Alekh Agarwal

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Preserving Expert-Level Privacy in Offline Reinforcement Learning 2024 Navodita Sharma
Vishnu Vinod
Abhradeep Thakurta
Alekh Agarwal
Borja Balle
Christoph Dann
Aravindan Raghuveer
+ PDF Chat Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning 2024 Amrith Setlur
Chirag Nagpal
Adam Fisch
Xinyang Geng
Jacob Eisenstein
Rishabh Agarwal
Alekh Agarwal
Jonathan Berant
Aviral Kumar
+ PDF Chat Robust Preference Optimization through Reward Model Distillation 2024 Adam Fisch
Jacob Eisenstein
Vicky Zayats
Alekh Agarwal
Ahmad Beirami
Chirag Nagpal
P. D. Shaw
Jonathan Berant
+ PDF Chat Offline Imitation Learning from Multiple Baselines with Applications to Compiler Optimization 2024 Teodor V. Marinov
Alekh Agarwal
Mircea Trofin
+ PDF Chat Stochastic Gradient Succeeds for Bandits 2024 Jincheng Mei
Zixin Zhong
Bo Dai
Alekh Agarwal
Csaba SzepesvĂĄri
Dale Schuurmans
+ PDF Chat More Benefits of Being Distributional: Second-Order Bounds for Reinforcement Learning 2024 Kaiwen Wang
Owen Oertell
Alekh Agarwal
Nathan Kallus
W. Sun
+ Theoretical guarantees on the best-of-n alignment policy 2024 Ahmad Beirami
Alekh Agarwal
Jonathan Berant
Alexander D’Amour
Jacob Eisenstein
Chirag Nagpal
Ananda Theertha Suresh
+ A Minimaximalist Approach to Reinforcement Learning from Human Feedback 2024 Gokul Swamy
Christoph Dann
Rahul Kidambi
Zhiwei Steven Wu
Alekh Agarwal
+ PDF Chat Efficient End-to-End Visual Document Understanding with Rationale Distillation 2024 Zhu Wang
Alekh Agarwal
Mandar Joshi
Robin Jia
Jesse Thomason
Kristina Toutanova
+ Leveraging User-Triggered Supervision in Contextual Bandits 2023 Alekh Agarwal
Claudio Gentile
Teodor V. Marinov
+ Learning in POMDPs is Sample-Efficient with Hindsight Observability 2023 Jonathan Lee
Alekh Agarwal
Christoph Dann
Tong Zhang
+ An Empirical Evaluation of Federated Contextual Bandit Algorithms 2023 Alekh Agarwal
H. Brendan McMahan
Zheng Xu
+ A Mechanism for Sample-Efficient In-Context Learning for Sparse Retrieval Tasks 2023 Jacob Abernethy
Alekh Agarwal
Teodor V. Marinov
Manfred K. Warmuth
+ Peer Reviews of Peer Reviews: A Randomized Controlled Trial and Other Experiments 2023 Alexander Goldberg
Ivan Stelmakh
Kyunghyun Cho
Alice Oh
Alekh Agarwal
Danielle Belgrave
Nihar B. Shah
+ Efficient End-to-End Visual Document Understanding with Rationale Distillation 2023 Zhu Wang
Alekh Agarwal
Mandar Joshi
Robin Jia
Jesse Thomason
Kristina Toutanova
+ Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking 2023 Jacob Eisenstein
Chirag Nagpal
Alekh Agarwal
Ahmad Beirami
Alex D’Amour
Dj Dvijotham
Adam Fisch
Katherine Heller
Stephen Pfohl
Deepak Ramachandran
+ Efficient Reinforcement Learning in Block MDPs: A Model-free Representation Learning Approach 2022 Xuezhou Zhang
Yuda Song
Masatoshi Uehara
Mengdi Wang
Alekh Agarwal
Wen Sun
+ Minimax Regret Optimization for Robust Machine Learning under Distribution Shift 2022 Alekh Agarwal
Tong Zhang
+ Non-Linear Reinforcement Learning in Large Action Spaces: Structural Conditions and Sample-efficiency of Posterior Sampling 2022 Alekh Agarwal
Tong Zhang
+ Adversarially Trained Actor Critic for Offline Reinforcement Learning 2022 Ching-An Cheng
Tengyang Xie
Nan Jiang
Alekh Agarwal
