Katelyn Gao

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler 1997 Gareth O. Roberts
Sujit K. Sahu
3
+ Estimation of Variance and Covariance Components 1953 Charles Henderson
3
+ PDF Chat The ASA Statement on <i>p</i>-Values: Context, Process, and Purpose 2016 Ronald L. Wasserstein
Nicole A. Lazar
2
+ PDF Chat Bayes and big data: the consensus Monte Carlo algorithm 2016 Steven L. Scott
Alexander W. Blocker
Fernando V. Bonassi
Hugh Chipman
Edward I. George
Robert E. McCulloch
2
+ A Crossed Random Effects Model for Unbalanced Data With Applications in Cross-Sectional and Longitudinal Research 1993 Stephen W. Raudenbush
2
+ Polynomial Accelerated MCMC and Other Sampling Algorithms Inspired by Computational Optimization 2013 Colin Fox
2
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
2
+ Matrix versions of the Cauchy and Kantorovich inequalities 1990 Albert W. Marshall
Ingram Olkin
2
+ Updating the Inverse of a Matrix 1989 William W. Hager
2
+ RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning 2016 Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
2
+ Trust Region Policy Optimization 2015 John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
2
+ PDF Chat The pigeonhole bootstrap 2007 Art B. Owen
2
+ The BOBYQA algorithm for bound constrained optimization without derivatives 2009 M. J. D. Powell
2
+ PDF Chat Julia: A Fresh Approach to Numerical Computing 2017 Jeff Bezanson
Alan Edelman
Stefan Karpinski
Viral B. Shah
2
+ Bilevel Programming: A Combinatorial Perspective 2005 Patrice Marcotte
Gilles Savard
1
+ On best approximate solutions of linear matrix equations 1956 Roger Penrose
1
+ Consistent Estimators in Generalized Linear Mixed Models 1998 Jiming Jiang
1
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
1
+ PDF Chat CUR matrix decompositions for improved data analysis 2009 Michael W. Mahoney
Petros Drineas
1
+ Optimizing the CVaR via sampling 2015 Aviv Tamar
Yonatan Glassner
Shie Mannor
1
+ Benchmarking Deep Reinforcement Learning for Continuous Control 2016 Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
1
+ ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning 2016 Michał Kempka
Marek Wydmuch
Grzegorz Runc
Jakub Toczek
Wojciech Jaśkowski
1
+ EPOpt: Learning Robust Neural Network Policies Using Model Ensembles 2016 Aravind Rajeswaran
Sarvjeet Ghotra
Balaraman Ravindran
Sergey Levine
1
+ Learning to reinforcement learn 2016 Jane X. Wang
Zeb Kurth‐Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z. Leibo
Rémi Munos
Charles Blundell
Dharshan Kumaran
Matt Botvinick
1
+ PDF Chat 50 Years of Data Science 2017 David L. Donoho
1
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
1
+ PDF Chat Domain randomization for transferring deep neural networks from simulation to the real world 2017 Josh Tobin
Rachel Fong
Alex Ray
Jonas Schneider
Wojciech Zaremba
Pieter Abbeel
1
+ A Statistical Perspective on Algorithmic Leveraging 2013 Ping Ma
Michael W. Mahoney
Bin Yu
1
+ Fast approximation of matrix coherence and statistical leverage 2012 Petros Drineas
Malik Magdon‐Ismail
Michael W. Mahoney
David P. Woodruff
1
+ Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics 2017 Ken Kansky
Tom Silver
David A. Mély
Mohamed Eldawy
Miguel Lázaro-Gredilla
Xinghua Lou
Nimrod Dorfman
Szymon Sidor
Scott Phoenix
Dileep George
1
+ An Overview of Multi-Task Learning in Deep Neural Networks 2017 Sebastian Ruder
1
+ Reinforcement Learning under Model Mismatch 2017 Aurko Roy
Huan Xu
Sebastian Pokutta
1
+ Learning to Learn: Meta-Critic Networks for Sample Efficient Learning 2017 Flood Sung
Zhang Li
Tao Xiang
Timothy M. Hospedales
Yongxin Yang
1
+ PDF Chat Deep Reinforcement Learning That Matters 2018 Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
1
+ Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments 2017 Maruan Al-Shedivat
Trapit Bansal
Yuri Burda
Ilya Sutskever
Igor Mordatch
Pieter Abbeel
1
+ Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm 2017 Chelsea Finn
Sergey Levine
1
+ AI Safety Gridworlds 2017 Jan Leike
Miljan Martic
Victoria Krakovna
Pedro A. Ortega
Tom Everitt
Andrew Lefrancq
Laurent Orseau
Shane Legg
1
+ Deep Learning: A Critical Appraisal 2018 Gary Marcus
1
+ High-Dimensional Probability: An Introduction with Applications in Data Science 2018 Roman Vershynin
1
+ Meta Reinforcement Learning with Latent Variable Gaussian Processes 2018 Steindór Sæmundsson
Katja Hofmann
Marc Peter Deisenroth
1
+ An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling 2018 Shaojie Bai
J. Zico Kolter
Vladlen Koltun
1
+ Reptile: a Scalable Metalearning Algorithm 2018 Alex Nichol
John Schulman
1
+ On First-Order Meta-Learning Algorithms. 2018 Alex Nichol
Joshua Achiam
John Schulman
1
+ Gotta Learn Fast: A New Benchmark for Generalization in RL 2018 Alex Nichol
Vicki Pfau
Christopher Hesse
Oleg Klimov
John Schulman
1
+ Bilevel Programming for Hyperparameter Optimization and Meta-Learning 2018 Luca Franceschi
Paolo Frasconi
Saverio Salzo
Riccardo Grazzi
Massimilano Pontil
1
+ A Dissection of Overfitting and Generalization in Continuous Reinforcement Learning 2018 Amy Zhang
Nicolas Ballas
Joëlle Pineau
1
+ Illuminating Generalization in Deep Reinforcement Learning through Procedural Level Generation 2018 Niels Justesen
Rubén Rodríguez Torrado
Philip Bontrager
Ahmed Khalifa
Julian Togelius
Sebastian Risi
1
+ Assessing Generalization in Deep Reinforcement Learning 2018 Charles Packer
Katelyn Gao
Jernej Kos
Philipp Krähenbühl
Vladlen Koltun
Dawn Song
1
+ Quantifying Generalization in Reinforcement Learning 2018 Karl Cobbe
Oleg Klimov
Chris Hesse
Taehoon Kim
John Schulman
1
+ Online Meta-Learning 2019 Chelsea Finn
Aravind Rajeswaran
Sham M. Kakade
Sergey Levine
1