Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Carl Poelking
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
Embracing assay heterogeneity with neural processes for markedly improved bioactivity predictions
2023
Lucian Chan
Marcel L. Verdonk
Carl Poelking
+
CESPED: a new benchmark for supervised particle pose estimation in Cryo-EM
2023
RubĂ©n SĂĄnchez-GarcĂa
Michael Saur
Javier Vargas
Carl Poelking
Charlotte M. Deane
+
PDF
Chat
BenchML: an extensible pipelining framework for benchmarking representations of materials and molecules at scale
2022
Carl Poelking
Felix A. Faber
Bingqing Cheng
+
Meaningful machine learning models and machine-learned pharmacophores from fragment screening campaigns
2022
Carl Poelking
Gianni Chessari
Christopher W. Murray
Richard J. Hall
Lucy J. Colwell
Marcel L. Verdonk
+
3D pride without 2D prejudice: Bias-controlled multi-level generative models for structure-based ligand design
2022
Lucian Chan
Rajendra Kumar
Marcel L. Verdonk
Carl Poelking
+
PDF
Chat
Chemical Design Rules for NonâFullerene Acceptors in Organic Solar Cells
2021
Anastasia Markina
KunâHan Lin
Wenlan Liu
Carl Poelking
Yuliar Firdaus
Diego Rosas Villalva
Jafar I. Khan
Sri Harish Kumar Paleti
George T. Harrison
Julien Gorenflot
+
BenchML: an extensible pipelining framework for benchmarking representations of materials and molecules at scale
2021
Carl Poelking
Felix A. Faber
Bingqing Cheng
+
Investigating 3D Atomic Environments for Enhanced QSAR
2020
William McCorkindale
Carl Poelking
Alpha A. Lee
+
Noisy, sparse, nonlinear: Navigating the Bermuda Triangle of physical inference with deep filtering
2019
Carl Poelking
Yehia Amar
Alexei A. Lapkin
Lucy J. Colwell
+
Noisy, sparse, nonlinear: Navigating the Bermuda Triangle of physical inference with deep filtering
2019
Carl Poelking
Yehia Amar
Alexei A. Lapkin
Lucy J. Colwell
+
PDF
Chat
Machine learning unifies the modeling of materials and molecules
2017
Albert P. BartĂłk
Sandip De
Carl Poelking
Noam Bernstein
James R. Kermode
GĂĄbor CĆanyi
Michele Ceriotti
Common Coauthors
Coauthor
Papers Together
Marcel L. Verdonk
3
Lucy J. Colwell
3
Alexei A. Lapkin
2
Felix A. Faber
2
Bingqing Cheng
2
Yehia Amar
2
Lucian Chan
2
GĂĄbor CĆanyi
1
James R. Kermode
1
Derya Baran
1
Wenlan Liu
1
Iain McCulloch
1
Noam Bernstein
1
Sri Harish Kumar Paleti
1
George T. Harrison
1
RubĂ©n SĂĄnchez-GarcĂa
1
Diego Rosas Villalva
1
Thomas D. Anthopoulos
1
Anastasia Markina
1
Julien Gorenflot
1
Yuliar Firdaus
1
Alpha A. Lee
1
Albert P. BartĂłk
1
Stefaan De Wolf
1
Sandip De
1
KunâHan Lin
1
Frédéric Laquai
1
Jafar I. Khan
1
Christopher W. Murray
1
Denis Andrienko
1
Weimin Zhang
1
Javier Vargas
1
Rajendra Kumar
1
Gianni Chessari
1
Michael Saur
1
Charlotte M. Deane
1
William McCorkindale
1
Michele Ceriotti
1
Richard J. Hall
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
On representing chemical environments
2013
Albert P. BartĂłk
Risi Kondor
GĂĄbor CĆanyi
3
+
PDF
Chat
Comparing molecules and solids across structural and alchemical space
2016
Sandip De
Albert P. BartĂłk
GĂĄbor CĆanyi
Michele Ceriotti
3
+
PDF
Chat
ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
2017
Justin S. Smith