+ Provable Benefits of Representational Transfer in Reinforcement Learning 2022 Alekh Agarwal
Yuda Song
Wen Sun
Kaiwen Wang
Mengdi Wang
Xuezhou Zhang
+ Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity 2022 Alekh Agarwal
Tong Zhang
+ On the Statistical Efficiency of Reward-Free Exploration in Non-Linear RL 2022 Jing‐Lin Chen
Aditya Modi
Akshay Krishnamurthy
Nan Jiang
Alekh Agarwal
+ VO$Q$L: Towards Optimal Regret in Model-free RL with Nonlinear Function Approximation 2022 Alekh Agarwal
Yujia Jin
Tong Zhang
+ Provable RL with Exogenous Distractors via Multistep Inverse Dynamics 2021 Yonathan Efroni
Dipendra Misra
Akshay Krishnamurthy
Alekh Agarwal
John Langford
+ PDF Chat Bellman-consistent Pessimism for Offline Reinforcement Learning 2021 Tengyang Xie
Ching-An Cheng
Nan Jiang
Paul Mineiro
Alekh Agarwal
+ Cautiously Optimistic Policy Optimization and Exploration with Linear Function Approximation 2021 Andrea Zanette
Ching-An Cheng
Alekh Agarwal
+ Provably Correct Optimization and Exploration with Non-linear Policies 2021 Fei Feng
Wotao Yin
Alekh Agarwal
Lin F. Yang
+ Model-free Representation Learning and Exploration in Low-rank MDPs. 2021 Aditya Modi
Jing‐Lin Chen
Akshay Krishnamurthy
Nan Jiang
Alekh Agarwal
+ Towards a Dimension-Free Understanding of Adaptive Linear Control 2021 Juan C. Perdomo
Max Simchowitz
Alekh Agarwal
Peter L. Bartlett
+ Provably Correct Optimization and Exploration with Non-linear Policies 2021 Fei Feng
Wotao Yin
Alekh Agarwal
Lin F. Yang
+ PDF Chat A Contextual Bandit Bake-off 2021 Alberto Bietti
Alekh Agarwal
John Langford
+ Bellman-consistent Pessimism for Offline Reinforcement Learning 2021 Tengyang Xie
Ching-An Cheng
Nan Jiang
Paul Mineiro
Alekh Agarwal
+ Provable RL with Exogenous Distractors via Multistep Inverse Dynamics 2021 Yonathan Efroni
Dipendra Misra
Akshay Krishnamurthy
Alekh Agarwal
John Langford
+ Cautiously Optimistic Policy Optimization and Exploration with Linear Function Approximation 2021 Andrea Zanette
Ching-An Cheng
Alekh Agarwal
+ Model-free Representation Learning and Exploration in Low-rank MDPs 2021 Aditya Modi
Jing‐Lin Chen
Akshay Krishnamurthy
Nan Jiang
Alekh Agarwal
+ FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs 2020 Alekh Agarwal
Sham M. Kakade
Akshay Krishnamurthy
Wen Sun
+ PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning 2020 Alekh Agarwal
Mikael Henaff
Sham M. Kakade
Wen Sun
+ Policy Improvement from Multiple Experts 2020 Ching-An Cheng
Andrey Kolobov
Alekh Agarwal
+ PDF Chat Policy Improvement via Imitation of Multiple Oracles 2020 Ching-An Cheng
Andrey Kolobov
Alekh Agarwal
+ Reparameterized Variational Divergence Minimization for Stable Imitation 2020 Dilip Arumugam
Debadeepta Dey
Alekh Agarwal
Aslı Çelikyılmaz
Elnaz Nouri
Bill Dolan
+ PDF Chat Metareasoning in Modular Software Systems: On-the-Fly Configuration Using Reinforcement Learning with Rich Contextual Representations 2020 Aditya Modi
Debadeepta Dey
Alekh Agarwal
Adith Swaminathan
Besmira Nushi
Sean Andrist
Eric Horvitz
+ Federated Residual Learning. 2020 Alekh Agarwal
John Langford
Chen-Yu Wei
+ Taking a hint: How to leverage loss predictors in contextual bandits? 2020 Chen-Yu Wei
Haipeng Luo
Alekh Agarwal
+ FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs 2020 Alekh Agarwal
Sham M. Kakade
Akshay Krishnamurthy
W. Sun
