Anastasis Kratsios

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Neural Operators Can Play Dynamic Stackelberg Games 2024 Guillermo Alonso Alvarez
Ibrahim Ekren
Anastasis Kratsios
Xuwei Yang
+ PDF Chat Scalable Message Passing Neural Networks: No Need for Attention in Large Graph Representation Learning 2024 Haitz Sáez de Ocáriz Borde
Artem Lukoianov
Anastasis Kratsios
Michael M. Bronstein
Xiaowen Dong
+ PDF Chat A Comprehensive Analysis on the Learning Curve in Kernel Ridge Regression 2024 Tin Sum Cheng
Aurélien Lucchi
Anastasis Kratsios
David Belius
+ PDF Chat Simultaneously Solving FBSDEs with Neural Operators of Logarithmic Depth, Constant Width, and Sub-Linear Rank 2024 Takashi Furuya
Anastasis Kratsios
+ PDF Chat Inverse Entropic Optimal Transport Solves Semi-supervised Learning via Data Likelihood Maximization 2024 Mikhail Persiianov
Arip Asadulaev
N. N. Andreev
Nikita Starodubcev
Dmitry Baranchuk
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
+ PDF Chat Bridging the Gap Between Approximation and Learning via Optimal Approximation by ReLU MLPs of Maximal Regularity 2024 Ruiyang Hong
Anastasis Kratsios
+ PDF Chat Neural Spacetimes for DAG Representation Learning 2024 Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
Marc T. Law
Xiaowen Dong
Michael M. Bronstein
+ PDF Chat Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation 2024 Jose Antonio Lara Benitez
Takashi Furuya
Florian Faucher
Anastasis Kratsios
Xavier Tricoche
Maarten V. de Hoop
+ PDF Chat Filtered not Mixed: Stochastic Filtering-Based Online Gating for Mixture of Large Language Models 2024 Raeid Saqur
Anastasis Kratsios
Florian Krach
Yannick Limmer
Jacob-Junqi Tian
John Willes
Blanka Horvath
Frank Rudzicz
+ PDF Chat Capacity bounds for hyperbolic neural network representations of latent tree structures 2024 Anastasis Kratsios
Ruiyang Hong
Haitz Sáez de Ocáriz Borde
+ PDF Chat Low-dimensional approximations of the conditional law of Volterra processes: a non-positive curvature approach 2024 Reza Arabpour
John Armstrong
Luca Galimberti
Anastasis Kratsios
Giulia Livieri
+ PDF Chat Reality Only Happens Once: Single-Path Generalization Bounds for Transformers 2024 Yannick Limmer
Anastasis Kratsios
Xuwei Yang
Raeid Saqur
Blanka Horvath
+ PDF Chat Mixture of Experts Soften the Curse of Dimensionality in Operator Learning 2024 Anastasis Kratsios
Takashi Furuya
Jothi B
Matti Lassas
Maarten V. de Hoop
+ PDF Chat Digital Computers Break the Curse of Dimensionality: Adaptive Bounds via Finite Geometry 2024 Anastasis Kratsios
A. Martina Neuman
Gudmund Pammer
+ PDF Chat Breaking the Curse of Dimensionality with Distributed Neural Computation 2024 Haitz Sáez de Ocáriz Borde
Takashi Furuya
Anastasis Kratsios
Marc T. Law
+ PDF Chat Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum 2024 Tin Sum Cheng
Aurélien Lucchi
Anastasis Kratsios
David Belius
+ PDF Chat Filtered not Mixed: Stochastic Filtering-Based Online Gating for Mixture of Large Language Models 2024 Raeid Saqur
Anastasis Kratsios
Blanka Horvath
Jacob-Junqi Tian
John Willes
Florian Krach
Yannick Limmer
Frank Rudzicz
+ PDF Chat Designing universal causal deep learning models: The geometric (Hyper)transformer 2023 Beatrice Acciaio
Anastasis Kratsios
Gudmund Pammer
+ Generative Ornstein-Uhlenbeck Markets via Geometric Deep Learning 2023 Anastasis Kratsios
Cody Hyndman
+ An Approximation Theory for Metric Space-Valued Functions With A View Towards Deep Learning 2023 Anastasis Kratsios
Chong Liu
Matti Lassas
Maarten V. de Hoop
Ivan Dokmanić
+ Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation 2023 Jose Antonio Lara Benitez
Takashi Furuya
Florian Faucher
Anastasis Kratsios
Xavier Tricoche
Maarten V. de Hoop
+ PDF Chat Generative OrnsteinUhlenbeck Markets via Geometric Deep Learning 2023 Anastasis Kratsios
Cody Hyndman
+ Out-of-Distributional Risk Bounds for Neural Operators with Applications to Thehelmholtz Equation 2023 Jose Antonio Lara Benitez
