Rong Ge

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat ReCaLL: Membership Inference via Relative Conditional Log-Likelihoods 2024 Roy Xie
Junlin Wang
Ruomin Huang
Minxing Zhang
Rong Ge
Jian Pei
Neil Zhenqiang Gong
Bhuwan Dhingra
+ PDF Chat How Does Gradient Descent Learn Features -- A Local Analysis for Regularized Two-Layer Neural Networks 2024 Mo Zhou
Rong Ge
+ Shared Virtual Memory: Its Design and Performance Implications for Diverse Applications 2024 Bennett Cooper
Tom Scogland
Rong Ge
+ PDF Chat Linear Transformers are Versatile In-Context Learners 2024 Max Vladymyrov
Johannes von Oswald
M. Sandler
Rong Ge
+ PDF Chat Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input 2024 Ziang Chen
Rong Ge
+ PDF Chat For Better or For Worse? Learning Minimum Variance Features With Label Augmentation 2024 Muthu Chidambaram
Rong Ge
+ PDF Chat Transfer-learning-based Autotuning using Gaussian Copula 2023 Thomas Randall
Jaehoon Koo
Brice Videau
Michael Kruse
Xingfu Wu
Paul Hovland
Mary Hall
Rong Ge
Prasanna Balaprakash
+ Performance Implication of Tensor Irregularity and Optimization for Distributed Tensor Decomposition 2023 Zheng Miao
Jon C. Calhoun
Rong Ge
Jiajia Li
+ Do Transformers Parse while Predicting the Masked Word? 2023 Haoyu Zhao
Abhishek Panigrahi
Rong Ge
Sanjeev Arora
+ Depth Separation with Multilayer Mean-Field Networks 2023 Yunwei Ren
Mo Zhou
Rong Ge
+ Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models 2023 Alex Damian
Eshaan Nichani
Rong Ge
Jason D. Lee
+ On the Limitations of Temperature Scaling for Distributions with Overlaps 2023 Muthu Chidambaram
Rong Ge
+ The Role of Linguistic Priors in Measuring Compositional Generalization of Vision-Language Models 2023 Chen-Wei Wu
Li Erran Li
Stefano Ermon
Patrick Haffner
Rong Ge
Zaiwei Zhang
+ PDF Chat Do Transformers Parse while Predicting the Masked Word? 2023 Haoyu Zhao
Abhishek Panigrahi
Rong Ge
Sanjeev Arora
+ BALA-CPD: BALanced and Asynchronous Distributed Tensor Decomposition 2022 Zheng Miao
Jiajia Li
Jon C. Calhoun
Rong Ge
+ Understanding The Robustness of Self-supervised Learning Through Topic Modeling 2022 Zeping Luo
Cindy Weng
Shiyou Wu
Mo Zhou
Rong Ge
+ Customizing ML Predictions for Online Algorithms 2022 Keerti Anand
Rong Ge
Debmalya Panigrahi
+ A Regression Approach to Learning-Augmented Online Algorithms 2022 Keerti Anand
Rong Ge
Amit Kumar
Debmalya Panigrahi
+ Plateau in Monotonic Linear Interpolation -- A "Biased" View of Loss Landscape for Deep Networks 2022 Xiang Wang
Annie N. Wang
Mo Zhou
Rong Ge
+ Provably Learning Diverse Features in Multi-View Data with Midpoint Mixup 2022 Muthu Chidambaram
Xiang Wang
Chenwei Wu
Rong Ge
+ Online Algorithms with Multiple Predictions 2022 Keerti Anand
Rong Ge
Amit Kumar
Debmalya Panigrahi
+ Understanding Deflation Process in Over-parametrized Tensor Decomposition 2021 Rong Ge
Yunwei Ren
Xiang Wang
Mo Zhou
+ FULL-W2V 2021 Thomas Randall
Tyler Allen
Rong Ge
+ Understanding Deflation Process in Over-parametrized Tensor Decomposition 2021 Rong Ge
Yunwei Ren
Xiang Wang
Mo Zhou
+ PDF Chat Extracting Latent State Representations with Linear Dynamics from Rich Observations 2020 Abraham Frandsen
Rong Ge
+ PDF Chat Optimization landscape of Tucker decomposition 2020 Abraham Frandsen
Rong Ge
+ Energy-Aware DNN Graph Optimization 2020 Yu Wang
Rong Ge
Shuang Qiu
+ Extracting Latent State Representations with Linear Dynamics from Rich Observations 2020 Abraham Frandsen