+ Safe Reinforcement Learning via Curriculum Induction 2020 Matteo Turchetta
Andrey Kolobov
Shital Shah
Andreas Krause
Alekh Agarwal
+ Provably Good Batch Reinforcement Learning Without Great Exploration 2020 Yao Liu
Adith Swaminathan
Alekh Agarwal
Emma Brunskill
+ PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning 2020 Alekh Agarwal
Mikael Henaff
Sham M. Kakade
Wen Sun
+ Policy Improvement via Imitation of Multiple Oracles 2020 Ching-An Cheng
Andrey Kolobov
Alekh Agarwal
+ Optimizing Interactive Systems via Data-Driven Objectives 2020 Ziming Li
Julia Kiseleva
Alekh Agarwal
Maarten de Rijke
Ryen W. White
+ Reparameterized Variational Divergence Minimization for Stable Imitation 2020 Dilip Arumugam
Debadeepta Dey
Alekh Agarwal
Aslı Çelikyılmaz
Elnaz Nouri
Bill Dolan
+ Federated Residual Learning 2020 Alekh Agarwal
John Langford
Chen-Yu Wei
+ Optimality and Approximation with Policy Gradient Methods in Markov Decision Processes 2019 Alekh Agarwal
Sham M. Kakade
Jason D. Lee
Gaurav Mahajan
+ On the Optimality of Sparse Model-Based Planning for Markov Decision Processes. 2019 Alekh Agarwal
Sham M. Kakade
Lin F. Yang
+ Model-Based Reinforcement Learning with a Generative Model is Minimax Optimal 2019 Alekh Agarwal
Sham M. Kakade
Lin F. Yang
+ Fair Regression: Quantitative Definitions and Reduction-based Algorithms 2019 Alekh Agarwal
Miroslav Dudı́k
Zhiwei Steven Wu
+ Metareasoning in Modular Software Systems: On-the-Fly Configuration using Reinforcement Learning with Rich Contextual Representations 2019 Aditya Modi
Debadeepta Dey
Alekh Agarwal
Adith Swaminathan
Besmira Nushi
Sean Andrist
Eric Horvitz
+ Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting 2019 Aditya Grover
Jiaming Song
Ashish Kapoor
Kenneth Tran
Alekh Agarwal
Eric Horvitz
Stefano Ermon
+ Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback 2019 Chicheng Zhang
Alekh Agarwal
Hal Daumé
John Langford
Sahand Negahban
+ Off-Policy Policy Gradient with State Distribution Correction 2019 Yao Liu
Adith Swaminathan
Alekh Agarwal
Emma Brunskill
+ Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds 2019 Jordan T. Ash
Chicheng Zhang
Akshay Krishnamurthy
John Langford
Alekh Agarwal
+ Provably efficient RL with Rich Observations via Latent State Decoding 2019 Simon S. Du
Akshay Krishnamurthy
Nan Jiang
Alekh Agarwal
Miroslav Dudı́k
John Langford
+ Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting 2019 Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
+ Fair Regression: Quantitative Definitions and Reduction-based Algorithms 2019 Alekh Agarwal
Miroslav DudĂ­k
Zhiwei Steven Wu
+ On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift 2019 Alekh Agarwal
Sham M. Kakade
Jason D. Lee
Gaurav Mahajan
+ Model-Based Reinforcement Learning with a Generative Model is Minimax Optimal 2019 Alekh Agarwal
Sham M. Kakade
Lin F. Yang
+ Metareasoning in Modular Software Systems: On-the-Fly Configuration using Reinforcement Learning with Rich Contextual Representations 2019 Aditya Modi
Debadeepta Dey
Alekh Agarwal
Adith Swaminathan
Besmira Nushi
Sean Andrist
Eric Horvitz
+ PDF Chat A Contextual Bandit Bake-off 2018 Alberto Bietti
Alekh Agarwal
John Langford
+ Model-Based Reinforcement Learning in Contextual Decision Processes. 2018 Wen Sun
Nan Jiang
Akshay Krishnamurthy
