Lionel Tondji

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Acceleration and restart for the randomized Bregman-Kaczmarz method 2024 Lionel Tondji
Ion Necoara
Dirk A. Lorenz
+ PDF Chat Adaptive Bregman–Kaczmarz: an approach to solve linear inverse problems with independent noise exactly 2024 Lionel Tondji
Idriss Tondji
Dirk A. Lorenz
+ PDF Chat Linearly convergent adjoint free solution of least squares problems by random descent 2023 Dirk A. Lorenz
Felix Schneppe
Lionel Tondji
+ An accelerated randomized Bregman-Kaczmarz method for strongly convex linearly constraint optimization* 2023 Lionel Tondji
Dirk A. Lorenz
Ion Necoara
+ Linearly convergent adjoint free solution of least squares problems by random descent 2023 Dirk A. Lorenz
Felix Schneppe
Lionel Tondji
+ Adaptive Bregman-Kaczmarz: An Approach to Solve Linear Inverse Problems with Independent Noise Exactly 2023 Lionel Tondji
Idriss Tondji
Dirk A. Lorenz
+ Acceleration and restart for the randomized Bregman-Kaczmarz method 2023 Lionel Tondji
Ion Necoara
Dirk A. Lorenz
+ PDF Chat Faster randomized block sparse Kaczmarz by averaging 2022 Lionel Tondji
Dirk A. Lorenz
+ PDF Chat Extended randomized Kaczmarz method for sparse least squares and impulsive noise problems 2022 Frank Schöpfer
Dirk A. Lorenz
Lionel Tondji
Maximilian Winkler
+ Extended Randomized Kaczmarz Method for Sparse Least Squares and Impulsive Noise Problems 2022 Frank Schöpfer
Dirk A. Lorenz
Lionel Tondji
Maximilian Winkler
+ Faster Randomized Block Sparse Kaczmarz by Averaging 2022 Lionel Tondji
Dirk A. Lorenz
+ Variance Reduction in Deep Learning: More Momentum is All You Need 2021 Lionel Tondji
Sergii Kashubin
Moustapha Cissé
+ PDF Chat Variance Reduction in Deep Learning: More Momentum is All You Need 2021 Lionel Tondji
Sergii Kashubin
Moustapha Cissé
+ Variance Reduction in Deep Learning: More Momentum is All You Need 2021 Lionel Tondji
Sergii Kashubin
Moustapha Cissé
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat A Randomized Kaczmarz Algorithm with Exponential Convergence 2008 Thomas Strohmer
Roman Vershynin
6
+ PDF Chat Randomized Extended Kaczmarz for Solving Least Squares 2013 Anastasios Zouzias
Nikolaos M. Freris
5
+ PDF Chat Linear convergence of the randomized sparse Kaczmarz method 2018 Frank Schöpfer
Dirk A. Lorenz
5
+ Randomized Extended Average Block Kaczmarz for Solving Least Squares 2020 Kui Du
Wutao Si
Xiaohui Sun
5
+ Paved with good intentions: Analysis of a randomized block Kaczmarz method 2013 Deanna Needell
Joel A. Tropp
5
+ PDF Chat The Linearized Bregman Method via Split Feasibility Problems: Analysis and Generalizations 2014 Dirk A. Lorenz
Frank Schöpfer
Stephan Wenger
5
+ PDF Chat Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems 2012 Yu. Nesterov
4
+ Analysis and Generalizations of the Linearized Bregman Method 2010 Wotao Yin
4
+ PDF Chat Preasymptotic convergence of randomized Kaczmarz method 2017 Yuling Jiao
Bangti Jin
Xiliang Lu
4
+ PDF Chat Faster Randomized Block Kaczmarz Algorithms 2019 Ion Necoara
4
+ PDF Chat Extended randomized Kaczmarz method for sparse least squares and impulsive noise problems 2022 Frank Schöpfer
Dirk A. Lorenz
Lionel Tondji
Maximilian Winkler
4
+ PDF Chat A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing 2014 Dirk A. Lorenz
Stephan Wenger
Frank Schöpfer
Marcus Magnor
3
+ PDF Chat Faster randomized block sparse Kaczmarz by averaging 2022 Lionel Tondji
Dirk A. Lorenz
3
+ PDF Chat Randomized Kaczmarz with averaging 2020 Jacob D. Moorman
Thomas K. Tu
Denali Molitor
Deanna Needell
3
+ Parallel Random Coordinate Descent Method for Composite Minimization: Convergence Analysis and Error Bounds 2016 Ion Necoara