Rong Ge
+ Guarantees for Tuning the Step Size using a Learning-to-Learn Approach 2020 Xiang Wang
Shuai Yuan
Chenwei Wu
Rong Ge
+ Beyond Lazy Training for Over-parameterized Tensor Decomposition 2020 Xiang Wang
Chenwei Wu
Jason D. Lee
Tengyu Ma
Rong Ge
+ The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning Rate Procedure. 2019 Rong Ge
Sham M. Kakade
Rahul Kidambi
Praneeth Netrapalli
+ Stochastic Gradient Descent Escapes Saddle Points Efficiently. 2019 Chi Jin
Praneeth Netrapalli
Rong Ge
Sham M. Kakade
Michael I. Jordan
+ Understanding Composition of Word Embeddings via Tensor Decomposition 2019 Abraham Frandsen
Rong Ge
+ A Short Note on Concentration Inequalities for Random Vectors with SubGaussian Norm 2019 Chi Jin
Praneeth Netrapalli
Rong Ge
Sham M. Kakade
Michael I. Jordan
+ PDF Chat High-Dimensional Robust Mean Estimation in Nearly-Linear Time 2019 Yu Cheng
Ilias Diakonikolas
Rong Ge
+ Understanding Composition of Word Embeddings via Tensor Decomposition. 2019 Abraham Frandsen
Rong Ge
+ PDF Chat Spectral Learning on Matrices and Tensors 2019 Majid Janzamin
Rong Ge
Jean Kossaifi
Anima Anandkumar
+ The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning Rate Procedure For Least Squares 2019 Rong Ge
Sham M. Kakade
Rahul Kidambi
Praneeth Netrapalli
+ PDF Chat Spectral Learning on Matrices and Tensors 2019 Majid Janzamin
Rong Ge
Jean Kossaifi
Anima Anandkumar
+ Learning Two-Layer Neural Networks with Symmetric Inputs 2018 Rong Ge
Rohith Kuditipudi
Zhize Li
Xiang Wang
+ Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator 2018 Maryam Fazel
Rong Ge
Sham M. Kakade
Mehran Mesbahi
+ Simulated Tempering Langevin Monte Carlo II: An Improved Proof using Soft Markov Chain Decomposition 2018 Rong Ge
Holden Lee
Andrej Risteski
+ On the Local Minima of the Empirical Risk 2018 Chi Jin
Lydia T. Liu
Rong Ge
Michael I. Jordan
+ Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal Distributions using Simulated Tempering Langevin Monte Carlo 2018 Holden Lee
Andrej Risteski
Rong Ge
+ High-Dimensional Robust Mean Estimation in Nearly-Linear Time 2018 Yu Cheng
Ilias Diakonikolas
Rong Ge
+ Online Service with Delay 2017 Yossi Azar
Arun Ganesh
Rong Ge
Debmalya Panigrahi
+ Analyzing tensor power method dynamics in overcomplete regime 2017 Animashree Anandkumar
Rong Ge
Majid Janzamin
+ Analyzing Tensor Power Method Dynamics in Overcomplete Regime - eScholarship 2017 Animashree Anandkumar
Rong Ge
Majid Janzamin
+ Online Service with Delay 2017 Yossi Azar
Arun Ganesh
Rong Ge
Debmalya Panigrahi
+ Homotopy Method for Tensor Principal Component Analysis. 2016 Anima Anandkumar
Yuan Deng
Rong Ge
Hossein Mobahi
+ Efficient approaches for escaping higher order saddle points in non-convex optimization 2016 Animashree Anandkumar
Rong Ge
+ DynIMS: A Dynamic Memory Controller for In-memory Storage on HPC Systems 2016 Pengfei Xuan
Feng Luo
Rong Ge
Pradip K. Srimani
+ Provable learning of Noisy-or Networks 2016 Sanjeev Arora
Rong Ge
Tengyu Ma
Andrej Risteski
+ PDF Chat Minimal Realization Problems for Hidden Markov Models 2015 Qingqing Huang
Rong Ge
Sham M. Kakade
Munther A. Dahleh
+ PDF Chat Big data analytics on traditional HPC infrastructure using two-level storage 2015 Pengfei Xuan
Jeffrey Denton
Pradip K. Srimani
Rong Ge
Feng Luo
+ Learning Overcomplete Latent Variable Models through Tensor Methods 2015 Animashree Anandkumar
Rong Ge
Majid Janzamin