Alekh Agarwal
John Langford
+ A Reductions Approach to Fair Classification 2018 Alekh Agarwal
Alina Beygelzimer
Miroslav Dudı́k
John Langford
Hanna Wallach
+ Hierarchical Imitation and Reinforcement Learning 2018 Hoang Le
Nan Jiang
Alekh Agarwal
Miroslav Dudı́k
Yisong Yue
Hal Daumé
+ On Polynomial Time PAC Reinforcement Learning with Rich Observations. 2018 Christoph Dann
Nan Jiang
Akshay Krishnamurthy
Alekh Agarwal
John Langford
Robert E. Schapire
+ Practical Contextual Bandits with Regression Oracles 2018 Dylan J. Foster
Alekh Agarwal
Miroslav Dudı́k
Haipeng Luo
Robert E. Schapire
+ A Contextual Bandit Bake-off 2018 Alberto Bietti
Alekh Agarwal
John Langford
+ Model-based RL in Contextual Decision Processes: PAC bounds and Exponential Improvements over Model-free Approaches 2018 Wen Sun
Nan Jiang
Akshay Krishnamurthy
Alekh Agarwal
John Langford
+ On Oracle-Efficient PAC RL with Rich Observations 2018 Christoph Dann
Nan Jiang
Akshay Krishnamurthy
Alekh Agarwal
John Langford
Robert E. Schapire
+ Learning Data-Driven Objectives to Optimize Interactive Systems 2018 Ziming Li
Julia Kiseleva
Alekh Agarwal
Maarten de Rijke
+ Hierarchical Imitation and Reinforcement Learning 2018 Hoang M. Le
Nan Jiang
Alekh Agarwal
Miroslav Dudı́k
Yisong Yue
Hal Daumé
+ A Reductions Approach to Fair Classification 2018 Alekh Agarwal
Alina Beygelzimer
Miroslav Dudı́k
John Langford
Hanna Wallach
+ Active Learning for Cost-Sensitive Classification 2017 Akshay Krishnamurthy
Alekh Agarwal
Tzu-Kuo Huang
Hal Daumé
John Langford
+ Active Learning for Cost-Sensitive Classification 2017 Akshay Krishnamurthy
Alekh Agarwal
Tzu-Kuo Huang
Hal Daumé
John Langford
+ Efficient Contextual Bandits in Non-stationary Worlds 2017 Haipeng Luo
Chen-Yu Wei
Alekh Agarwal
John Langford
+ Corralling a Band of Bandit Algorithms 2016 Alekh Agarwal
Haipeng Luo
Behnam Neyshabur
Robert E. Schapire
+ Efficient second order online learning by sketching 2016 Haipeng Luo
Alekh Agarwal
NicolĂČ Cesa‐Bianchi
John Langford
+ Optimal and Adaptive Off-policy Evaluation in Contextual Bandits 2016 Yu-Xiang Wang
Alekh Agarwal
Miroslav Dudı́k
+ Contextual Decision Processes with Low Bellman Rank are PAC-Learnable 2016 Nan Jiang
Akshay Krishnamurthy
Alekh Agarwal
John Langford
Robert E. Schapire
+ A Multiworld Testing Decision Service. 2016 Alekh Agarwal
Sarah Bird
Markus Cozowicz
Luong Hoang
John Langford
Stephen Lee
Jiaji Li
Dan Melamed
Gal Oshri
Oswaldo Ribas
+ Off-policy evaluation for slate recommendation 2016 Adith Swaminathan
Akshay Krishnamurthy
Alekh Agarwal
Miroslav Dudı́k
John Langford
Damien Jose
Imed Zitouni
+ Contextual-MDPs for PAC-Reinforcement Learning with Rich Observations 2016 Akshay Krishnamurthy
Alekh Agarwal
John Langford
+ PAC Reinforcement Learning with Rich Observations 2016 Akshay Krishnamurthy
Alekh Agarwal
John Langford
+ Efficient Second Order Online Learning by Sketching 2016 Haipeng Luo
Alekh Agarwal
NicolĂČ Cesa‐Bianchi
John Langford
+ Exploratory Gradient Boosting for Reinforcement Learning in Complex Domains 2016 David Abel
Alekh Agarwal
Fernando DĂ­az
Akshay Krishnamurthy
Robert E. Schapire
+ Contextual Decision Processes with Low Bellman Rank are PAC-Learnable 2016 Nan Jiang
Akshay Krishnamurthy
Alekh Agarwal
John Langford
Robert E. Schapire
