Projects
Reading
People
Chat
SU\G
(đ¸)
/K¡U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Soroush Aramideh
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
Monotone Tree-Based GAMI Models by Adapting XGBoost
2023
Linwei Hu
Soroush Aramideh
Jie Chen
Vijayan N. Nair
+
PDF
Chat
Supervised Machine Learning Techniques: An Overview with Applications to Banking
2021
Linwei Hu
Jie Chen
Joel Vaughan
Soroush Aramideh
Hanyu Yang
Kelly Wang
Agus Sudjianto
Vijayan N. Nair
Common Coauthors
Coauthor
Papers Together
Vijayan N. Nair
2
Linwei Hu
2
Joel Vaughan
1
Agus Sudjianto
1
Jie Chen
1
Hanyu Yang
1
Jie Chen
1
Kelly Wang
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
Fifty Years of Classification and Regression Trees
2014
WeiâYin Loh
1
+
A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices
2010
I. M. Sobol
Sergei Kucherenko
1
+
Predictive learning via rule ensembles
2008
Jerome H. Friedman
Bogdan Popescu
1
+
Stochastic gradient boosting
2002
Jerome H. Friedman
1
+
PDF
Chat
Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)
2001
Leo Breiman
1
+
PDF
Chat
Projection Pursuit Regression
1981
Jerome H. Friedman
Werner Stuetzle
1
+
Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
2001
I. M. Sobol
1
+
PDF
Chat
Unbiased Recursive Partitioning: A Conditional Inference Framework
2006
Torsten Hothorn
Kurt Hornik
Achim Zeileis
1
+
PDF
Chat
Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation
2014
Alex Goldstein
Adam Kapelner
Justin Bleich
Emil Pitkin
1
+
An Exploratory Technique for Investigating Large Quantities of Categorical Data
1980
Gordon V. Kass
1
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+
PDF
Chat
Layer-Wise Relevance Propagation for Neural Networks with Local Renormalization Layers
2016
Alexander Binder
GrĂŠgoire Montavon
Sebastian Lapuschkin
KlausâRobert MĂźller
Wojciech Samek
1
+
Axiomatic Attribution for Deep Networks
2017
Mukund Sundararajan
Ankur Taly
Qiqi Yan
1
+
Learning Important Features Through Propagating Activation Differences
2017
Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
1
+
PDF
Chat
The Elements of Statistical Learning
2009
Trevor Hastie
Robert Tibshirani
Jerome H. Friedman
1
+
Explainable Neural Networks based on Additive Index Models
2018
Joel Vaughan
Agus Sudjianto
Erind Brahimi
Jie Chen
Vijayan N. Nair
1
+
Learning Single Index Models in Gaussian Space
2018
Rishabh Dudeja
Daniel Hsu
1
+
A Unified Approach to Interpreting Model Predictions
2017
Scott Lundberg
SuâIn Lee
1
+
PDF
Chat
Distribution-Free Predictive Inference for Regression
2017
Jing Lei
Max GâSell
Alessandro Rinaldo
Ryan J. Tibshirani
Larry Wasserman
1
+
PDF
Chat
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
2019
Alejandro Barredo Arrieta
Natalia DĂaz-RodrĂguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
Alberto Barbado
Salvador GarcĂa
Sergio Gil-LĂłpez
Daniel Molina
Richard Benjamins
1
+
Adaptive Explainable Neural Networks (AxNNs)
2020
Jie Chen
Joel Vaughan
Vijayan N. Nair
Agus Sudjianto
1
+
PDF
Chat
Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models
2020
Daniel W. Apley
Jingyu Zhu
1
+
Surrogate Locally-Interpretable Models with Supervised Machine Learning Algorithms
2020
Linwei Hu
Jie Chen
Vijayan N. Nair
Agus Sudjianto
1
+
XGBoost
2016
Tianqi Chen
Carlos Guestrin
1
+
PDF
Chat
Adaptive Explainable Neural Networks (Axnns)
2020
Jie Chen
Joel Vaughan
Vijay Nair
Agus Sudjianto
1
+
PDF
Chat
Bagging predictors
1996
Leo Breiman
1