Carl Poelking

Follow

Generating author description...

All published works
Action Title Year Authors
+ Embracing assay heterogeneity with neural processes for markedly improved bioactivity predictions 2023 Lucian Chan
Marcel L. Verdonk
Carl Poelking
+ CESPED: a new benchmark for supervised particle pose estimation in Cryo-EM 2023 Rubén Sånchez-García
Michael Saur
Javier Vargas
Carl Poelking
Charlotte M. Deane
+ PDF Chat BenchML: an extensible pipelining framework for benchmarking representations of materials and molecules at scale 2022 Carl Poelking
Felix A. Faber
Bingqing Cheng
+ Meaningful machine learning models and machine-learned pharmacophores from fragment screening campaigns 2022 Carl Poelking
Gianni Chessari
Christopher W. Murray
Richard J. Hall
Lucy J. Colwell
Marcel L. Verdonk
+ 3D pride without 2D prejudice: Bias-controlled multi-level generative models for structure-based ligand design 2022 Lucian Chan
Rajendra Kumar
Marcel L. Verdonk
Carl Poelking
+ PDF Chat Chemical Design Rules for Non‐Fullerene Acceptors in Organic Solar Cells 2021 Anastasia Markina
Kun‐Han Lin
Wenlan Liu
Carl Poelking
Yuliar Firdaus
Diego Rosas Villalva
Jafar I. Khan
Sri Harish Kumar Paleti
George T. Harrison
Julien Gorenflot
+ BenchML: an extensible pipelining framework for benchmarking representations of materials and molecules at scale 2021 Carl Poelking
Felix A. Faber
Bingqing Cheng
+ Investigating 3D Atomic Environments for Enhanced QSAR 2020 William McCorkindale
Carl Poelking
Alpha A. Lee
+ Noisy, sparse, nonlinear: Navigating the Bermuda Triangle of physical inference with deep filtering 2019 Carl Poelking
Yehia Amar
Alexei A. Lapkin
Lucy J. Colwell
+ Noisy, sparse, nonlinear: Navigating the Bermuda Triangle of physical inference with deep filtering 2019 Carl Poelking
Yehia Amar
Alexei A. Lapkin
Lucy J. Colwell
+ PDF Chat Machine learning unifies the modeling of materials and molecules 2017 Albert P. BartĂłk
Sandip De
Carl Poelking
Noam Bernstein
James R. Kermode
Gábor Cƛanyi
Michele Ceriotti
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat On representing chemical environments 2013 Albert P. BartĂłk
Risi Kondor
Gábor Cƛanyi
3
+ PDF Chat Comparing molecules and solids across structural and alchemical space 2016 Sandip De
Albert P. BartĂłk
Gábor Cƛanyi
Michele Ceriotti
3
+ PDF Chat ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost 2017 Justin S. Smith
Olexandr Isayev
AdriĂĄn E. Roitberg
2
+ Unified Representation of Molecules and Crystals for Machine Learning 2017 Haoyan Huo
Matthias Rupp
2
+ PDF Chat Machine-learned multi-system surrogate models for materials prediction 2019 Chandramouli Nyshadham
Matthias Rupp
Brayden Bekker
Alexander V. Shapeev
Tim Mueller
Conrad W. Rosenbrock
Gábor Cƛanyi
David Wingate
Gus L. W. Hart
2
+ PDF Chat Machine learning unifies the modeling of materials and molecules 2017 Albert P. BartĂłk
Sandip De
Carl Poelking
Noam Bernstein
James R. Kermode
Gábor Cƛanyi
Michele Ceriotti
2
+ PDF Chat Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning 2012 Matthias Rupp
Alexandre Tkatchenko
Klaus‐Robert MĂŒller
O. Anatole von Lilienfeld
1
+ PDF Chat Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials 2016 Alexander V. Shapeev
1
+ AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery 2015 Izhar Wallach
Michael Dzamba
Abraham Heifets
1
+ PDF Chat Quantum-chemical insights from deep tensor neural networks 2017 Kristof T. SchĂŒtt
Farhad Arbabzadah
Stefan Chmiela
K. MĂŒller
Alexandre Tkatchenko
1
+ PDF Chat Machine learning based interatomic potential for amorphous carbon 2017 Volker L. Deringer
Gábor Cƛanyi
1
+ PDF Chat Optimal Design of Experiments by Combining Coarse and Fine Measurements 2017 Alpha A. Lee
Michael P. Brenner
Lucy J. Colwell
1
+ Neural Message Passing for Quantum Chemistry 2017 Justin Gilmer
Samuel S. Schoenholz
Patrick Riley
Oriol Vinyals
George E. Dahl
1
+ Unified Representation for Machine Learning of Molecules and Crystals 2017 Haoyan Huo
Matthias Rupp
1
+ PDF Chat Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error 2017 Felix A. Faber
Luke A. D. Hutchison
Bing Huang
Justin Gilmer
Samuel S. Schoenholz
George E. Dahl
Oriol Vinyals
Steven Kearnes
Patrick Riley
O. Anatole von Lilienfeld
1
+ PDF Chat Data-Driven Learning of Total and Local Energies in Elemental Boron 2018 Volker L. Deringer
Chris J. Pickard
