Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Ming-yu Shi
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
OPTIMAL INEQUALITIES FOR THE POWER, HARMONIC AND LOGARITHMIC MEANS
2012
Yu‐Ming Chu
Ming-yu Shi
Yue-Ping Jiang
+
PDF
Chat
Exact inequalities involving power mean, arithmetic mean and identric mean
2011
Yu‐Ming Chu
Ming-yu Shi
Yue-Ping Jiang
+
Some Properties of Very Weak Solutions to Nonhomogeneous Obstacle Problems
2010
Ming-yu Shi
+
Comparison Principle for Very Weak Solutions to A-Harmonic Equation
2010
Ming-yu Shi
+
Three Best Inequalities for Means in Two Variables 1
2010
Ming-yu Shi
Yue-Ping Jiang
+
PDF
Chat
Optimal Inequalities among Various Means of Two Arguments
2009
Ming-yu Shi
Yu‐Ming Chu
Yue-Ping Jiang
Common Coauthors
Coauthor
Papers Together
Yue-Ping Jiang
4
Yu‐Ming Chu
3
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Inequalities for Means in Two Variables
2003
Horst Alzer
Song-Liang Qiu
4
+
A note on some inequalities for means
1991
J. S�ndor
4
+
The Power Mean and the Logarithmic Mean
1974
Tung‐Po Lin
4
+
Extended mean values II
1983
E. B. Leach
Marlow Sholander
3
+
PDF
Chat
Optimal inequalities between Seiffert's mean and power means
2004
Peter Hästö
3
+
Generalization and sharpness of the power means inequality and their applications
2005
Shanhe Wu
3
+
The Logarithmic Mean
1972
B. C. Carlson
3
+
Ungleichungen f�r Mittelwerte
1986
Horst Alzer
3
+
A Power Mean Inequality for the Gamma Function
2000
Horst Alzer
3
+
PDF
Chat
The power mean and the logarithmic mean
1980
Christopher Olutunde Imoru
3
+
PDF
Chat
The optimization for the inequalities of power means
2006
Jiajin Wen
Wan-lan Wang
2
+
Sharp power mean bounds for the Gaussian hypergeometric function
2005
Kendall C. Richards
2
+
PDF
Chat
An inequality for mixed power means
1999
Christos D. Tarnavas
Dimitrios D. Tarnavas
2
+
Two optimal double inequalities between power mean and logarithmic mean
2010
Yu‐Ming Chu
Weifeng Xia
2
+
The Power and Generalized Logarithmic Means
1980
Kenneth B. Stolarsky
1
+
AN INEQUALITY BETWEEN RATIO OF THE EXTENDED LOGARITHMIC MEANS AND RATIO OF THE EXPONENTIAL MEANS
2003
Feng Qi
Bai‐Ni Guo
1
+
The Geometric, Logarithmic, and Arithmetic Mean Inequality
1987
Frank Burk
1
+
PDF
Chat
Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean
2011
Ye-Fang Qiu
Miao-Kun Wang
Yu‐Ming Chu
Gendi Wang
1
+
PDF
Chat
Sharp bounds for Seiffert means in terms of Lehmer means
2010
Miao-Kun Wang
Ye-Fang Qiu
Yu‐Ming Chu
1
+
PDF
Chat
A note on generalized Heronian means
2001
Walther Janous
1
+
PDF
Chat
Sharp inequalities between means
2011
Yu‐Ming Chu
Bo-Yong Long
1
+
PDF
Chat
A power mean inequality for the Grötzsch ring function
2011
Gendi Wang
Xiaohui Zhang
Yu‐Ming Chu
1
+
Convexity of the complete elliptic integrals of the first kind with respect to Hölder means
2011
Miao-Kun Wang
Yu‐Ming Chu
Song-Liang Qiu
Yue-Ping Jiang
1
+
Means and Their Inequalities
1988
P. S. Bullen
D. S. Mitrinović
P. M. Vasić
1
+
The Logarithmic Mean
1972
B. C. Carlson
1
+
The Geometric, Logarithmic, and Arithmetic Mean Inequality
1987
Frank Burk
1
+
PDF
Chat
Optimal inequalities related to the logarithmic, identric, arithmetic and harmonic means
2010
Weifeng Xia
Chu Yuming
1
+
PDF
Chat
Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions
2012
Song-Liang Qiu
Ye-Fang Qiu
Miao-Kun Wang
Yu‐Ming Chu
1
+
The wiener type solution of the Dirichlet problem in potential theory
1976
Jaroslav Lukeš
Ivan Netuka
1
+
PDF
Chat
Some Comparison Inequalities for Generalized Muirhead and Identric Means
2010
Miao-Kun Wang
Yu‐Ming Chu
Ye-Fang Qiu
1
+
PDF
Chat
Optimal Power Mean Bounds for the Weighted Geometric Mean of Classical Means
2010
Bo-Yong Long
Yu‐Ming Chu
1
+
PDF
Chat
Optimal Inequalities for Power Means
2012
Yongmin Li
Bo-Yong Long
Yu‐Ming Chu
Wei-Ming Gong
1
+
Generalization of the power means and their inequalities
1991
Josip Pečarić
1
+
PDF
Chat
A Sharp Double Inequality between Harmonic and Identric Means
2011
Yu‐Ming Chu
Miao-Kun Wang
Zikui Wang
1
+
PDF
Chat
The Optimal Upper and Lower Power Mean Bounds for a Convex Combination of the Arithmetic and Logarithmic Means
2010
Weifeng Xia
Yu‐Ming Chu
Gendi Wang
1
+
PDF
Chat
Optimal Lower Power Mean Bound for the Convex Combination of Harmonic and Logarithmic Means
2011
Yu‐Ming Chu
Shanshan Wang
Cheng Zong
1
+
PDF
Chat
Optimal Inequalities among Various Means of Two Arguments
2009
Ming-yu Shi
Yu‐Ming Chu
Yue-Ping Jiang
1
+
An optimal double inequality between geometric and identric means
2011
Miao-Kun Wang
Zikui Wang
Yu‐Ming Chu
1
+
An optimal power mean inequality for the complete elliptic integrals
2011
Miao-Kun Wang
Yu‐Ming Chu
Ye-Fang Qiu
Song-Liang Qiu
1
+
PDF
Chat
Sharp Power Mean Bounds for the Combination of Seiffert and Geometric Means
2010
Yu‐Ming Chu
Ye-Fang Qiu
Miao-Kun Wang
1
+
PDF
Chat
Two Sharp Inequalities for Power Mean, Geometric Mean, and Harmonic Mean
2009
Yu‐Ming Chu
Weifeng Xia
1