Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Lionel Tondji
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Acceleration and restart for the randomized Bregman-Kaczmarz method
2024
Lionel Tondji
Ion Necoara
Dirk A. Lorenz
+
PDF
Chat
Adaptive BregmanâKaczmarz: an approach to solve linear inverse problems with independent noise exactly
2024
Lionel Tondji
Idriss Tondji
Dirk A. Lorenz
+
PDF
Chat
Linearly convergent adjoint free solution of least squares problems by random descent
2023
Dirk A. Lorenz
Felix Schneppe
Lionel Tondji
+
An accelerated randomized Bregman-Kaczmarz method for strongly convex linearly constraint optimization*
2023
Lionel Tondji
Dirk A. Lorenz
Ion Necoara
+
Linearly convergent adjoint free solution of least squares problems by random descent
2023
Dirk A. Lorenz
Felix Schneppe
Lionel Tondji
+
Adaptive Bregman-Kaczmarz: An Approach to Solve Linear Inverse Problems with Independent Noise Exactly
2023
Lionel Tondji
Idriss Tondji
Dirk A. Lorenz
+
Acceleration and restart for the randomized Bregman-Kaczmarz method
2023
Lionel Tondji
Ion Necoara
Dirk A. Lorenz
+
PDF
Chat
Faster randomized block sparse Kaczmarz by averaging
2022
Lionel Tondji
Dirk A. Lorenz
+
PDF
Chat
Extended randomized Kaczmarz method for sparse least squares and impulsive noise problems
2022
Frank Schöpfer
Dirk A. Lorenz
Lionel Tondji
Maximilian Winkler
+
Extended Randomized Kaczmarz Method for Sparse Least Squares and Impulsive Noise Problems
2022
Frank Schöpfer
Dirk A. Lorenz
Lionel Tondji
Maximilian Winkler
+
Faster Randomized Block Sparse Kaczmarz by Averaging
2022
Lionel Tondji
Dirk A. Lorenz
+
Variance Reduction in Deep Learning: More Momentum is All You Need
2021
Lionel Tondji
Sergii Kashubin
Moustapha Cissé
+
PDF
Chat
Variance Reduction in Deep Learning: More Momentum is All You Need
2021
Lionel Tondji
Sergii Kashubin
Moustapha Cissé
+
Variance Reduction in Deep Learning: More Momentum is All You Need
2021
Lionel Tondji
Sergii Kashubin
Moustapha Cissé
Common Coauthors
Coauthor
Papers Together
Dirk A. Lorenz
11
Ion Necoara
3
Sergii Kashubin
3
Moustapha Cissé
3
Maximilian Winkler
2
Frank Schöpfer
2
Felix Schneppe
2
Idriss Tondji
2
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
A Randomized Kaczmarz Algorithm with Exponential Convergence
2008
Thomas Strohmer
Roman Vershynin
6
+
PDF
Chat
Randomized Extended Kaczmarz for Solving Least Squares
2013
Anastasios Zouzias
Nikolaos M. Freris
5
+
PDF
Chat
Linear convergence of the randomized sparse Kaczmarz method
2018
Frank Schöpfer
Dirk A. Lorenz
5
+
Randomized Extended Average Block Kaczmarz for Solving Least Squares
2020
Kui Du
Wutao Si
Xiaohui Sun
5
+
Paved with good intentions: Analysis of a randomized block Kaczmarz method
2013
Deanna Needell
Joel A. Tropp
5
+
PDF
Chat
The Linearized Bregman Method via Split Feasibility Problems: Analysis and Generalizations
2014
Dirk A. Lorenz
Frank Schöpfer
Stephan Wenger
5
+
PDF
Chat
Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems
2012
Yu. Nesterov
4
+
Analysis and Generalizations of the Linearized Bregman Method
2010
Wotao Yin
4
+
PDF
Chat
Preasymptotic convergence of randomized Kaczmarz method
2017
Yuling Jiao
Bangti Jin
Xiliang Lu
4
+
PDF
Chat
Faster Randomized Block Kaczmarz Algorithms
2019
Ion Necoara
4
+
PDF
Chat
Extended randomized Kaczmarz method for sparse least squares and impulsive noise problems
2022
Frank Schöpfer
Dirk A. Lorenz
Lionel Tondji
Maximilian Winkler
4
+
PDF
Chat
A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing
2014
Dirk A. Lorenz
Stephan Wenger
Frank Schöpfer
Marcus Magnor
3
+
PDF
Chat
Faster randomized block sparse Kaczmarz by averaging
2022
Lionel Tondji
Dirk A. Lorenz
3
+
PDF
Chat
Randomized Kaczmarz with averaging
2020
Jacob D. Moorman
Thomas K. Tu
Denali Molitor
Deanna Needell
3
+
