Lirandë Pira

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Understanding Neural Networks Through Deep Visualization 2015 Jason Yosinski
Jeff Clune
Anh Mai Nguyen
Thomas J. Fuchs
Hod Lipson
1
+ PDF Chat Quantum machine learning 2017 Jacob Biamonte
Péter Wittek
Nicola Pancotti
Patrick Rebentrost
Nathan Wiebe
Seth Lloyd
1
+ PDF Chat A Survey of Methods for Explaining Black Box Models 2018 Riccardo Guidotti
Anna Monreale
Salvatore Ruggieri
Franco Turini
Fosca Giannotti
Dino Pedreschi
1
+ PDF Chat The mythos of model interpretability 2018 Zachary C. Lipton
1
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
1
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
1
+ PDF Chat Characterization and control of open quantum systems beyond quantum noise spectroscopy 2020 Akram Youssry
Gerardo A. Paz-Silva
Christopher Ferrie
1
+ PDF Chat Interpretable Machine Learning – A Brief History, State-of-the-Art and Challenges 2020 Christoph Molnar
Giuseppe Casalicchio
Bernd Bischl
1
+ PDF Chat Noise detection with spectator qubits and quantum feature engineering 2023 Akram Youssry
Gerardo A. Paz-Silva
Christopher Ferrie
1
+ PDF Chat A Survey on Neural Network Interpretability 2021 Yu Zhang
Peter Tiňo
Aleš Leonardis
Ke Tang
1
+ Is explainable AI a race against model complexity? 2022 Advait Sarkar
1
+ Experimental graybox quantum system identification and control 2022 Akram Youssry
Yang Yang
Robert J. Chapman
Ben Haylock
Francesco Lenzini
Mirko Lobino
Alberto Peruzzo
1
+ PDF Chat Challenges and opportunities in quantum machine learning 2022 M. Cerezo
Guillaume Verdon
Hsin-Yuan Huang
Łukasz Cincio
Patrick J. Coles
1
+ Classification with Quantum Neural Networks on Near Term Processors 2018 Edward Farhi
Hartmut Neven
1
+ eXplainable AI for Quantum Machine Learning 2022 Patrick Steinmüller
Tobias Schulz
Ferdinand Graf
Daniel Herr
1
+ A Quantum Algorithm for Shapley Value Estimation 2023 Iain Burge
Michel Barbeau
Joaquín García-Alfaro
1
+ Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning 2023 Raoul Heese
Thore Gerlach
Sascha Mücke
Sabine Müller
Matthias Jakobs
Nico Piatkowski
1
+ Sub-universal variational circuits for combinatorial optimization problems 2023 Gal Weitz
Lirandë Pira
Christopher Ferrie
Joshua Combes
1