+ Making Contextual Decisions with Low Technical Debt 2016 Alekh Agarwal
Sarah Bird
Markus Cozowicz
Luong Hoang
John Langford
Stephen Lee
Jiaji Li
Dan Melamed
Gal Oshri
Oswaldo Ribas
+ Optimal and Adaptive Off-policy Evaluation in Contextual Bandits 2016 Yu-Xiang Wang
Alekh Agarwal
Miroslav DudĂ­k
+ PDF Chat Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization 2016 Alekh Agarwal
Animashree Anandkumar
Prateek Jain
Praneeth Netrapalli
+ Off-policy evaluation for slate recommendation 2016 Adith Swaminathan
Akshay Krishnamurthy
Alekh Agarwal
Miroslav Dudı́k
John Langford
Damien Jose
Imed Zitouni
+ PAC Reinforcement Learning with Rich Observations 2016 Akshay Krishnamurthy
Alekh Agarwal
John Langford
+ Corralling a Band of Bandit Algorithms 2016 Alekh Agarwal
Haipeng Luo
Behnam Neyshabur
Robert E. Schapire
+ Efficient Contextual Semi-Bandit Learning. 2015 Akshay Krishnamurthy
Alekh Agarwal
Miroslav Dudı́k
+ Contextual Semibandits via Supervised Learning Oracles 2015 Akshay Krishnamurthy
Alekh Agarwal
Miroslav Dudı́k
+ Efficient and Parsimonious Agnostic Active Learning 2015 Tzu-Kuo Huang
Alekh Agarwal
Daniel Hsu
John Langford
Robert E. Schapire
+ Learning to Search Better Than Your Teacher 2015 Kai-Wei Chang
Akshay Krishnamurthy
Alekh Agarwal
Hal Daumé
John Langford
+ Contextual Semibandits via Supervised Learning Oracles 2015 Akshay Krishnamurthy
Alekh Agarwal
Miroslav Dudı́k
+ Fast Convergence of Regularized Learning in Games 2015 Vasilis Syrgkanis
Alekh Agarwal
Haipeng Luo
Robert E. Schapire
+ Scalable Non-linear Learning with Adaptive Polynomial Expansions 2014 Alekh Agarwal
Alina Beygelzimer
Daniel Hsu
John Langford
Matus Telgarsky
+ Scalable Nonlinear Learning with Adaptive Polynomial Expansions 2014 Alekh Agarwal
Alina Beygelzimer
Daniel Hsu
John Langford
Matus Telgarsky
+ Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions 2014 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits 2014 Alekh Agarwal
Daniel Hsu
Satyen Kale
John Langford
Lihong Li
Robert E. Schapire
+ A Lower Bound for the Optimization of Finite Sums 2014 Alekh Agarwal
LĂ©on Bottou
+ Scalable Nonlinear Learning with Adaptive Polynomial Expansions 2014 Alekh Agarwal
Alina Beygelzimer
Daniel Hsu
John Langford
Matus Telgarsky
+ Para-active learning 2013 Alekh Agarwal
LĂ©on Bottou
Miroslav Dudı́k
John Langford
+ Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization 2013 Alekh Agarwal
Animashree Anandkumar
Prateek Jain
Praneeth Netrapalli
+ Least Squares Revisited: Scalable Approaches for Multi-class Prediction 2013 Alekh Agarwal
Sham M. Kakade
Nikos Karampatziakis
Le Song
Gregory Valiant
+ Exact Recovery of Sparsely Used Overcomplete Dictionaries. 2013 Alekh Agarwal
Animashree Anandkumar
Praneeth Netrapalli
+ A Clustering Approach to Learn Sparsely-Used Overcomplete Dictionaries 2013 Alekh Agarwal
Animashree Anandkumar
Praneeth Netrapalli
+ PDF Chat Stochastic Convex Optimization with Bandit Feedback 2013 Alekh Agarwal
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Alexander Rakhlin
+ Least Squares Revisited: Scalable Approaches for Multi-class Prediction 2013 Alekh Agarwal
Sham M. Kakade
Nikos Karampatziakis
Le Song
Gregory Valiant
+ Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization 2013 Alekh Agarwal
Animashree Anandkumar
Prateek Jain
Praneeth Netrapalli