+ Competing with the Empirical Risk Minimizer in a Single Pass 2015 Roy Frostig
Rong Ge
Sham M. Kakade
Aaron Sidford
+ PDF Chat Learning Mixtures of Gaussians in High Dimensions 2015 Rong Ge
Qingqing Huang
Sham M. Kakade
+ Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms 2015 Rong Ge
Tengyu Ma
+ Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition 2015 Rong Ge
Furong Huang
Chi Jin
Yuan Yang
+ Intersecting Faces: Non-negative Matrix Factorization With New Guarantees 2015 Rong Ge
James Zou
+ Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms 2015 Rong Ge
Tengyu Ma
+ Tensor Decompositions for Learning Latent Variable Models (A Survey for ALT) 2015 Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
+ Learning Mixtures of Gaussians in High Dimensions 2015 Rong Ge
Qingqing Huang
Sham M. Kakade
+ Rich Component Analysis 2015 Rong Ge
James Zou
+ Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition 2015 Rong Ge
Furong Huang
Chi Jin
Yuan Yang
+ Analyzing Tensor Power Method Dynamics: Applications to Learning Overcomplete Latent Variable Models. 2014 Anima Anandkumar
Rong Ge
Majid Janzamin
+ Analyzing Tensor Power Method Dynamics in Overcomplete Regime 2014 Anima Anandkumar
Rong Ge
Majid Janzamin
+ Minimal realization problem for Hidden Markov Models 2014 Qingqing Huang
Rong Ge
Sham M. Kakade
Munther A. Dahleh
+ Provable Learning of Overcomplete Latent Variable Models: Semi-supervised and Unsupervised Settings. 2014 Animashree Anandkumar
Rong Ge
Majid Janzamin
+ Sample Complexity Analysis for Learning Overcomplete Latent Variable Models through Tensor Methods 2014 Animashree Anandkumar
Rong Ge
Majid Janzamin
+ Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-$1$ Updates 2014 Animashree Anandkumar
Rong Ge
Majid Janzamin
+ Competing with the Empirical Risk Minimizer in a Single Pass 2014 Roy Frostig
Rong Ge
Sham M. Kakade
Aaron Sidford
+ Tensor decompositions for learning latent variable models 2014 Animashree Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
+ More Algorithms for Provable Dictionary Learning 2014 Sanjeev Arora
Aditya Bhaskara
Rong Ge
Tengyu Ma
+ Minimal Realization Problems for Hidden Markov Models 2014 Qingqing Huang
Rong Ge
Sham M. Kakade
Munther A. Dahleh
+ A tensor approach to learning mixed membership community models 2014 Animashree Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
+ Sample Complexity Analysis for Learning Overcomplete Latent Variable Models through Tensor Methods 2014 Animashree Anandkumar
Rong Ge
Majid Janzamin
+ Analyzing Tensor Power Method Dynamics in Overcomplete Regime 2014 Anima Anandkumar
Rong Ge
Majid Janzamin
+ Provable Bounds for Learning Some Deep Representations 2013 Sanjeev Arora
Aditya Bhaskara
Rong Ge
Tengyu Ma
+ PDF Chat Towards a Better Approximation for Sparsest Cut? 2013 Sanjeev Arora
Rong Ge
Ali Kemal Sinop
+ A Tensor Spectral Approach to Learning Mixed Membership Community Models 2013 Animashree Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
+ Towards a better approximation for sparsest cut 2013 Sanjeev Arora
Rong Ge
Ali Kemal Sinop
+ A Tensor Spectral Approach to Learning Mixed Membership Community Models 2013 Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
+ A Tensor Approach to Learning Mixed Membership Community Models 2013 Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
+ Towards a better approximation for sparsest cut? 2013 Sanjeev Arora
Rong Ge
Ali Kemal Sinop