Takashi Furuya
Florian Faucher
Anastasis Kratsios
Xavier Tricoche
Maarten V. de Hoop
+ Capacity Bounds for Hyperbolic Neural Network Representations of Latent Tree Structures 2023 Anastasis Kratsios
Ruiyang Hong
Haitz Sáez de Ocáriz Borde
+ Regret-Optimal Federated Transfer Learning for Kernel Regression with Applications in American Option Pricing 2023 Xuwei Yang
Anastasis Kratsios
Florian Krach
Matheus R. Grasselli
Aurélien Lucchi
+ A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge Regression 2023 Tin Sum Cheng
Aurélien Lucchi
Ivan Dokmanić
Anastasis Kratsios
David Belius
+ Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries 2023 Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
+ Deep Kalman Filters Can Filter 2023 Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
+ Learning sub-patterns in piecewise continuous functions 2022 Anastasis Kratsios
Behnoosh Zamanlooy
+ Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer 2022 Beatrice Acciaio
Anastasis Kratsios
Gudmund Pammer
+ Do ReLU Networks Have An Edge When Approximating Compactly-Supported Functions? 2022 Anastasis Kratsios
Behnoosh Zamanlooy
+ Small Transformers Compute Universal Metric Embeddings 2022 Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
+ Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis 2022 Luca Galimberti
Giulia Livieri
Anastasis Kratsios
+ Instance-Dependent Generalization Bounds via Optimal Transport 2022 Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Jonas Rothfuss
Andreas Krause
+ Universal Approximation Under Constraints is Possible with Transformers. 2021 Anastasis Kratsios
Behnoosh Zamanlooy
Tianlin Liu
Ivan Dokmanić
+ Optimizing Optimizers: Regret-optimal gradient descent algorithms 2021 Philippe Casgrain
Anastasis Kratsios
+ Universal Regular Conditional Distributions via Probability Measure-Valued Deep Neural Models. 2021 Anastasis Kratsios
+ Universal Regular Conditional Distributions 2021 Anastasis Kratsios
+ PDF Chat Lower-Estimates on the Hochschild (Co)Homological Dimension of Commutative Algebras and Applications to Smooth Affine Schemes and Quasi-Free Algebras 2021 Anastasis Kratsios
+ PDF Chat The Universal Approximation Property 2021 Anastasis Kratsios
+ Quantitative Rates and Fundamental Obstructions to Non-Euclidean Universal Approximation with Deep Narrow Feed-Forward Networks. 2021 Anastasis Kratsios
Leonie Papon
+ Universal Approximation Theorems for Differentiable Geometric Deep Learning 2021 Anastasis Kratsios
Leonie Papon
+ Universal Regular Conditional Distributions 2021 Anastasis Kratsios
+ Universal Approximation Under Constraints is Possible with Transformers 2021 Anastasis Kratsios
Behnoosh Zamanlooy
Tianlin Liu
Ivan Dokmanić
+ Universal Approximation Theorems for Differentiable Geometric Deep Learning 2021 Anastasis Kratsios
Leonie Papon
+ Optimizing Optimizers: Regret-optimal gradient descent algorithms 2021 Philippe Casgrain
Anastasis Kratsios
+ Overcoming The Limitations of Neural Networks in Composite-Pattern Learning with Architopes. 2020 Anastasis Kratsios
Behnoosh Zamanlooy
+ Learning Sub-Patterns in Piecewise Continuous Functions 2020 Anastasis Kratsios
Behnoosh Zamanlooy
+ Architopes: An Architecture Modification for Composite Pattern Learning, Increased Expressiveness, and Reduced Training Time. 2020 Anastasis Kratsios
Behnoosh Zamanlooy
+ Non-Euclidean Universal Approximation 2020 Anastasis Kratsios
Ievgen Bilokopytov
+ Denise: Deep Robust Principal Component Analysis for Positive Semidefinite Matrices 2020 Calypso Herrera
Florian Krach
Anastasis Kratsios
Pierre Ruyssen
Josef Teichmann
+ PDF Chat Deep Arbitrage-Free Learning in a Generalized HJM Framework via Arbitrage-Regularization 2020 Anastasis Kratsios
Cody Hyndman
+ Deep Arbitrage-Free Learning in a Generalized HJM Framework via Arbitrage-Regularization 2020 Anastasis Kratsios
Cody Hyndman
+ PDF Chat The entropic measure transform 2020 Renjie Wang
Cody Hyndman
