Dong Chen Qin

Follow

Generating author description...

Common Coauthors
Coauthor Papers Together
George T. Amariucai 1
Fu Shen 1
Daji Qiao 1
Yong Guan 1
Commonly Cited References
Action Title Year Authors # of times referenced
+ Understanding Neural Networks Through Deep Visualization 2015 Jason Yosinski
Jeff Clune
Anh Mai Nguyen
Thomas J. Fuchs
Hod Lipson
1
+ PDF Chat Understanding deep image representations by inverting them 2015 Aravindh Mahendran
Andrea Vedaldi
1
+ PDF Chat Deep neural networks are easily fooled: High confidence predictions for unrecognizable images 2015 Anh‐Tu Nguyen
Jason Yosinski
Jeff Clune
1
+ Categorical Reparameterization with Gumbel-Softmax 2016 Eric Jang
Shixiang Gu
Ben Poole
1
+ Visualizing Deep Neural Network Decisions: Prediction Difference Analysis 2017 Luisa Zintgraf
Taco Cohen
Tameem Adel
Max Welling
1
+ PDF Chat Towards Explanation of DNN-based Prediction with Guided Feature Inversion 2018 Mengnan Du
Ninghao Liu
Qingquan Song
Xia Hu
1
+ Fooling Neural Network Interpretations via Adversarial Model Manipulation 2019 Juyeon Heo
Sunghwan Joo
Taesup Moon
1
+ PDF Chat Explaining A Black-box By Using A Deep Variational Information Bottleneck Approach 2021 Seojin Bang
Pengtao Xie
Heewook Lee
Wei Wu
Eric P. Xing
1
+ Explanations can be manipulated and geometry is to blame 2019 Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
Marcel R. Ackermann
Klaus‐Robert Müller
Pan Kessel
1
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
1
+ PDF Chat Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization 2017 Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
1
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
1
+ Real Time Image Saliency for Black Box Classifiers 2017 Piotr Dabkowski
Yarin Gal
1
+ A Benchmark for Interpretability Methods in Deep Neural Networks 2018 Sara Hooker
Dumitru Erhan
Pieter-Jan Kindermans
Been Kim
1
+ PDF Chat Techniques for interpretable machine learning 2019 Mengnan Du
Ninghao Liu
Xia Hu
1
+ PDF Chat Interpretable Explanations of Black Boxes by Meaningful Perturbation 2017 Ruth Fong
Andrea Vedaldi
1
+ PDF Chat The Mythos of Model Interpretability 2018 Zachary C. Lipton
1
+ Self-explaining Neural Network with Plausible Explanations. 2021 Sayantan Kumar
Sean Yu
Andrew P. Michelson
Philip Payne
1
+ PDF Chat Towards Self-Explainable Graph Neural Network 2021 Enyan Dai
Suhang Wang
1
+ A Consistent and Efficient Evaluation Strategy for Attribution Methods 2022 Yao Rong
Tobias Leemann
Vadim Borisov
Gjergji Kasneci
Enkelejda Kasneci
1
+ On the Robustness of Interpretability Methods 2018 David Alvarez-Melis
Tommi Jaakkola
1
+ SmoothGrad: removing noise by adding noise 2017 Daniel Smilkov
Nikhil Thorat
Been Kim
Fernanda Viégas
Martin Wattenberg
1