+ Para-active learning 2013 Alekh Agarwal
LĂ©on Bottou
Miroslav Dudı́k
John Langford
+ Stochastic optimization and sparse statistical recovery: Optimal algorithms for high dimensions 2012 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ PDF Chat Distributed delayed stochastic optimization 2012 Alekh Agarwal
John C. Duchi
+ Fast global convergence of gradient methods for high-dimensional statistical recovery 2012 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ PDF Chat The Generalization Ability of Online Algorithms for Dependent Data 2012 Alekh Agarwal
John C. Duchi
+ FASt global convergence of gradient methods for solving regularized M-estimation 2012 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions 2012 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions 2012 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Contextual Bandit Learning with Predictable Rewards 2012 Alekh Agarwal
Miroslav Dudı́k
Satyen Kale
John Langford
Robert E. Schapire
+ PDF Chat Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization 2012 Alekh Agarwal
Peter L. Bartlett
Pradeep Ravikumar
Martin J. Wainwright
+ Oracle inequalities for computationally adaptive model selection 2012 Alekh Agarwal
Peter L. Bartlett
John C. Duchi
+ SUPPLEMENTARY MATERIAL: FAST GLOBAL CONVERGENCE OF GRADIENT METHODS FOR HIGH-DIMENSIONAL STATISTICAL RECOVERY 2012 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions 2012 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Contextual Bandit Learning with Predictable Rewards 2012 Alekh Agarwal
Miroslav Dudı́k
Satyen Kale
John Langford
Robert E. Schapire
+ Oracle inequalities for computationally budgeted model selection 2011 Alekh Agarwal
John C. Duchi
Peter L. Bartlett
Clément Levrard
+ A Reliable Effective Terascale Linear Learning System 2011 Alekh Agarwal
Olivier Chapelle
Miroslav Dudı́k
John Langford
+ The Generalization Ability of Online Algorithms for Dependent Data 2011 Alekh Agarwal
John C. Duchi
+ Stochastic convex optimization with bandit feedback 2011 Alekh Agarwal
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Alexander Rakhlin
+ PDF Chat Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling 2011 John C. Duchi
Alekh Agarwal
Martin J. Wainwright
+ Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions 2011 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Ergodic Subgradient Descent 2011 John C. Duchi
Alekh Agarwal
Mikael Johansson
Michael I. Jordan
+ Distributed Delayed Stochastic Optimization 2011 Alekh Agarwal
John C. Duchi
+ Fast global convergence of gradient methods for high-dimensional statistical recovery 2011 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Online and Batch Learning Algorithms for Data with Missing Features 2011 Afshin Rostamizadeh
Alekh Agarwal
Peter L. Bartlett
+ Ergodic Mirror Descent 2011 John C. Duchi
Alekh Agarwal
Mikael Johansson
Michael I. Jordan
+ A Reliable Effective Terascale Linear Learning System 2011 Alekh Agarwal
Olivier Chapelle
Miroslav Dudı́k
John Langford
+ Stochastic convex optimization with bandit feedback 2011 Alekh Agarwal
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Alexander Rakhlin
+ The Generalization Ability of Online Algorithms for Dependent Data 2011 Alekh Agarwal
John C. Duchi
+ Distributed Delayed Stochastic Optimization 2011 Alekh Agarwal