Anastasis Kratsios
+ Non-Euclidean Universal Approximation 2020 Anastasis Kratsios
Eugene Bilokopytov
+ Learning Sub-Patterns in Piecewise Continuous Functions 2020 Anastasis Kratsios
Behnoosh Zamanlooy
+ A Canonical Transform for Strengthening the Local $L^p$-Type Universal Approximation Property 2020 Anastasis Kratsios
Behnoosh Zamanlooy
+ Denise: Deep Robust Principal Component Analysis for Positive Semidefinite Matrices 2020 Calypso Herrera
Florian Krach
Anastasis Kratsios
Pierre Ruyssen
Josef Teichmann
+ Characterizing the Universal Approximation Property 2019 Anastasis Kratsios
+ The Universal Approximation Property: Characterizations, Existence, and a Canonical Topology for Deep-Learning 2019 Anastasis Kratsios
+ Partial Uncertainty and Applications to Risk-Averse Valuation 2019 Anastasis Kratsios
+ The NEU Meta-Algorithm for Geometric Learning with Applications in Finance. 2018 Anastasis Kratsios
Cody Hyndman
+ NEU Meta-Learning and its Universal Approximation Properties 2018 Anastasis Kratsios
Cody Hyndman
+ Arbitrage-free regularization, geometric learning, and non-Euclidean filtering in finance 2018 Anastasis Kratsios
+ NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation 2018 Anastasis Kratsios
Cody Hyndman
+ Optimal Stochastic Decensoring and Applications to Calibration of Market Models 2017 Anastasis Kratsios
+ Geometric Learning and Filtering in Finance 2017 Anastasis Kratsios
Cody Hyndman
+ Non-Euclidean Conditional Expectation and Filtering 2017 Anastasis Kratsios
Cody Hyndman
+ Arbitrage-Free Regularization 2017 Anastasis Kratsios
Cody Hyndman
+ Geometric Learning and Filtering in Finance 2017 Anastasis Kratsios
Cody Hyndman
+ Non-Euclidean Conditional Expectation and Filtering 2017 Anastasis Kratsios
Cody Hyndman
+ Optimal Stochastic Decensoring and Applications to Calibration of Market Models 2017 Anastasis Kratsios
+ Non-Euclidean Conditional Expectation and Filtering 2017 Anastasis Kratsios
Cody Hyndman
+ Bounding The Hochschild Cohomological Dimension Of Commutative k-algebras With Finite Flat-dimension Over k 2016 Anastasis Kratsios
+ A Lower-Bound on the Hochschild Cohomological Dimension 2016 Anastasis Kratsios
+ Bounding The Lower-Bound on the Hochschild Cohomological Dimension 2016 Anastasis Kratsios
+ The Entropic Measure Transform 2015 Renjie Wang
Cody Hyndman
Anastasis Kratsios
+ Bounding The Hochschild Cohomological Dimension 2015 Anastasis Kratsios
+ The Entropic Measure Transform 2015 Renjie Wang
Cody Hyndman
Anastasis Kratsios
+ Hochschild dimension is not semi-continous 2014 Anastasis Kratsios
+ Essentials of Non-commutative Geometry 2014 Anastasis Kratsios
+ Adjoinable Homology 2014 Anastasis Kratsios
+ Noncommutative Algebra and Noncommutative Geometry 2014 Anastasis Kratsios
+ Hochschild Cohomological Dimension is Not Upper Semi-Continuous 2014 Anastasis Kratsios
+ Adjoinable Homology 2014 Anastasis Kratsios
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Riemannian Geometry and Geometric Analysis 1998 Jürgen Jost
7
+ A relation between Hochschild homology and cohomology for Gorenstein rings 1998 Michel Van den Bergh
7
+ Non-Euclidean Universal Approximation 2020 Anastasis Kratsios
Ievgen Bilokopytov
6
+ Approximation rates for neural networks with general activation functions 2020 Jonathan W. Siegel
Jinchao Xu
6
+ Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds 2012 P. Thomas Fletcher
6
+ PDF Chat Approximation Spaces of Deep Neural Networks 2021 Rémi Gribonval
Gitta Kutyniok
Morten Nielsen
Felix Voigtlaender
5
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
5
+ PDF Chat Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
5
+ On the continuity of the inverses of strictly monotonic functions 2015 H. Hoffmann
5
+ PDF Chat Algebra extensions and nonsingularity 1995 Joachim Cuntz
Daniel Quillen
5
+ A random matrix approach to neural networks 2018 Cosme Louart
Zhenyu Liao
Romain Couillet
5
