+
PDF
Chat
|
Neural Operators Can Play Dynamic Stackelberg Games
|
2024
|
Guillermo Alonso Alvarez
Ibrahim Ekren
Anastasis Kratsios
Xuwei Yang
|
+
PDF
Chat
|
Scalable Message Passing Neural Networks: No Need for Attention in Large
Graph Representation Learning
|
2024
|
Haitz Sáez de Ocáriz Borde
Artem Lukoianov
Anastasis Kratsios
Michael M. Bronstein
Xiaowen Dong
|
+
PDF
Chat
|
A Comprehensive Analysis on the Learning Curve in Kernel Ridge
Regression
|
2024
|
Tin Sum Cheng
Aurélien Lucchi
Anastasis Kratsios
David Belius
|
+
PDF
Chat
|
Simultaneously Solving FBSDEs with Neural Operators of Logarithmic
Depth, Constant Width, and Sub-Linear Rank
|
2024
|
Takashi Furuya
Anastasis Kratsios
|
+
PDF
Chat
|
Inverse Entropic Optimal Transport Solves Semi-supervised Learning via
Data Likelihood Maximization
|
2024
|
Mikhail Persiianov
Arip Asadulaev
N. N. Andreev
Nikita Starodubcev
Dmitry Baranchuk
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
|
+
PDF
Chat
|
Bridging the Gap Between Approximation and Learning via Optimal
Approximation by ReLU MLPs of Maximal Regularity
|
2024
|
Ruiyang Hong
Anastasis Kratsios
|
+
PDF
Chat
|
Neural Spacetimes for DAG Representation Learning
|
2024
|
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
Marc T. Law
Xiaowen Dong
Michael M. Bronstein
|
+
PDF
Chat
|
Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation
|
2024
|
Jose Antonio Lara Benitez
Takashi Furuya
Florian Faucher
Anastasis Kratsios
Xavier Tricoche
Maarten V. de Hoop
|
+
PDF
Chat
|
Filtered not Mixed: Stochastic Filtering-Based Online Gating for Mixture
of Large Language Models
|
2024
|
Raeid Saqur
Anastasis Kratsios
Florian Krach
Yannick Limmer
Jacob-Junqi Tian
John Willes
Blanka Horvath
Frank Rudzicz
|
+
PDF
Chat
|
Capacity bounds for hyperbolic neural network representations of latent tree structures
|
2024
|
Anastasis Kratsios
Ruiyang Hong
Haitz Sáez de Ocáriz Borde
|
+
PDF
Chat
|
Low-dimensional approximations of the conditional law of Volterra
processes: a non-positive curvature approach
|
2024
|
Reza Arabpour
John Armstrong
Luca Galimberti
Anastasis Kratsios
Giulia Livieri
|
+
PDF
Chat
|
Reality Only Happens Once: Single-Path Generalization Bounds for
Transformers
|
2024
|
Yannick Limmer
Anastasis Kratsios
Xuwei Yang
Raeid Saqur
Blanka Horvath
|
+
PDF
Chat
|
Mixture of Experts Soften the Curse of Dimensionality in Operator
Learning
|
2024
|
Anastasis Kratsios
Takashi Furuya
Jothi B
Matti Lassas
Maarten V. de Hoop
|
+
PDF
Chat
|
Digital Computers Break the Curse of Dimensionality: Adaptive Bounds via
Finite Geometry
|
2024
|
Anastasis Kratsios
A. Martina Neuman
Gudmund Pammer
|
+
PDF
Chat
|
Breaking the Curse of Dimensionality with Distributed Neural Computation
|
2024
|
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Anastasis Kratsios
Marc T. Law
|
+
PDF
Chat
|
Characterizing Overfitting in Kernel Ridgeless Regression Through the
Eigenspectrum
|
2024
|
Tin Sum Cheng
Aurélien Lucchi
Anastasis Kratsios
David Belius
|
+
PDF
Chat
|
Filtered not Mixed: Stochastic Filtering-Based Online Gating for Mixture of Large Language Models
|
2024
|
Raeid Saqur
Anastasis Kratsios
Blanka Horvath
Jacob-Junqi Tian
John Willes
Florian Krach
Yannick Limmer
Frank Rudzicz
|
+
PDF
Chat
|
Designing universal causal deep learning models: The geometric (Hyper)transformer
|
2023
|
Beatrice Acciaio
Anastasis Kratsios
Gudmund Pammer
|
+
|
Generative Ornstein-Uhlenbeck Markets via Geometric Deep Learning
|
2023
|
Anastasis Kratsios
Cody Hyndman
|
+
|
An Approximation Theory for Metric Space-Valued Functions With A View Towards Deep Learning
|
2023
|
Anastasis Kratsios
Chong Liu
Matti Lassas
Maarten V. de Hoop
Ivan Dokmanić
|
+
|
Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation
|
2023
|
Jose Antonio Lara Benitez
Takashi Furuya
Florian Faucher
