Xiaolin Song

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Ergodicity of Markov chain Monte Carlo with reversible proposal 2017 Kengo Kamatani
3
+ PDF Chat A discrete bouncy particle sampler 2021 Chris Sherlock
Alexandre H. Thiéry
3
+ Asymptotic theory for non-linear least squares estimator for diffusion processes 1983 Б. Л. С. Пракаса Рао
3
+ Estimation for diffusion processes from discrete observation 1992 Nakahiro Yoshida
3
+ Optimal tuning of the hybrid Monte Carlo algorithm 2013 Alexandros Beskos
Natesh S. Pillai
Gareth O. Roberts
J. M. Sanz‐Serna
Andrew M. Stuart
3
+ Efficient strategy for the Markov chain Monte Carlo in high-dimension with heavy-tailed target probability distribution 2018 Kengo Kamatani
3
+ PDF Chat MCMC METHODS FOR DIFFUSION BRIDGES 2008 Alexandros Beskos
Gareth O. Roberts
Andrew M. Stuart
Jochen Voß
3
+ Approximate discrete-time schemes for statistics of diffusion processes 1989 Danielle Florens-Zmirou
3
+ Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation 2000 Jun S. Liu
3
+ Proposals which speed up function-space MCMC 2013 Kody J. H. Law
2
+ PDF Chat A weakly informative default prior distribution for logistic and other regression models 2008 Andrew Gelman
Aleks Jakulin
Maria Grazia Pittau
Yu‐Sung Su
2
+ PDF Chat Dimension-independent likelihood-informed MCMC 2015 Tiangang Cui
Kody J. H. Law
Youssef Marzouk
2
+ The Theory and Algorithm of Ergodic Inference 2018 Yichuan Zhang
2
+ Parallel MCMC with generalized elliptical slice sampling 2014 Robert Nishihara
Iain Murray
Ryan P. Adams
2
+ PDF Chat Non-reversible guided Metropolis kernel 2023 Kengo Kamatani
Xiaolin Song
2
+ PDF Chat MCMC Using Hamiltonian Dynamics 2011 Radford M. Neal
2
+ PDF Chat Rejection-free Monte Carlo sampling for general potentials 2012 E.A.J.F. Peters
Gijsbertus de With
2
+ Parameter Expansion for Data Augmentation 1999 Jun S. Liu
Ying Wu
2
+ PDF Chat Statistical inference from sampled data for stochastic processes 1988 Б. Л. С. Пракаса Рао
2
+ PDF Chat Handbook of Markov Chain Monte Carlo 2011 Steve Brooks
Andrew Gelman
Galin L. Jones
Xiao‐Li Meng
2
+ Parameter Expansion for Data Augmentation 1999 Jun S. Liu
Ying Wu
2
+ PDF Chat Weak convergence and optimal scaling of random walk Metropolis algorithms 1997 Susan A. Gelman
Walter R. Gilks
Gareth O. Roberts
2
+ PDF Chat On a Generalization of the Preconditioned Crank–Nicolson Metropolis Algorithm 2016 Daniel Rudolf
Björn Sprungk
2
+ PDF Chat Rates of convergence of the Hastings and Metropolis algorithms 1996 Kerrie Mengersen
Richard L. Tweedie
2
+ PDF Chat Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo algorithm 2022 Matthew Ludkin
Chris Sherlock
2
+ Exploiting Symmetries to Construct Efficient MCMC Algorithms With an Application to SLAM 2015 Roshan Shariff
András György
Csaba Szepesvári
2
+ Elliptical slice sampling 2010 Iain Murray
Ryan P. Adams
David Mackay
2
+ Hybrid Monte Carlo on Hilbert spaces 2011 Alexandros Beskos
F. J. Pinski
J. M. Sanz‐Serna
Andrew M. Stuart
2
+ PDF Chat Markov chain Monte Carlo algorithms with sequential proposals 2020 Joon Ha Park
Yves F. Atchadé
2
+ On parallelizable Markov chain Monte Carlo algorithms with waste-recycling 2017 Shihao Yang
Yang Chen
Espen Bernton
Jun S. Liu
2
+ PDF Chat An Introduction to Bayesian Analysis 2006 Jayanta K. Ghosh
Mohan Delampady
T. K. Samanta
1
+ Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario 2019 Christophe Andrieu
Samuel Livingstone
1
+ A complete recipe for stochastic gradient MCMC 2015 Yi-An Ma
Tianqi Chen
Emily B. Fox
1
+ Magnetic hamiltonian Monte Carlo 2017 Nilesh Tripuraneni
Mark Rowland
Zoubin Ghahramani
Richard E. Turner
1
+ PDF Chat Auxiliary Gradient-Based Sampling Algorithms 2018 Michalis K. Titsias
Omiros Papaspiliopoulos
1
+ Leave Pima Indians Alone: Binary Regression as a Benchmark for Bayesian Computation 2017 Nicolás Chopin
James Ridgway
1
+ PDF Chat The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method 2017 Alexandre Bouchard‐Côté
Sebastian J. Vollmer
Arnaud Doucet
1
+ A-NICE-MC: Adversarial Training for MCMC 2017 Jiaming Song
Shengjia Zhao
Stefano Ermon
1
+ PDF Chat Lifting—A nonreversible Markov chain Monte Carlo algorithm 2016 Marija Vucelja
1
+ Asymptotically Exact, Embarrassingly Parallel MCMC 2013 Willie Neiswanger
Chong Wang
Eric P. Xing
1
+ PDF Chat Multimodal Trajectory Predictions for Autonomous Driving using Deep Convolutional Networks 2019 Henggang Cui
Vladan Radosavljević
Fang‐Chieh Chou
Tsung-Han Lin
Thi Nguyen
Tzu-Kuo Huang
Jeff Schneider
Nemanja Djuric
1
+ PDF Chat Two Metropolis--Hastings Algorithms for Posterior Measures with Non-Gaussian Priors in Infinite Dimensions 2019 Bamdad Hosseini
1
+ Lifted samplers for partially ordered discrete state-spaces 2020 Philippe Gagnon
Florian Maire
1
+ Slice Sampling 2000 Radford M. Neal
1
+ The Boomerang Sampler 2020 Joris Bierkens
Sebastiano Grazzi
Kengo Kamatani
Gareth O. Roberts
1
+ PDF Chat Non-reversible Metropolis-Hastings 2015 Joris Bierkens
1
+ PDF Chat The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data 2019 Joris Bierkens
Paul Fearnhead
Gareth O. Roberts
1
+ PDF Chat Human-Like Decision Making for Autonomous Driving: A Noncooperative Game Theoretic Approach 2020 Peng Hang
Chen Lv
Yang Xing
Chao Huang
Zhongxu Hu
1
+ PDF Chat Irreversible samplers from jump and continuous Markov processes 2018 Yi-An Ma
Emily B. Fox
Tianqi Chen
Lei Wu
1
+ PDF Chat End-to-end Contextual Perception and Prediction with Interaction Transformer 2020 Lingyun Luke Li
Bin Yang
Ming Liang
Wenyuan Zeng
Mengye Ren
Sean Segal
Raquel Urtasun
1