Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Katelyn Gao
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
Generalizing Gaussian Smoothing for Random Search
2022
Katelyn Gao
Ozan Şener
+
Modeling and Optimization Trade-off in Meta-learning
2020
Katelyn Gao
Ozan Şener
+
Modeling and Optimization Trade-off in Meta-learning
2020
Katelyn Gao
Ozan Şener
+
PDF
Chat
ESTIMATION AND INFERENCE FOR VERY LARGE LINEAR MIXED EFFECTS MODELS
2018
Katelyn Gao
Art B. Owen
+
Assessing Generalization in Deep Reinforcement Learning
2018
Charles Packer
Katelyn Gao
Jernej Kos
Philipp Krähenbühl
Vladlen Koltun
Dawn Song
+
Efficient moment calculations for variance components in large unbalanced crossed random effects models
2017
Katelyn Gao
Art B. Owen
+
Statistical Inference for Algorithmic Leveraging
2016
Katelyn Gao
+
Estimation and Inference for Very Large Linear Mixed Effects Models
2016
Katelyn Gao
A. B. Owen
+
Confidence Intervals for Algorithmic Leveraging in Linear Regression
2016
Katelyn Gao
Common Coauthors
Coauthor
Papers Together
Ozan Şener
3
Art B. Owen
2
Charles Packer
1
Philipp Krähenbühl
1
Jernej Kos
1
Vladlen Koltun
1
A. B. Owen
1
Dawn Song
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler
1997
Gareth O. Roberts
Sujit K. Sahu
3
+
Estimation of Variance and Covariance Components
1953
Charles Henderson
3
+
PDF
Chat
The ASA Statement on <i>p</i>-Values: Context, Process, and Purpose
2016
Ronald L. Wasserstein
Nicole A. Lazar
2
+
PDF
Chat
Bayes and big data: the consensus Monte Carlo algorithm
2016
Steven L. Scott
Alexander W. Blocker
Fernando V. Bonassi
Hugh Chipman
Edward I. George
Robert E. McCulloch
2
+
A Crossed Random Effects Model for Unbalanced Data With Applications in Cross-Sectional and Longitudinal Research
1993
Stephen W. Raudenbush
2
+
Polynomial Accelerated MCMC and Other Sampling Algorithms Inspired by Computational Optimization
2013
Colin Fox
2
+
Proximal Policy Optimization Algorithms
2017
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
2
+
Matrix versions of the Cauchy and Kantorovich inequalities
1990
Albert W. Marshall
Ingram Olkin
2
+
Updating the Inverse of a Matrix
1989
William W. Hager
2
+
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
2016
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
2
+
Trust Region Policy Optimization
2015
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
2
+
PDF
Chat
The pigeonhole bootstrap
2007
Art B. Owen
2
+
The BOBYQA algorithm for bound constrained optimization without derivatives
2009
M. J. D. Powell
2
+
PDF
Chat
Julia: A Fresh Approach to Numerical Computing
2017
Jeff Bezanson
Alan Edelman
Stefan Karpinski
Viral B. Shah
2
+
Bilevel Programming: A Combinatorial Perspective
2005
Patrice Marcotte
Gilles Savard
1
+
On best approximate solutions of linear matrix equations
1956
Roger Penrose
1
+
Consistent Estimators in Generalized Linear Mixed Models
1998
Jiming Jiang
1
+
Regression Shrinkage and Selection Via the Lasso
1996
Robert Tibshirani
1
+
PDF
Chat
CUR matrix decompositions for improved data analysis
2009
Michael W. Mahoney
Petros Drineas
1
+
Optimizing the CVaR via sampling
2015
Aviv Tamar
Yonatan Glassner
Shie Mannor
1
+
Benchmarking Deep Reinforcement Learning for Continuous Control
2016
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
1
+
ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning
2016
Michał Kempka
Marek Wydmuch
Grzegorz Runc
Jakub Toczek
Wojciech Jaśkowski
1
+