+ A Practical Algorithm for Topic Modeling with Provable Guarantees 2012 Sanjeev Arora
Rong Ge
Yoni Halpern
David Mimno
Ankur Moitra
David Sontag
Yichen Wu
Michael Zhu
+ PDF Chat Tensor Decompositions for Learning Latent Variable Models 2012 Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
+ PDF Chat Learning Topic Models -- Going beyond SVD 2012 Sanjeev Arora
Rong Ge
Ankur Moitra
+ Provable ICA with Unknown Gaussian Noise, and Implications for Gaussian Mixtures and Autoencoders 2012 Sanjeev Arora
Rong Ge
Ankur Moitra
Sushant Sachdeva
+ Learning Topic Models - Going beyond SVD 2012 Sanjeev Arora
Rong Ge
Ankur Moitra
+ A Practical Algorithm for Topic Modeling with Provable Guarantees 2012 Sanjeev Arora
Rong Ge
Yonatan Halpern
David Mimno
Ankur Moitra
David Sontag
Yichen Wu
Michael Zhu
+ Provable ICA with Unknown Gaussian Noise, and Implications for Gaussian Mixtures and Autoencoders 2012 Sanjeev Arora
Rong Ge
Ankur Moitra
Sushant Sachdeva
+ Learning Topic Models - Going beyond SVD 2012 Sanjeev Arora
Rong Ge
Ankur Moitra
+ Tensor decompositions for learning latent variable models 2012 Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
+ Finding Overlapping Communities in Social Networks: Toward a Rigorous Approach 2011 Sanjeev Arora
Rong Ge
Sushant Sachdeva
Grant Schoenebeck
+ Evaluating online ad campaigns in a pipeline 2010 David Chan
Rong Ge
Ori Gershony
Tim Hesterberg
Diane Lambert
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ A Method of Moments for Mixture Models and Hidden Markov Models 2012 Animashree Anandkumar
Daniel Hsu
Sham M. Kakade
15
+ PDF Chat Learning mixtures of spherical gaussians 2013 Daniel Hsu
Sham M. Kakade
15
+ Tensor decompositions for learning latent variable models 2014 Animashree Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
15
+ Tensor Decompositions and Applications 2009 Tamara G. Kolda
Brett W. Bader
13
+ Two SVDs Suffice: Spectral decompositions for probabilistic topic modeling and latent Dirichlet allocation 2012 Animashree Anandkumar
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Yi-Kai Liu
11
+ PDF Chat User-Friendly Tail Bounds for Sums of Random Matrices 2011 Joel A. Tropp
10
+ Contrastive Learning Using Spectral Methods 2013 James Zou
Daniel Hsu
David C. Parkes
Ryan P. Adams
10
+ Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics 1977 Joseph B. Kruskal
10
+ Rank-One Approximation to High Order Tensors 2001 Tong Zhang
Gene H. Golub
10
+ A spectral algorithm for learning Hidden Markov Models 2012 Daniel Hsu
Sham M. Kakade
Tong Zhang
9
+ Fast Detection of Overlapping Communities via Online Tensor Methods 2013 Furong Huang
U. N. Niranjan
Mohammad Umar Hakeem
Animashree Anandkumar
9
+ PDF Chat Smoothed analysis of tensor decompositions 2014 Aditya Bhaskara
Moses Charikar
Ankur Moitra
Aravindan Vijayaraghavan
9
+ Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis 1970 Richard A. Harshman
9
+ PDF Chat Most Tensor Problems Are NP-Hard 2013 Christopher J. Hillar
Lek‐Heng Lim
9
+ Shifted power method for computing tensor eigenpairs. 2010 Jackson Mayo
Tamara G. Kolda
8
+ A Tensor Spectral Approach to Learning Mixed Membership Community Models 2013 Animashree Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
8
+ Perturbation bounds in connection with singular value decomposition 1972 Per-Åke Wedin
7
+ PDF Chat Singular Values and Eigenvalues of Tensors: A Variational Approach 2006 Lek‐Heng Lim
6