Olexandr Isayev
AdriĂĄn E. Roitberg
2
+
Unified Representation of Molecules and Crystals for Machine Learning
2017
Haoyan Huo
Matthias Rupp
2
+
PDF
Chat
Machine-learned multi-system surrogate models for materials prediction
2019
Chandramouli Nyshadham
Matthias Rupp
Brayden Bekker
Alexander V. Shapeev
Tim Mueller
Conrad W. Rosenbrock
GĂĄbor CĆanyi
David Wingate
Gus L. W. Hart
2
+
PDF
Chat
Machine learning unifies the modeling of materials and molecules
2017
Albert P. BartĂłk
Sandip De
Carl Poelking
Noam Bernstein
James R. Kermode
GĂĄbor CĆanyi
Michele Ceriotti
2
+
PDF
Chat
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
2012
Matthias Rupp
Alexandre Tkatchenko
KlausâRobert MĂŒller
O. Anatole von Lilienfeld
1
+
PDF
Chat
Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials
2016
Alexander V. Shapeev
1
+
AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery
2015
Izhar Wallach
Michael Dzamba
Abraham Heifets
1
+
PDF
Chat
Quantum-chemical insights from deep tensor neural networks
2017
Kristof T. SchĂŒtt
Farhad Arbabzadah
Stefan Chmiela
K. MĂŒller
Alexandre Tkatchenko
1
+
PDF
Chat
Machine learning based interatomic potential for amorphous carbon
2017
Volker L. Deringer
GĂĄbor CĆanyi
1
+
PDF
Chat
Optimal Design of Experiments by Combining Coarse and Fine Measurements
2017
Alpha A. Lee
Michael P. Brenner
Lucy J. Colwell
1
+
Neural Message Passing for Quantum Chemistry
2017
Justin Gilmer
Samuel S. Schoenholz
Patrick Riley
Oriol Vinyals
George E. Dahl
1
+
Unified Representation for Machine Learning of Molecules and Crystals
2017
Haoyan Huo
Matthias Rupp
1
+
PDF
Chat
Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error
2017
Felix A. Faber
Luke A. D. Hutchison
Bing Huang
Justin Gilmer
Samuel S. Schoenholz
George E. Dahl
Oriol Vinyals
Steven Kearnes
Patrick Riley
O. Anatole von Lilienfeld
1
+
PDF
Chat
Data-Driven Learning of Total and Local Energies in Elemental Boron
2018
Volker L. Deringer
Chris J. Pickard
GĂĄbor CĆanyi
1
+
PDF
Chat
SchNet â A deep learning architecture for molecules and materials
2018
Kristof T. SchĂŒtt
Huziel E. Sauceda
Pieter-Jan Kindermans
Alexandre Tkatchenko
K. MĂŒller
1
+
PDF
Chat
Growth Mechanism and Origin of High <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>s</mml:mi><mml:msup><mml:mi>p</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math> Content in Tetrahedral Amorphous Carbon
2018
A. Miguel
Volker L. Deringer
Jari Koskinen
Tomi Laurila
GĂĄbor CĆanyi
1
+
PotentialNet for Molecular Property Prediction
2018
Evan N. Feinberg
Debnil Sur
Zhenqin Wu
Brooke E. Husic
Huanghao Mai
Yang Li
Saisai Sun
Jianyi Yang
Bharath Ramsundar
Vijay S. Pande
1
+
Ab initio thermodynamics of liquid and solid water
2019
Bingqing Cheng
Edgar A. Engel
Jörg Behler
Christoph Dellago
Michele Ceriotti
1
+
PDF
Chat
Atom-density representations for machine learning
2019
Michael J. Willatt
FĂ©lix Musil
Michele Ceriotti
1
+
PDF
Chat
Reliable Prediction Errors for Deep Neural Networks Using Test-Time Dropout
2019
Isidro CortĂ©sâCiriano
Andreas Bender
1
+
Convolutional Networks on Graphs for Learning Molecular Fingerprints
2015
David Duvenaud
Dougal Maclaurin
Jorge AguileraâIparraguirre
