Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Dong Chen Qin
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
A comprehensive and reliable feature attribution method: Double-sided remove and reconstruct (DoRaR)
2024
Dong Chen Qin
George T. Amariucai
Daji Qiao
Yong Guan
Fu Shen
Common Coauthors
Coauthor
Papers Together
George T. Amariucai
1
Fu Shen
1
Daji Qiao
1
Yong Guan
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Understanding Neural Networks Through Deep Visualization
2015
Jason Yosinski
Jeff Clune
Anh Mai Nguyen
Thomas J. Fuchs
Hod Lipson
1
+
PDF
Chat
Understanding deep image representations by inverting them
2015
Aravindh Mahendran
Andrea Vedaldi
1
+
PDF
Chat
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
2015
Anh‐Tu Nguyen
Jason Yosinski
Jeff Clune
1
+
Categorical Reparameterization with Gumbel-Softmax
2016
Eric Jang
Shixiang Gu
Ben Poole
1
+
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
2017
Luisa Zintgraf
Taco Cohen
Tameem Adel
Max Welling
1
+
PDF
Chat
Towards Explanation of DNN-based Prediction with Guided Feature Inversion
2018
Mengnan Du
Ninghao Liu
Qingquan Song
Xia Hu
1
+
Fooling Neural Network Interpretations via Adversarial Model Manipulation
2019
Juyeon Heo
Sunghwan Joo
Taesup Moon
1
+
PDF
Chat
Explaining A Black-box By Using A Deep Variational Information Bottleneck Approach
2021
Seojin Bang
Pengtao Xie
Heewook Lee
Wei Wu
Eric P. Xing
1
+
Explanations can be manipulated and geometry is to blame
2019
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
Marcel R. Ackermann
Klaus‐Robert Müller
Pan Kessel
1
+
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
2013
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
1
+
PDF
Chat
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
2017
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
1
+
A Unified Approach to Interpreting Model Predictions
2017
Scott Lundberg
Su‐In Lee
1
+
Real Time Image Saliency for Black Box Classifiers
2017
Piotr Dabkowski
Yarin Gal
1
+
A Benchmark for Interpretability Methods in Deep Neural Networks
2018
Sara Hooker
Dumitru Erhan
Pieter-Jan Kindermans
Been Kim
1
+
PDF
Chat
Techniques for interpretable machine learning
2019
Mengnan Du
Ninghao Liu
Xia Hu
1
+
PDF
Chat
Interpretable Explanations of Black Boxes by Meaningful Perturbation
2017
Ruth Fong
Andrea Vedaldi
1
+
PDF
Chat
The Mythos of Model Interpretability
2018
Zachary C. Lipton
1
+
Self-explaining Neural Network with Plausible Explanations.
2021
Sayantan Kumar
Sean Yu
Andrew P. Michelson
Philip Payne
1
+
PDF
Chat
Towards Self-Explainable Graph Neural Network
2021
Enyan Dai
Suhang Wang
1
+
A Consistent and Efficient Evaluation Strategy for Attribution Methods
2022
Yao Rong
Tobias Leemann
Vadim Borisov
Gjergji Kasneci
Enkelejda Kasneci
1
+
On the Robustness of Interpretability Methods
2018
David Alvarez-Melis
Tommi Jaakkola
1
+
SmoothGrad: removing noise by adding noise
2017
Daniel Smilkov
Nikhil Thorat
Been Kim
Fernanda Viégas
Martin Wattenberg
1