+ PDF Chat Learning mixtures of separated nonspherical Gaussians 2005 Sanjeev Arora
Ravi Kannan
6
+ Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition 1970 J. Douglas Carroll
Jih-Jie Chang
6
+ Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-$1$ Updates 2014 Animashree Anandkumar
Rong Ge
Majid Janzamin
6
+ A Spectral Algorithm for Latent Dirichlet Allocation 2012 Animashree Anandkumar
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Yi-Kai Liu
6
+ PDF Chat Learning nonsingular phylogenies and hidden Markov models 2006 Elchanan Mossel
Sébastien Roch
6
+ Sample Complexity Analysis for Learning Overcomplete Latent Variable Models through Tensor Methods 2014 Animashree Anandkumar
Rong Ge
Majid Janzamin
6
+ Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition 2015 Rong Ge
Furong Huang
Chi Jin
Yuan Yang
5
+ Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm 1977 A. P. Dempster
N. M. Laird
Donald B. Rubin
5
+ A Decomposition for Three-Way Arrays 1993 Sue E. Leurgans
R. Ross
Robert Abel
5
+ PDF Chat Learning nonsingular phylogenies and hidden Markov models 2005 Elchanan Mossel
Sébastien Roch
5
+ Some methods for classification and analysis of multivariate observations 1967 James B. MacQueen
5
+ Eigenvalues of a real supersymmetric tensor 2005 Liqun Qi
5
+ PDF Chat On exchangeable random variables and the statistics of large graphs and hypergraphs 2008 Tim Austin
5
+ PDF Chat Computing a nonnegative matrix factorization -- provably 2012 Sanjeev Arora
Rong Ge
Ravindran Kannan
Ankur Moitra
4
+ Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization 2013 Alekh Agarwal
Animashree Anandkumar
Prateek Jain
Praneeth Netrapalli
4
+ Spectral partitioning of random graphs 2001 Frank McSherry
4
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
4
+ On the Best Rank-1 and Rank-(<i>R</i><sub>1</sub> ,<i>R</i><sub>2</sub> ,. . .,<i>R<sub>N</sub></i>) Approximation of Higher-Order Tensors 2000 Lieven De Lathauwer
Bart De Moor
Joos Vandewalle
4
+ PDF Chat Low-rank matrix completion using alternating minimization 2013 Prateek Jain
Praneeth Netrapalli
Sujay Sanghavi
4
+ Online tensor methods for learning latent variable models 2015 Furong Huang
U. N. Niranjan
Mohammad Umar Hakeem
Animashree Anandkumar
4
+ Polynomial Learning of Distribution Families 2010 Mikhail Belkin
K. P. Sinha
4
+ Smoothed Analysis of Tensor Decompositions 2013 Aditya Bhaskara
Moses Charikar
Ankur Moitra
Aravindan Vijayaraghavan
4
+ PDF Chat Learning Mixtures of Gaussians in High Dimensions 2015 Rong Ge
Qingqing Huang
Sham M. Kakade
4
+ Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms 2015 Rong Ge
Tengyu Ma
4
+ The number of eigenvalues of a tensor 2011 Dustin Cartwright
Bernd Sturmfels
4
+ PDF Chat Dictionary Learning and Tensor Decomposition via the Sum-of-Squares Method 2015 Boaz Barak
Jonathan A. Kelner
David Steurer
4
+ A Method of Moments for Mixture Models and Hidden Markov Models 2012 Animashree Anandkumar
Daniel Hsu
Sham M. Kakade
4
+ Mixture Densities, Maximum Likelihood and the EM Algorithm 1984 Richard A. Redner
Homer F. Walker
4
+ Sum-of-squares proofs and the quest toward optimal algorithms 2014 Boaz Barak
David Steurer
4
+ On the uniqueness of multilinear decomposition ofN-way arrays 2000 Nicholas D. Sidiropoulos
Rasmus Bro
4
+ PDF Chat Settling the Polynomial Learnability of Mixtures of Gaussians 2010 Ankur Moitra
Gregory Valiant
4
+ Learning mixtures of arbitrary gaussians 2001 Sanjeev Arora
Ravi Kannan
4