Anastasis Kratsios
Xavier Tricoche
Maarten V. de Hoop
|
+
PDF
Chat
|
Generative OrnsteinUhlenbeck Markets via Geometric Deep Learning
|
2023
|
Anastasis Kratsios
Cody Hyndman
|
+
|
Out-of-Distributional Risk Bounds for Neural Operators with Applications to Thehelmholtz Equation
|
2023
|
Jose Antonio Lara Benitez
Takashi Furuya
Florian Faucher
Anastasis Kratsios
Xavier Tricoche
Maarten V. de Hoop
|
+
|
Capacity Bounds for Hyperbolic Neural Network Representations of Latent Tree Structures
|
2023
|
Anastasis Kratsios
Ruiyang Hong
Haitz Sáez de Ocáriz Borde
|
+
|
Regret-Optimal Federated Transfer Learning for Kernel Regression with Applications in American Option Pricing
|
2023
|
Xuwei Yang
Anastasis Kratsios
Florian Krach
Matheus R. Grasselli
Aurélien Lucchi
|
+
|
A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge Regression
|
2023
|
Tin Sum Cheng
Aurélien Lucchi
Ivan Dokmanić
Anastasis Kratsios
David Belius
|
+
|
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
|
2023
|
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
|
+
|
Deep Kalman Filters Can Filter
|
2023
|
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
|
+
|
Learning sub-patterns in piecewise continuous functions
|
2022
|
Anastasis Kratsios
Behnoosh Zamanlooy
|
+
|
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
|
2022
|
Beatrice Acciaio
Anastasis Kratsios
Gudmund Pammer
|
+
|
Do ReLU Networks Have An Edge When Approximating Compactly-Supported Functions?
|
2022
|
Anastasis Kratsios
Behnoosh Zamanlooy
|
+
|
Small Transformers Compute Universal Metric Embeddings
|
2022
|
Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
|
+
|
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
|
2022
|
Luca Galimberti
Giulia Livieri
Anastasis Kratsios
|
+
|
Instance-Dependent Generalization Bounds via Optimal Transport
|
2022
|
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Jonas Rothfuss
Andreas Krause
|
+
|
Universal Approximation Under Constraints is Possible with Transformers.
|
2021
|
Anastasis Kratsios
Behnoosh Zamanlooy
Tianlin Liu
Ivan Dokmanić
|
+
|
Optimizing Optimizers: Regret-optimal gradient descent algorithms
|
2021
|
Philippe Casgrain
Anastasis Kratsios
|
+
|
Universal Regular Conditional Distributions via Probability Measure-Valued Deep Neural Models.
|
2021
|
Anastasis Kratsios
|
+
|
Universal Regular Conditional Distributions
|
2021
|
Anastasis Kratsios
|
+
PDF
Chat
|
Lower-Estimates on the Hochschild (Co)Homological Dimension of Commutative Algebras and Applications to Smooth Affine Schemes and Quasi-Free Algebras
|
2021
|
Anastasis Kratsios
|
+
PDF
Chat
|
The Universal Approximation Property
|
2021
|
Anastasis Kratsios
|
+
|
Quantitative Rates and Fundamental Obstructions to Non-Euclidean Universal Approximation with Deep Narrow Feed-Forward Networks.
|
2021
|
Anastasis Kratsios
Leonie Papon
|
+
|
Universal Approximation Theorems for Differentiable Geometric Deep Learning
|
2021
|
Anastasis Kratsios
Leonie Papon
|
+
|
Universal Regular Conditional Distributions
|
2021
|
Anastasis Kratsios
|
+
|
Universal Approximation Under Constraints is Possible with Transformers
|
2021
|
Anastasis Kratsios
Behnoosh Zamanlooy
Tianlin Liu
Ivan Dokmanić
|
+
|
Universal Approximation Theorems for Differentiable Geometric Deep Learning
|
2021
|
Anastasis Kratsios
Leonie Papon
|
+
|
Optimizing Optimizers: Regret-optimal gradient descent algorithms
|
2021
|
Philippe Casgrain
Anastasis Kratsios
|
+
|
Overcoming The Limitations of Neural Networks in Composite-Pattern Learning with Architopes.
|
2020
|
Anastasis Kratsios
Behnoosh Zamanlooy
|
+
|
Learning Sub-Patterns in Piecewise Continuous Functions
|
2020
|
Anastasis Kratsios
Behnoosh Zamanlooy
|
+
|
Architopes: An Architecture Modification for Composite Pattern Learning, Increased Expressiveness, and Reduced Training Time.