Dragos Clipici
3
+ Convergence of the linearized Bregman iteration for ℓ₁-norm minimization 2009 Jian‐Feng Cai
Stanley Osher
Zuowei Shen
2
+ Compressed sensing 2006 David L. Donoho
2
+ Robust Stochastic Approximation Approach to Stochastic Programming 2009 Arkadi Nemirovski
Anatoli Juditsky
Guanghui Lan
Alexander Shapiro
2
+ PDF Chat The randomized Kaczmarz method with mismatched adjoint 2018 Dirk A. Lorenz
Sean Rose
Frank Schöpfer
2
+ Iterative Methods for Linear Systems 2014 2
+ PDF Chat IMPROVED ANALYSIS OF THE SUBSAMPLED RANDOMIZED HADAMARD TRANSFORM 2011 Joel A. Tropp
2
+ Accelerated, Parallel, and Proximal Coordinate Descent 2015 Olivier Fercoq
Peter RichtĂĄrik
2
+ On stochastic Kaczmarz type methods for solving large scale systems of ill-posed equations 2021 Joel C. Rabelo
Yuri F. Saporito
Antonio LeitĂŁo
2
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+ PDF Chat Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization 2010 Benjamin Recht
Maryam Fazel
Pablo A. Parrilo
1
+ None 1998 Claude Brezinski
Michela Redivo‐Zaglia
1
+ PDF Chat Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information 2006 Emmanuel J. CandĂšs
Justin Romberg
Terence Tao
1
+ Random Gradient-Free Minimization of Convex Functions 2015 Yurii Nesterov
Vladimir Spokoiny
1
+ Sparse nonnegative solution of underdetermined linear equations by linear programming 2005 David L. Donoho
Jared Tanner
1
+ PDF Chat Randomized Methods for Linear Constraints: Convergence Rates and Conditioning 2010 D. Leventhal
Adrian S. Lewis
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ Methods of conjugate gradients for solving linear systems 1952 Magnus R. Hestenes
Eduard Stiefel
1
+ Wide Residual Networks 2016 Sergey Zagoruyko
Nikos Komodakis
1
+ Linear Convergence of Descent Methods for the Unconstrained Minimization of Restricted Strongly Convex Functions 2016 Frank Schöpfer
1
+ Restarting accelerated gradient methods with a rough strong convexity estimate 2016 Olivier Fercoq
Zheng Qu
1
+ Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite-Sum Structure 2016 Alberto Bietti
Julien Mairal
1
+ PDF Chat Convergence rates for Kaczmarz-type algorithms 2017 Constantin Popa
1
+ YellowFin and the Art of Momentum Tuning 2017 Jian Zhang
Ioannis Mitliagkas
1
+ PDF Chat Stochastic Mirror Descent Dynamics and Their Convergence in Monotone Variational Inequalities 2018 Panayotis Mertikopoulos
Mathias Staudigl
1
+ mixup: Beyond Empirical Risk Minimization 2017 Hongyi Zhang
Moustapha Cissé
Yann Dauphin
David LĂłpez-Paz
1
+ On Greedy Randomized Kaczmarz Method for Solving Large Sparse Linear Systems 2018 Zhong‐Zhi Bai
Wen-Ting Wu
1
+ Group Normalization 2018 Yuxin Wu
Kaiming He
1
+ Decoupled Weight Decay Regularization 2017 Ilya Loshchilov
Frank Hutter
1
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
1
+ SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives 2014 Aaron Defazio
Francis Bach
Simon Lacoste-Julien
1
+ PDF Chat In-Datacenter Performance Analysis of a Tensor Processing Unit 2017 Norman P. Jouppi
Cliff Young
Nishant Patil
David A. Patterson
Gaurav Agrawal
Raminder Bajwa
S. C. Bates
Suresh Bhatia
Nan Boden
Al Borchers
1
+ SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient 2017 Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin Takáč
1
+ PDF Chat Optimization of Convex Functions with Random Pursuit 2013 Sebastian U. Stich
Christian L. MĂŒller
Bernd GĂ€rtner
1
+ PDF Chat Minimizing finite sums with the stochastic average gradient 2016 Mark Schmidt
Nicolas Le Roux
Francis Bach
1
+ Optimization Methods for Large-Scale Machine Learning 2018 LĂ©on Bottou
Frank E. Curtis
Jorge Nocedal
1