+ PDF Chat Linear extension operators between spaces of Lipschitz maps and optimal transport 2019 Luigi Ambrosio
Daniele Puglisi
4
+ PDF Chat Efficient Approximation of High-Dimensional Functions With Neural Networks 2021 Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
3
+ Algebraic topology 2001 Allen Hatcher
3
+ PDF Chat Deep Arbitrage-Free Learning in a Generalized HJM Framework via Arbitrage-Regularization 2020 Anastasis Kratsios
Cody Hyndman
3
+ PDF Chat A note on generalized inverses 2013 Paul Embrechts
Marius Hofert
3
+ PDF Chat On embedding uniform and topological spaces 1956 Richard Arens
James Eells
3
+ PDF Chat Stochastic Gradient Descent on Riemannian Manifolds 2013 Silvère Bonnabel
3
+ Multivariate Normal Distributions Parametrized as a Riemannian Symmetric Space 2000 Miroslav Lovrić
Maung Min-Oo
Ernst A. Ruh
3
+ PDF Chat Linear Lipschitz and C1 extension operators through random projection 2020 Elia Bruè
Simone Di Marino
Federico Stra
3
+ Globally Injective ReLU Networks 2020 Michael Puthawala
Konik Kothari
Matti Lassas
Ivan Dokmanić
Maarten V. de Hoop
3
+ Hyperbolic Neural Networks++ 2020 Ryohei Shimizu
Yusuke Mukuta
Tatsuya Harada
3
+ An Introduction to Homological Algebra 2008 Joseph Rotman
3
+ Regression on fixed-rank positive semidefinite matrices: a Riemannian approach 2010 Gilles Meyer
Silvère Bonnabel
Rodolphe Sepulchre
3
+ PDF Chat A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models 2020 Christa Cuchiero
Wahid Khosrawi
Josef Teichmann
3
+ Universality of deep convolutional neural networks 2019 Ding‐Xuan Zhou
3
+ Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges 2021 Michael M. Bronstein
Joan Bruna
Taco Cohen
Petar Veličković
3
+ Wasserstein Riemannian geometry of Gaussian densities 2018 Luigi Malagò
Luigi Montrucchio
Giovanni Pistone
3
+ PDF Chat Error bounds for approximations with deep ReLU networks 2017 Dmitry Yarotsky
3
+ PDF Chat Error bounds for approximations with deep ReLU neural networks in Ws,p norms 2019 Ingo Gühring
Gitta Kutyniok
Philipp Petersen
3
+ Universal Kernels 2006 Charles A. Micchelli
Yuesheng Xu
Haizhang Zhang
3
+ PDF Chat A Riemannian Framework for Tensor Computing 2005 Xavier Pennec
Pierre Fillard
Nicholas Ayache
3
+ Manopt, a Matlab toolbox for optimization on manifolds 2013 Nicolas Boumal
Bamdev Mishra
Pierre-Antoine Absil
Rodolphe Sepulchre
3
+ Affine and polynomial processes 2011 Christa Cuchiero
3
+ PDF Chat Riemannian Metric and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank 2009 Silvère Bonnabel
Rodolphe Sepulchre
3
+ PDF Chat Topologies for function spaces 1951 Richard Arens
J. Dugundji
3
+ On the Cohomology Groups of an Associative Algebra 1945 G. Hochschild
3
+ Introduction to Lie Algebras and Representation Theory 1972 James E. Humphreys
2
+ PDF Chat Extension of range of functions 1934 E. J. McShane
2
+ PDF Chat Exponential-Polynomial Families and the Term Structure of Interest Rates 2000 Damir Filipović
Damir Filipović
2
+ Exact finite-dimensional filters for certain diffusions with nonlinear drift 1981 Vladimír Beneš
2
+ PDF Chat Large sample theory of intrinsic and extrinsic sample means on manifolds 2003 Rabi Bhattacharya
Vic Patrangenaru
2
+ Excision in Cyclic Homology and in Rational Algebraic K-theory 1989 Mariusz Wodzicki
2
+ PDF Chat Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces 1984 David G. Kendall
2
+ PDF Chat Martingales on Manifolds with Time-Dependent Connection 2014 Hongxin Guo
Robert Philipowski
Anton Thalmaier
2
+ PDF Chat A note on arbitrage, approximate arbitrage and the fundamental theorem of asset pricing 2014 Claudio Fontana
2
+ PDF Chat Weighted spaces of vector-valued continuous functions 1971 João B. Prolla
2
+ Convex Analysis and Monotone Operator Theory in Hilbert Spaces 2017 Heinz H. Bauschke
Patrick L. Combettes
2
+ PDF Chat Non-commutative differential geometry 1985 Alain Connes
2
+ Proof of the topological equivalence of all separable infinite-dimensional Banach spaces 1967 M. I. Kadet︠s︡
2