John C. Duchi
+ Fast global convergence of gradient methods for high-dimensional statistical recovery 2011 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Fast global convergence rates of gradient methods for high-dimensional statistical recovery 2010 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization 2010 Alekh Agarwal
Peter L. Bartlett
Pradeep Ravikumar
Martin J. Wainwright
+ Information-theoretic lower bounds on the oracle complexity of convex optimization 2010 Alekh Agarwal
Peter L. Bartlett
Pradeep Ravikumar
Martin J. Wainwright
+ Message-passing for Graph-structured Linear Programs: Proximal Methods and Rounding Schemes 2010 Pradeep Ravikumar
Alekh Agarwal
Martin J. Wainwright
+ Optimal Allocation Strategies for the Dark Pool Problem 2010 Alekh Agarwal
Peter L. Bartlett
Max Dama
+ Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization 2010 Alekh Agarwal
Peter L. Bartlett
Pradeep Ravikumar
Martin J. Wainwright
+ A Stochastic View of Optimal Regret through Minimax Duality 2009 Jacob Abernethy
Alekh Agarwal
Peter L. Bartlett
Alexander Rakhlin
+ Message-passing for graph-structured linear programs 2008 Pradeep Ravikumar
Alekh Agarwal
Martin J. Wainwright
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Gradient methods for minimizing composite objective function 2007 Yu. Nesterov
13
+ Contextual Decision Processes with Low Bellman Rank are PAC-Learnable 2016 Nan Jiang
Akshay Krishnamurthy
Alekh Agarwal
John Langford
Robert E. Schapire
11
+ PDF Chat Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$-Balls 2011 Garvesh Raskutti
Martin J. Wainwright
Bin Yu
10
+ Convex Optimization 2004 Stephen Boyd
Lieven Vandenberghe
10
+ Nonlinear Programming 1995 Dimitri P. Bertsekas
10
+ PDF Chat Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling 2011 John C. Duchi
Alekh Agarwal
Martin J. Wainwright
9
+ Convex analysis and minimization algorithms 1993 Jean‐Baptiste Hiriart‐Urruty
Claude Lemaréchal
9
+ A Unified Framework for High-Dimensional Analysis of $M$-Estimators with Decomposable Regularizers 2012 Sahand Negahban
Pradeep Ravikumar
Martin J. Wainwright
Bin Yu
9
+ Primal-dual subgradient methods for convex problems 2007 Yurii Nesterov
9
+ Restricted Eigenvalue Properties for Correlated Gaussian Designs 2010 Garvesh Raskutti
Martin J. Wainwright
Bin Yu
7
+ Contextual Bandit Algorithms with Supervised Learning Guarantees 2010 Alina Beygelzimer
John Langford
Lihong Li
Lev Reyzin
Robert E. Schapire
7
+ Robust Stochastic Approximation Approach to Stochastic Programming 2009 Arkadi Nemirovski
Anatoli Juditsky
Guanghui Lan
Alexander Shapiro
7
+ Mirror descent and nonlinear projected subgradient methods for convex optimization 2003 Amir Beck
Marc Teboulle
7
+ Online convex programming and generalized infinitesimal gradient ascent 2003 Martin Zinkevich
7
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
7
+ PDF Chat A contextual-bandit approach to personalized news article recommendation 2010 Lihong Li
Wei Chu
John Langford
Robert E. Schapire
7
+ Normalized Online Learning 2013 Stéphane Ross
Paul Mineiro
John Langford
7
+ Provably Efficient Reinforcement Learning with Linear Function Approximation 2019 Chi Jin
Zhuoran Yang
Zhaoran Wang
Michael I. Jordan
7
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