Rafael GĂłmezâBombarelli
Timothy Hirzel
AlĂĄn AspuruâGuzik
Ryan P. Adams
1
+
PDF
Chat
Moment Tensor Potentials
2016
Alexander V. Shapeev
1
+
Analyzing Learned Molecular Representations for Property Prediction
2019
Kevin Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
Hua Gao
Angel GuzmĂĄn-PĂ©rez
Timothy Hopper
Brian P. Kelley
Miriam Mathea
1
+
DScribe: Library of descriptors for machine learning in materials science
2019
Lauri Himanen
Marc O. J. JĂ€ger
Eiaki V. Morooka
Filippo Federici Canova
Yashasvi S. Ranawat
David Gao
Patrick Rinke
Adam S. Foster
1
+
Hierarchical modeling of molecular energies using a deep neural network
2018
Nicholas Lubbers
Justin S. Smith
Kipton Barros
1
+
PDF
Chat
Alchemical and structural distribution based representation for universal quantum machine learning
2018
Felix A. Faber
Anders S. Christensen
Bing Huang
O. Anatole von Lilienfeld
1
+
PDF
Chat
Machine learning of molecular electronic properties in chemical compound space
2013
Grégoire Montavon
Matthias Rupp
Vivekanand V. Gobre
Ălvaro VĂĄzquezâMayagoitia
Katja Hansen
Alexandre Tkatchenko
KlausâRobert MĂŒller
O. Anatole von Lilienfeld
1
+
PDF
Chat
Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity
2016
Bing Huang
O. Anatole von Lilienfeld
1
+
PDF
Chat
Predicting the phase diagram of titanium dioxide with random search and pattern recognition
2020
Aleks Reinhardt
Chris J. Pickard
Bingqing Cheng
1
+
PDF
Chat
Most Ligand-Based Classification Benchmarks Reward Memorization Rather than Generalization
2018
Izhar Wallach
Abraham Heifets
1
+
PDF
Chat
Charge Photogeneration in NonâFullerene Organic Solar Cells: Influence of Excess Energy and Electrostatic Interactions
2020
Maria Saladina
Pablo Simón Marqués
Anastasia Markina
Safakath Karuthedath
Christopher Wöpke
Clemens Göhler
Yue Chen
Magali Allain
Philippe Blanchard
Clément Cabanetos
1
+
PDF
Chat
Defect Formation Energies without the Band-Gap Problem: Combining Density-Functional Theory and the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>G</mml:mi><mml:mi>W</mml:mi></mml:math>Approach for the Silicon Self-Interstitial
2009
Patrick Rinke
Anderson Janotti
Matthias Scheffler
Chris G. Van de Walle
1
+
PDF
Chat
Physics-Inspired Structural Representations for Molecules and Materials
2021
FĂ©lix Musil
Andrea Grisafi
Albert P. BartĂłk
Christoph Ortner
GĂĄbor CĆanyi
Michele Ceriotti
1
+
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
2013
Marco Cuturi
1
+
PDF
Chat
Machine Learning Energies of 2 Million Elpasolite<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>A</mml:mi><mml:mi>B</mml:mi><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>Crystals
2016
Felix A. Faber
Alexander Lindmaa
O. Anatole von Lilienfeld
Rickard Armiento
1
+
Big Data Meets Quantum Chemistry Approximations: The Î-Machine Learning Approach
2015
Raghunathan Ramakrishnan
Pavlo O. Dral
Matthias Rupp
O. Anatole von Lilienfeld
1
+
PDF
Chat
Finding Density Functionals with Machine Learning
2012
John Snyder
Matthias Rupp
Katja Hansen
KlausâRobert MĂŒller
Kieron Burke
1
+
PDF
Chat
Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
2010
Albert P. BartĂłk
M. C. Payne
Risi Kondor
GĂĄbor CĆanyi
1