Parallel Random Coordinate Descent Method for Composite Minimization: Convergence Analysis and Error Bounds
2016
Ion Necoara
Dragos Clipici
3
+
Convergence of the linearized Bregman iteration for ââ-norm minimization
2009
JianâFeng Cai
Stanley Osher
Zuowei Shen
2
+
Compressed sensing
2006
David L. Donoho
2
+
Robust Stochastic Approximation Approach to Stochastic Programming
2009
Arkadi Nemirovski
Anatoli Juditsky
Guanghui Lan
Alexander Shapiro
2
+
PDF
Chat
The randomized Kaczmarz method with mismatched adjoint
2018
Dirk A. Lorenz
Sean Rose
Frank Schöpfer
2
+
Iterative Methods for Linear Systems
2014
2
+
PDF
Chat
IMPROVED ANALYSIS OF THE SUBSAMPLED RANDOMIZED HADAMARD TRANSFORM
2011
Joel A. Tropp
2
+
Accelerated, Parallel, and Proximal Coordinate Descent
2015
Olivier Fercoq
Peter RichtĂĄrik
2
+
On stochastic Kaczmarz type methods for solving large scale systems of ill-posed equations
2021
Joel C. Rabelo
Yuri F. Saporito
Antonio LeitĂŁo
2
+
PDF
Chat
ImageNet Large Scale Visual Recognition Challenge
2015
Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+
PDF
Chat
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
2010
Benjamin Recht
Maryam Fazel
Pablo A. Parrilo
1
+
None
1998
Claude Brezinski
Michela RedivoâZaglia
1
+
PDF
Chat
Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
2006
Emmanuel J. CandĂšs
Justin Romberg
Terence Tao
1
+
Random Gradient-Free Minimization of Convex Functions
2015
Yurii Nesterov
Vladimir Spokoiny
1
+
Sparse nonnegative solution of underdetermined linear equations by linear programming
2005
David L. Donoho
Jared Tanner
1
+
PDF
Chat
Randomized Methods for Linear Constraints: Convergence Rates and Conditioning
2010
D. Leventhal
Adrian S. Lewis
1
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+
Methods of conjugate gradients for solving linear systems
1952
Magnus R. Hestenes
Eduard Stiefel
1
+
Wide Residual Networks
2016
Sergey Zagoruyko
Nikos Komodakis
1
+
Linear Convergence of Descent Methods for the Unconstrained Minimization of Restricted Strongly Convex Functions
2016
Frank Schöpfer
1
+
Restarting accelerated gradient methods with a rough strong convexity estimate
2016
Olivier Fercoq
Zheng Qu
1
+
Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure
2016
Alberto Bietti
Julien Mairal
1
+
PDF
Chat
Convergence rates for Kaczmarz-type algorithms
2017
Constantin Popa
1
+
YellowFin and the Art of Momentum Tuning
2017
Jian Zhang
Ioannis Mitliagkas
1
+
PDF
Chat
Stochastic Mirror Descent Dynamics and Their Convergence in Monotone Variational Inequalities
2018
Panayotis Mertikopoulos
Mathias Staudigl
1
+
mixup: Beyond Empirical Risk Minimization
2017
Hongyi Zhang
Moustapha Cissé
Yann Dauphin
David LĂłpez-Paz
1
+
On Greedy Randomized Kaczmarz Method for Solving Large Sparse Linear Systems
2018
ZhongâZhi Bai
Wen-Ting Wu
1
+
Group Normalization
2018
Yuxin Wu
Kaiming He
1
+
Decoupled Weight Decay Regularization
2017
Ilya Loshchilov
Frank Hutter
1
+
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
2015
Sergey Ioffe
Christian Szegedy
1
+
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
2014
Aaron Defazio
Francis Bach
Simon Lacoste-Julien
1
+
PDF
Chat
In-Datacenter Performance Analysis of a Tensor Processing Unit
2017
Norman P. Jouppi
Cliff Young
Nishant Patil
David A. Patterson
Gaurav Agrawal
Raminder Bajwa
S. C. Bates
Suresh Bhatia
Nan Boden
Al Borchers
1
+
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
2017
Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin TakĂĄÄ
1
+
PDF
Chat
Optimization of Convex Functions with Random Pursuit
2013
Sebastian U. Stich
Christian L. MĂŒller
Bernd GĂ€rtner
1
+
PDF
Chat
Minimizing finite sums with the stochastic average gradient
2016
Mark Schmidt
Nicolas Le Roux
Francis Bach
1
+
Optimization Methods for Large-Scale Machine Learning
2018
LĂ©on Bottou
Frank E. Curtis
Jorge Nocedal
1