|
2020
|
Anastasis Kratsios
Behnoosh Zamanlooy
|
+
|
Non-Euclidean Universal Approximation
|
2020
|
Anastasis Kratsios
Ievgen Bilokopytov
|
+
|
Denise: Deep Robust Principal Component Analysis for Positive Semidefinite Matrices
|
2020
|
Calypso Herrera
Florian Krach
Anastasis Kratsios
Pierre Ruyssen
Josef Teichmann
|
+
PDF
Chat
|
Deep Arbitrage-Free Learning in a Generalized HJM Framework via Arbitrage-Regularization
|
2020
|
Anastasis Kratsios
Cody Hyndman
|
+
|
Deep Arbitrage-Free Learning in a Generalized HJM Framework via Arbitrage-Regularization
|
2020
|
Anastasis Kratsios
Cody Hyndman
|
+
PDF
Chat
|
The entropic measure transform
|
2020
|
Renjie Wang
Cody Hyndman
Anastasis Kratsios
|
+
|
Non-Euclidean Universal Approximation
|
2020
|
Anastasis Kratsios
Eugene Bilokopytov
|
+
|
Learning Sub-Patterns in Piecewise Continuous Functions
|
2020
|
Anastasis Kratsios
Behnoosh Zamanlooy
|
+
|
A Canonical Transform for Strengthening the Local $L^p$-Type Universal Approximation Property
|
2020
|
Anastasis Kratsios
Behnoosh Zamanlooy
|
+
|
Denise: Deep Robust Principal Component Analysis for Positive Semidefinite Matrices
|
2020
|
Calypso Herrera
Florian Krach
Anastasis Kratsios
Pierre Ruyssen
Josef Teichmann
|
+
|
Characterizing the Universal Approximation Property
|
2019
|
Anastasis Kratsios
|
+
|
The Universal Approximation Property: Characterizations, Existence, and a Canonical Topology for Deep-Learning
|
2019
|
Anastasis Kratsios
|
+
|
Partial Uncertainty and Applications to Risk-Averse Valuation
|
2019
|
Anastasis Kratsios
|
+
|
The NEU Meta-Algorithm for Geometric Learning with Applications in Finance.
|
2018
|
Anastasis Kratsios
Cody Hyndman
|
+
|
NEU Meta-Learning and its Universal Approximation Properties
|
2018
|
Anastasis Kratsios
Cody Hyndman
|
+
|
Arbitrage-free regularization, geometric learning, and non-Euclidean filtering in finance
|
2018
|
Anastasis Kratsios
|
+
|
NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation
|
2018
|
Anastasis Kratsios
Cody Hyndman
|
+
|
Optimal Stochastic Decensoring and Applications to Calibration of Market Models
|
2017
|
Anastasis Kratsios
|
+
|
Geometric Learning and Filtering in Finance
|
2017
|
Anastasis Kratsios
Cody Hyndman
|
+
|
Non-Euclidean Conditional Expectation and Filtering
|
2017
|
Anastasis Kratsios
Cody Hyndman
|
+
|
Arbitrage-Free Regularization
|
2017
|
Anastasis Kratsios
Cody Hyndman
|
+
|
Geometric Learning and Filtering in Finance
|
2017
|
Anastasis Kratsios
Cody Hyndman
|
+
|
Non-Euclidean Conditional Expectation and Filtering
|
2017
|
Anastasis Kratsios
Cody Hyndman
|
+
|
Optimal Stochastic Decensoring and Applications to Calibration of Market Models
|
2017
|
Anastasis Kratsios
|
+
|
Non-Euclidean Conditional Expectation and Filtering
|
2017
|
Anastasis Kratsios
Cody Hyndman
|
+
|
Bounding The Hochschild Cohomological Dimension Of Commutative k-algebras With Finite Flat-dimension Over k
|
2016
|
Anastasis Kratsios
|
+
|
A Lower-Bound on the Hochschild Cohomological Dimension
|
2016
|
Anastasis Kratsios
|
+
|
Bounding The Lower-Bound on the Hochschild Cohomological Dimension
|
2016
|
Anastasis Kratsios
|
+
|
The Entropic Measure Transform
|
2015
|
Renjie Wang
Cody Hyndman
Anastasis Kratsios
|
+
|
Bounding The Hochschild Cohomological Dimension
|
2015
|
Anastasis Kratsios
|
+
|
The Entropic Measure Transform
|
2015
|
Renjie Wang
Cody Hyndman
Anastasis Kratsios
|
+
|
Hochschild dimension is not semi-continous
|
2014
|
Anastasis Kratsios
|
+
|
Essentials of Non-commutative Geometry
|
2014
|
Anastasis Kratsios
|
+
|
Adjoinable Homology
|
2014
|
Anastasis Kratsios
|
+
|
Noncommutative Algebra and Noncommutative Geometry
|
2014
|
Anastasis Kratsios
|
+
|
Hochschild Cohomological Dimension is Not Upper Semi-Continuous
|
2014
|
Anastasis Kratsios
|
+
|
Adjoinable Homology
|
2014
|
Anastasis Kratsios
|