7
+ Reinforcement and Imitation Learning via Interactive No-Regret Learning 2014 Stéphane Ross
J. Andrew Bagnell
7
+ PDF Chat Simultaneous analysis of Lasso and Dantzig selector 2009 Peter J. Bickel
Ya’acov Ritov
Alexandre B. Tsybakov
7
+ PDF Chat Estimation of (near) low-rank matrices with noise and high-dimensional scaling 2011 Sahand Negahban
Martin J. Wainwright
6
+ Restricted strong convexity and weighted matrix completion: Optimal bounds with noise 2010 Sahand Negahban
Martin J. Wainwright
6
+ PDF Chat Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization 2010 Benjamin Recht
Maryam Fazel
Pablo A. Parrilo
6
+ Gradient descent with sparsification 2009 Rahul Garg
Rohit Khandekar
6
+ ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES 1933 W. R THOMPSON
6
+ Is Q-learning Provably Efficient? 2018 Chi Jin
Zeyuan Allen-Zhu
SĂ©bastien Bubeck
Michael I. Jordan
6
+ Primal-dual subgradient methods for minimizing uniformly convex functions 2014 Anatoli B. Juditsky
Yuri Nesterov
5
+ Composite objective mirror descent 2010 John C. Duchi
Shai Shalev‐Shwartz
Yoram Singer
Ambuj Tewari
5
+ Grouped and Hierarchical Model Selection through Composite Absolute Penalties 2007 Peng Zhao
Guilherme V. Rocha
Bin Yu
5
+ PDF Chat Learning near-optimal policies with Bellman-residual minimization based fitted policy iteration and a single sample path 2007 AndrĂĄs Antos
Csaba SzepesvĂĄri
RĂ©mi Munos
5
+ Doubly Robust Policy Evaluation and Learning 2011 Miroslav DudĂ­k
John Langford
Lihong Li
5
+ A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers 2009 Sahand Negahban
Bin Yu
Martin J. Wainwright
Pradeep Ravikumar
5
+ Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound 2019 Lin F. Yang
Mengdi Wang
5
+ PDF Chat Robust principal component analysis? 2011 Emmanuel J. CandĂšs
Xiaodong Li
Yi Ma
John Wright
5
+ A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning 2010 Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
5
+ Approximate Policy Iteration Schemes: A Comparison 2014 Bruno Scherrer
4
+ Fixed-Point Continuation for $\ell_1$-Minimization: Methodology and Convergence 2008 Elaine Hale
Wotao Yin
Yin Zhang
4
+ A Simpler Approach to Matrix Completion 2009 Benjamin Recht
4
+ Reconstruction from anisotropic random measurements 2011 Mark Rudelson
Shuheng Zhou
4
+ Probability in Banach Spaces: Isoperimetry and Processes 1991 Michel Ledoux
Michel Talagrand
4
+ PDF Chat Weighted sums of certain dependent random variables 1967 Kazuoki Azuma
4
+ PDF Chat Robust PCA via Outlier Pursuit 2012 Huan Xu
Constantine Caramanis
Sujay Sanghavi
4
+ Adaptive Bound Optimization for Online Convex Optimization 2010 H. Brendan McMahan
M. J. V. Streeter
4
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
4
+ A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems 2009 Amir Beck
Marc Teboulle
4
+ High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity 2012 Po‐Ling Loh
Martin J. Wainwright
4
+ PDF Chat Information-theoretic determination of minimax rates of convergence 1999 Yuhong Yang
Andrew R. Barron
4
+ PDF Chat On the conditions used to prove oracle results for the Lasso 2009 Sara A. van de Geer
Peter BĂŒhlmann
4
+ Error bounds and convergence analysis of feasible descent methods: a general approach 1993 Zhi-Quan Luo
Paul Tseng
4