Gábor Cƛanyi
1
+ PDF Chat SchNet – A deep learning architecture for molecules and materials 2018 Kristof T. SchĂŒtt
Huziel E. Sauceda
Pieter-Jan Kindermans
Alexandre Tkatchenko
K. MĂŒller
1
+ PDF Chat Growth Mechanism and Origin of High <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>s</mml:mi><mml:msup><mml:mi>p</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math> Content in Tetrahedral Amorphous Carbon 2018 A. Miguel
Volker L. Deringer
Jari Koskinen
Tomi Laurila
Gábor Cƛanyi
1
+ PotentialNet for Molecular Property Prediction 2018 Evan N. Feinberg
Debnil Sur
Zhenqin Wu
Brooke E. Husic
Huanghao Mai
Yang Li
Saisai Sun
Jianyi Yang
Bharath Ramsundar
Vijay S. Pande
1
+ Ab initio thermodynamics of liquid and solid water 2019 Bingqing Cheng
Edgar A. Engel
Jörg Behler
Christoph Dellago
Michele Ceriotti
1
+ PDF Chat Atom-density representations for machine learning 2019 Michael J. Willatt
FĂ©lix Musil
Michele Ceriotti
1
+ PDF Chat Reliable Prediction Errors for Deep Neural Networks Using Test-Time Dropout 2019 Isidro CortĂ©s‐Ciriano
Andreas Bender
1
+ Convolutional Networks on Graphs for Learning Molecular Fingerprints 2015 David Duvenaud
Dougal Maclaurin
Jorge Aguilera‐Iparraguirre
Rafael Gómez‐Bombarelli
Timothy Hirzel
Alán Aspuru‐Guzik
Ryan P. Adams
1
+ PDF Chat Moment Tensor Potentials 2016 Alexander V. Shapeev
1
+ Analyzing Learned Molecular Representations for Property Prediction 2019 Kevin Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
Hua Gao
Angel GuzmĂĄn-PĂ©rez
Timothy Hopper
Brian P. Kelley
Miriam Mathea
1
+ DScribe: Library of descriptors for machine learning in materials science 2019 Lauri Himanen
Marc O. J. JĂ€ger
Eiaki V. Morooka
Filippo Federici Canova
Yashasvi S. Ranawat
David Gao
Patrick Rinke
Adam S. Foster
1
+ Hierarchical modeling of molecular energies using a deep neural network 2018 Nicholas Lubbers
Justin S. Smith
Kipton Barros
1
+ PDF Chat Alchemical and structural distribution based representation for universal quantum machine learning 2018 Felix A. Faber
Anders S. Christensen
Bing Huang
O. Anatole von Lilienfeld
1
+ PDF Chat Machine learning of molecular electronic properties in chemical compound space 2013 Grégoire Montavon
Matthias Rupp
Vivekanand V. Gobre
Álvaro Vázquez‐Mayagoitia
Katja Hansen
Alexandre Tkatchenko
Klaus‐Robert MĂŒller
O. Anatole von Lilienfeld
1
+ PDF Chat Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity 2016 Bing Huang
O. Anatole von Lilienfeld
1
+ PDF Chat Predicting the phase diagram of titanium dioxide with random search and pattern recognition 2020 Aleks Reinhardt
Chris J. Pickard
Bingqing Cheng
1
+ PDF Chat Most Ligand-Based Classification Benchmarks Reward Memorization Rather than Generalization 2018 Izhar Wallach
Abraham Heifets
1
+ PDF Chat Charge Photogeneration in Non‐Fullerene Organic Solar Cells: Influence of Excess Energy and Electrostatic Interactions 2020 Maria Saladina
Pablo Simón Marqués
Anastasia Markina
Safakath Karuthedath
Christopher Wöpke
Clemens Göhler
Yue Chen
Magali Allain
Philippe Blanchard
Clément Cabanetos
1
+ PDF Chat Defect Formation Energies without the Band-Gap Problem: Combining Density-Functional Theory and the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>G</mml:mi><mml:mi>W</mml:mi></mml:math>Approach for the Silicon Self-Interstitial 2009 Patrick Rinke
Anderson Janotti
Matthias Scheffler
Chris G. Van de Walle
1
+ PDF Chat Physics-Inspired Structural Representations for Molecules and Materials 2021 FĂ©lix Musil
Andrea Grisafi
Albert P. BartĂłk
Christoph Ortner
Gábor Cƛanyi
Michele Ceriotti
1
+ Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances 2013 Marco Cuturi
1
+ PDF Chat Machine Learning Energies of 2 Million Elpasolite<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>A</mml:mi><mml:mi>B</mml:mi><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>Crystals 2016 Felix A. Faber
Alexander Lindmaa
O. Anatole von Lilienfeld
Rickard Armiento
1
+ Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach 2015 Raghunathan Ramakrishnan
Pavlo O. Dral
Matthias Rupp
O. Anatole von Lilienfeld
1
+ PDF Chat Finding Density Functionals with Machine Learning 2012 John Snyder
Matthias Rupp
Katja Hansen
Klaus‐Robert MĂŒller
Kieron Burke
1
+ PDF Chat Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons 2010 Albert P. BartĂłk
M. C. Payne
Risi Kondor
Gábor Cƛanyi
1