A. K. Malik

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Random vector functional link network: Recent developments, applications, and future directions 2023 A. K. Malik
Ruobin Gao
M. A. Ganaie
M. Tanveer
Ponnuthurai Nagaratnam Suganthan
4
+ PDF Chat Random vector functional link neural network based ensemble deep learning 2021 Qiushi Shi
Rakesh Katuwal
Ponnuthurai Nagaratnam Suganthan
M. Tanveer
4
+ Intuitionistic Fuzzy Twin Support Vector Machines 2019 Salim Rezvani
Xizhao Wang
Farhad Pourpanah
3
+ PDF Chat A new learning paradigm for random vector functional-link network: RVFL+ 2019 Pengbo Zhang
Zhi-Xin Yang
3
+ Statistical Comparisons of Classifiers over Multiple Data Sets 2006 Janez Demšar
3
+ PDF Chat Deep learning for brain age estimation: A systematic review 2023 M. Tanveer
M. A. Ganaie
Iman Beheshti
Tripti Goel
Nehal Ahmad
Kuan-Ting Lai
Kaizhu Huang
Yudong Zhang
Javier Del Ser
Chin‐Teng Lin
2
+ PDF Chat Stacked autoencoder based deep random vector functional link neural network for classification 2019 Rakesh Katuwal
Ponnuthurai Nagaratnam Suganthan
2
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ The Loss Surfaces of Multilayer Networks 2015 Anna Choromanska
Mikael Henaff
Michaël Mathieu
Gérard Ben Arous
Yann LeCun
1
+ Combining Estimates in Regression and Classification 1996 Michael LeBlanc
Robert Tibshirani
1
+ PDF Chat Empirical Wavelet Transform 2013 Jérôme Gilles
1
+ PDF Chat Multi-label ensemble based on variable pairwise constraint projection 2012 Ping Li
Hong Li
Min Wu
1
+ A deep architecture with bilinear modeling of hidden representations: Applications to phonetic recognition 2012 Brian Hutchinson
Li Deng
Dong Yu
1
+ PDF Chat Going deeper with convolutions 2015 Christian Szegedy
Wei Liu
Yangqing Jia
Pierre Sermanet
Scott Reed
Dragomir Anguelov
Dumitru Erhan
Vincent Vanhoucke
Andrew Rabinovich
1
+ A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems 2009 Amir Beck
Marc Teboulle
1
+ Tensor Deep Stacking Networks 2013 Brian Hutchinson
Li Deng
Dong Yu
1
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+ PDF Chat Multi-column deep neural networks for image classification 2012 Dan Cireşan
Ueli Meier
Jürgen Schmidhuber
1
+ PDF Chat SMOTE: Synthetic Minority Over-sampling Technique 2002 Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Philip Kegelmeyer
1
+ PDF Chat Ensemble-based classifiers 2009 Lior Rokach
1
+ PDF Chat Diversity creation methods: a survey and categorisation 2004 Gavin Brown
Jeremy Wyatt
Rachel Harris
Xin Yao
1
+ PDF Chat Sparse Deep Stacking Network for Image Classification 2015 Jun Li
Heyou Chang
Jian Yang
1
+ A Deep Learning Approach to Unsupervised Ensemble Learning 2016 Uri Shaham
Xiuyuan Cheng
Omer Dror
Ariel Jaffe
Boaz Nadler
Joseph T. Chang
Yuval Kluger
1
+ PDF Chat Deep Networks with Stochastic Depth 2016 Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
1
+ Swapout: Learning an ensemble of deep architectures 2016 Saurabh Singh
Derek Hoiem
David Forsyth
1
+ A framework for parameter estimation and model selection in kernel deep stacking networks 2016 Thomas Welchowski
Matthias Schmid
1
+ PDF Chat Propensity score prediction for electronic healthcare databases using super learner and high-dimensional propensity score methods 2019 Cheng Ju
Mary Combs
Samuel Lendle
Jessica M. Franklin
Richard Wyss
Sebastian Schneeweiß
Mark J. van der Laan
1
+ AdaNet: Adaptive Structural Learning of Artificial Neural Networks 2016 Corinna Cortes
Xavi Gonzalvo
Vitaly Kuznetsov
Mehryar Mohri
Scott Cheng‐Hsin Yang
1
+ Residual Networks Behave Like Ensembles of Relatively Shallow Networks 2016 Andreas Veit
Michael J. Wilber
Serge Belongie
1
+ Incremental Boosting Convolutional Neural Network for Facial Action Unit Recognition 2017 Shizhong Han
Zibo Meng
Ahmed Shehab Khan
Yan Tong
1
+ Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge Computing 2017 Jie Xu
Lixing Chen
Shaolei Ren
1
+ PDF Chat The relative performance of ensemble methods with deep convolutional neural networks for image classification 2018 Cheng Ju
Aurélien Bibaut
Mark van der Laan
1
+ PDF Chat Parsimonious random vector functional link network for data streams 2017 Mahardhika Pratama
Plamen Angelov
Edwin Lughofer
Meng Joo Er
1
+ Further contributions to the theory of generalized inverse of matrices and its applications 1971 C. Mallikarjuna Rao
Sujit Kumar Mitra
1
+ Deep Incremental Boosting 2017 Alan Mosca
George D. Magoulas
1
+ BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 2018 Jacob Devlin
Ming‐Wei Chang
Kenton Lee
Kristina Toutanova
1
+ PDF Chat Stacking-Based Deep Neural Network: Deep Analytic Network for Pattern Classification 2019 Cheng Yee Low
Jaewoo Park
Andrew Beng Jin Teoh
1
+ Proceedings of the 25th international conference on Machine learning 2008 William W. Cohen
Andrew McCallum
Sam T. Roweis
1
+ PDF Chat None 1996 Leo Breiman
1
+ Deep learning in bioinformatics: Introduction, application, and perspective in the big data era 2019 Yu Li
Chao Huang
Lizhong Ding
Zhongxiao Li
Yijie Pan
Xin Gao
1
+ Unsupervised Feature Learning with K-means and An Ensemble of Deep Convolutional Neural Networks for Medical Image Classification 2019 Euijoon Ahn
Ashnil Kumar
Dagan Feng
Michael Fulham
Jinman Kim
1
+ Online Gradient Boosting 2015 Alina Beygelzimer
Elad Hazan
Satyen Kale
Haipeng Luo
1
+ Training Very Deep Networks 2015 Rupesh K. Srivastava
Klaus Greff
Jürgen Schmidhuber
1
+ Snapshot Ensembles: Train 1, get M for free 2017 Gao Huang
Yixuan Li
Geoff Pleiss
Zhuang Liu
John E. Hopcroft
Kilian Q. Weinberger
1
+ Temporal Ensembling for Semi-Supervised Learning 2016 Samuli Laine
Timo Aila
1
+ PDF Chat Locally Weighted Ensemble Clustering 2017 Dong Huang
Chang‐Dong Wang
Jianhuang Lai
1
+ PDF Chat MobileNetV2: Inverted Residuals and Linear Bottlenecks 2018 Mark Sandler
Andrew Howard
Menglong Zhu
Andrey Zhmoginov
Liang-Chieh Chen
1
+ Self-Normalizing Neural Networks 2017 Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
1
+ PDF Chat Gradual DropIn of Layers to Train Very Deep Neural Networks 2016 Leslie N. Smith
Emily M. Hand
Timothy Doster
1
+ PDF Chat SVM-Based Deep Stacking Networks 2019 Jingyuan Wang
Kai Feng
Junjie Wu
1