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles
2016
Aravind Rajeswaran
Sarvjeet Ghotra
Balaraman Ravindran
Sergey Levine
1
+
Learning to reinforcement learn
2016
Jane X. Wang
Zeb Kurth‐Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z. Leibo
Rémi Munos
Charles Blundell
Dharshan Kumaran
Matt Botvinick
1
+
PDF
Chat
50 Years of Data Science
2017
David L. Donoho
1
+
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
2017
Chelsea Finn
Pieter Abbeel
Sergey Levine
1
+
PDF
Chat
Domain randomization for transferring deep neural networks from simulation to the real world
2017
Josh Tobin
Rachel Fong
Alex Ray
Jonas Schneider
Wojciech Zaremba
Pieter Abbeel
1
+
A Statistical Perspective on Algorithmic Leveraging
2013
Ping Ma
Michael W. Mahoney
Bin Yu
1
+
Fast approximation of matrix coherence and statistical leverage
2012
Petros Drineas
Malik Magdon‐Ismail
Michael W. Mahoney
David P. Woodruff
1
+
Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics
2017
Ken Kansky
Tom Silver
David A. Mély
Mohamed Eldawy
Miguel Lázaro-Gredilla
Xinghua Lou
Nimrod Dorfman
Szymon Sidor
Scott Phoenix
Dileep George
1
+
An Overview of Multi-Task Learning in Deep Neural Networks
2017
Sebastian Ruder
1
+
Reinforcement Learning under Model Mismatch
2017
Aurko Roy
Huan Xu
Sebastian Pokutta
1
+
Learning to Learn: Meta-Critic Networks for Sample Efficient Learning
2017
Flood Sung
Zhang Li
Tao Xiang
Timothy M. Hospedales
Yongxin Yang
1
+
PDF
Chat
Deep Reinforcement Learning That Matters
2018
Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
1
+
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments
2017
Maruan Al-Shedivat
Trapit Bansal
Yuri Burda
Ilya Sutskever
Igor Mordatch
Pieter Abbeel
1
+
Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm
2017
Chelsea Finn
Sergey Levine
1
+
AI Safety Gridworlds
2017
Jan Leike
Miljan Martic
Victoria Krakovna
Pedro A. Ortega
Tom Everitt
Andrew Lefrancq
Laurent Orseau
Shane Legg
1
+
Deep Learning: A Critical Appraisal
2018
Gary Marcus
1
+
High-Dimensional Probability: An Introduction with Applications in Data Science
2018
Roman Vershynin
1
+
Meta Reinforcement Learning with Latent Variable Gaussian Processes
2018
Steindór Sæmundsson
Katja Hofmann
Marc Peter Deisenroth
1
+
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
2018
Shaojie Bai
J. Zico Kolter
Vladlen Koltun
1
+
Reptile: a Scalable Metalearning Algorithm
2018
Alex Nichol
John Schulman
1
+
On First-Order Meta-Learning Algorithms.
2018
Alex Nichol
Joshua Achiam
John Schulman
1
+
Gotta Learn Fast: A New Benchmark for Generalization in RL
2018
Alex Nichol
Vicki Pfau
Christopher Hesse
Oleg Klimov
John Schulman
1
+
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
2018
Luca Franceschi
Paolo Frasconi
Saverio Salzo
Riccardo Grazzi
Massimilano Pontil
1
+
A Dissection of Overfitting and Generalization in Continuous Reinforcement Learning
2018
Amy Zhang
Nicolas Ballas
Joëlle Pineau
1
+
Illuminating Generalization in Deep Reinforcement Learning through Procedural Level Generation
2018
Niels Justesen
Rubén Rodríguez Torrado
Philip Bontrager
Ahmed Khalifa
Julian Togelius
Sebastian Risi
1
+
Assessing Generalization in Deep Reinforcement Learning
2018
Charles Packer
Katelyn Gao
Jernej Kos
Philipp Krähenbühl
Vladlen Koltun
Dawn Song
1
+
Quantifying Generalization in Reinforcement Learning
2018
Karl Cobbe
Oleg Klimov
Chris Hesse
Taehoon Kim
John Schulman
1
+
Online Meta-Learning
2019
Chelsea Finn
Aravind Rajeswaran
Sham M. Kakade
Sergey Levine
1