique Beaini
William L. Hamilton
Vincent Létourneau
Prudencio Tossou
+ Geodesics in fibered latent spaces: A geometric approach to learning correspondences between conditions 2020 Tariq Daouda
Reda Chhaibi
Prudencio Tossou
Alexandra‐Chloé Villani
+ Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling. 2019 Emmanuel Noutahi
Dominique Beaini
Julien Horwood
Prudencio Tossou
+ Adaptive Deep Kernel Learning 2019 Prudencio Tossou
Basile Dura
François Laviolette
Mario Marchand
Alexandre Lacoste
+ Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling 2019 Emmanuel Noutahi
Dominique Beaini
Julien Horwood
Sébastien Giguère
Prudencio Tossou
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Junction Tree Variational Autoencoder for Molecular Graph Generation 2018 Wengong Jin
Regina Barzilay
Tommi Jaakkola
2
+ Representation Learning with Contrastive Predictive Coding 2018 Aäron van den Oord
Yazhe Li
Oriol Vinyals
2
+ Inductive Representation Learning on Large Graphs 2017 William L. Hamilton
Rex Ying
Jure Leskovec
2
+ PDF Chat Multi-objective de novo drug design with conditional graph generative model 2018 Yibo Li
Liangren Zhang
Zhenming Liu
2
+ Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks 2019 Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
Xiang Song
Jinjing Zhou
Chao Ma
Lingfan Yu
Yu Gai
2
+ How Powerful are Graph Neural Networks 2018 Keyulu Xu
Weihua Hu
Jure Leskovec
Stefanie Jegelka
2
+ Neural Message Passing for Quantum Chemistry 2017 Justin Gilmer
Samuel S. Schoenholz
Patrick Riley
Oriol Vinyals
George E. Dahl
2
+ Learning Deep Generative Models of Graphs 2018 Yujia Li
Oriol Vinyals
Chris Dyer
Razvan Pascanu
Peter Battaglia
2
+ Gated Graph Sequence Neural Networks 2016 Yujia Li
Daniel Tarlow
Marc Brockschmidt
Richard S. Zemel
1
+ From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification 2016 André F. T. Martins
Ramón Fernández Astudillo
1
+ PDF Chat Molecular graph convolutions: moving beyond fingerprints 2016 Steven Kearnes
Kevin McCloskey
Marc Berndl
Vijay S. Pande
Patrick Riley
1
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
1
+ PDF Chat Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs 2017 Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
Michael M. Bronstein
1
+ PDF Chat Geometric Deep Learning: Going beyond Euclidean data 2017 Michael M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
Pierre Vandergheynst
1
+ PDF Chat MoleculeNet: a benchmark for molecular machine learning 2017 Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
Caleb Geniesse
Aneesh Pappu
Karl Leswing
Vijay S. Pande
1
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
1
+ Prototypical Networks for Few-shot Learning 2017 Jake Snell
Kevin Swersky
Richard S. Zemel
1
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
1
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
1
+ Meta-SGD: Learning to Learn Quickly for Few-Shot Learning 2017 Zhenguo Li
Fengwei Zhou
Fei Chen
Hang Li
1
+ Graph Attention Networks 2017 Petar Veličković
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Píetro Lió
Yoshua Bengio
1
+ Wasserstein Auto-Encoders 2017 Ilya Tolstikhin
Olivier Bousquet
Sylvain Gelly
Bernhard Schoelkopf
1
+ Residual Gated Graph ConvNets 2017 Xavier Bresson
Thomas Laurent
1
+ Few-Shot Learning with Graph Neural Networks 2017 Víctor García
Joan Bruna
1
+ MINE: Mutual Information Neural Estimation. 2018 Ishmael Belghazi
Sai Rajeswar
Aristide Baratin
R Devon Hjelm
Aaron Courville
1
+ Conditional Neural Processes 2018 Marta Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
David Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
1
+ Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation 2018 Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
Jure Leskovec
1
+ Bayesian Model-Agnostic Meta-Learning 2018 Taesup Kim
Jaesik Yoon
Ousmane Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
1
+ MolGAN: An implicit generative model for small molecular graphs 2018 Nicola De Cao
Thomas Kipf
1
+ Learning deep representations by mutual information estimation and maximization 2018 R Devon Hjelm
Alex Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
1
+ DEFactor: Differentiable Edge Factorization-based Probabilistic Graph Generation 2018 Rim Assouel
Mohamed M. Ahmed
Marwin Segler
Amir Saffari
Yoshua Bengio
1
+ Attentive Neural Processes 2019 Hyunjik Kim
Andriy Mnih
Jonathan Schwarz
Marta Garnelo
Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
1
+ A Closer Look at Few-shot Classification 2019 Wei-Yu Chen
Yen‐Cheng Liu
Zsolt Kira
Yu-Chiang Frank Wang
Jia‐Bin Huang
1
+ Fast Graph Representation Learning with PyTorch Geometric 2019 Matthias Fey
Jan Eric Lenssen
1
+ PDF Chat PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges 2019 Oliver T. Unke
Markus Meuwly
1
+ Few-shot Learning: A Survey 2019 Yaqing Wang
Quanming Yao
1
+ Graph Convolutional Networks with EigenPooling 2019 Yao Ma
Suhang Wang
Charų C. Aggarwal
Jiliang Tang
1
+ MoleculeNet: A Benchmark for Molecular Machine Learning 2017 Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
Caleb Geniesse
Aneesh Pappu
Karl Leswing
Vijay S. Pande
1
+ Predict then Propagate: Graph Neural Networks meet Personalized PageRank 2018 Johannes Klicpera
Aleksandar Bojchevski
Stephan Günnemann
1
+ Utilizing Edge Features in Graph Neural Networks via Variational Information Maximization 2019 Pengfei Chen
Weiwen Liu
Chang‐Yu Hsieh
Guangyong Chen
Shengyu Zhang
1
+ Neural Turing Machines 2014 Alex Graves
Greg Wayne
Ivo Danihelka
1
+ GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models 2018 Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
Jure Leskovec
1
+ Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination 2018 Zhirong Wu
Yuanjun Xiong
Stella X. Yu
Dahua Lin
1
+ Neural Message Passing for Quantum Chemistry 2017 Justin Gilmer
Samuel S. Schoenholz
Patrick Riley
Oriol Vinyals
George E. Dahl
1
+ Deep Sets 2017 Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczos
Ruslan Salakhutdinov
Alexander J. Smola
1
+ Partial Functional Correspondence 2015 Emanuele Rodolà
Luca Cosmo
Michael M. Bronstein
Andrea Torsello
Daniel Cremers
1
+ PDF Chat Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks 2019 Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
Jan Eric Lenssen
Gaurav Rattan
Martin Grohe
1
+ Explanation in artificial intelligence: Insights from the social sciences 2018 Tim Miller
1
+ Matching networks for one shot learning 2016 Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
1
+ Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation 2018 Matt Post
David Vilar
1