Soroush Aramideh

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Fifty Years of Classification and Regression Trees 2014 Wei‐Yin Loh
1
+ A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices 2010 I. M. Sobol
Sergei Kucherenko
1
+ Predictive learning via rule ensembles 2008 Jerome H. Friedman
Bogdan Popescu
1
+ Stochastic gradient boosting 2002 Jerome H. Friedman
1
+ PDF Chat Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) 2001 Leo Breiman
1
+ PDF Chat Projection Pursuit Regression 1981 Jerome H. Friedman
Werner Stuetzle
1
+ Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates 2001 I. M. Sobol
1
+ PDF Chat Unbiased Recursive Partitioning: A Conditional Inference Framework 2006 Torsten Hothorn
Kurt Hornik
Achim Zeileis
1
+ PDF Chat Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation 2014 Alex Goldstein
Adam Kapelner
Justin Bleich
Emil Pitkin
1
+ An Exploratory Technique for Investigating Large Quantities of Categorical Data 1980 Gordon V. Kass
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ PDF Chat Layer-Wise Relevance Propagation for Neural Networks with Local Renormalization Layers 2016 Alexander Binder
GrĂŠgoire Montavon
Sebastian Lapuschkin
Klaus‐Robert Müller
Wojciech Samek
1
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
1
+ Learning Important Features Through Propagating Activation Differences 2017 Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
1
+ PDF Chat The Elements of Statistical Learning 2009 Trevor Hastie
Robert Tibshirani
Jerome H. Friedman
1
+ Explainable Neural Networks based on Additive Index Models 2018 Joel Vaughan
Agus Sudjianto
Erind Brahimi
Jie Chen
Vijayan N. Nair
1
+ Learning Single Index Models in Gaussian Space 2018 Rishabh Dudeja
Daniel Hsu
1
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
1
+ PDF Chat Distribution-Free Predictive Inference for Regression 2017 Jing Lei
Max G’Sell
Alessandro Rinaldo
Ryan J. Tibshirani
Larry Wasserman
1
+ PDF Chat Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI 2019 Alejandro Barredo Arrieta
Natalia DĂ­az-RodrĂ­guez
Javier Del Ser
Adrien Bennetot
Siham Tabik
Alberto Barbado
Salvador GarcĂ­a
Sergio Gil-LĂłpez
Daniel Molina
Richard Benjamins
1
+ Adaptive Explainable Neural Networks (AxNNs) 2020 Jie Chen
Joel Vaughan
Vijayan N. Nair
Agus Sudjianto
1
+ PDF Chat Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models 2020 Daniel W. Apley
Jingyu Zhu
1
+ Surrogate Locally-Interpretable Models with Supervised Machine Learning Algorithms 2020 Linwei Hu
Jie Chen
Vijayan N. Nair
Agus Sudjianto
1
+ XGBoost 2016 Tianqi Chen
Carlos Guestrin
1
+ PDF Chat Adaptive Explainable Neural Networks (Axnns) 2020 Jie Chen
Joel Vaughan
Vijay Nair
Agus Sudjianto
1
+ PDF Chat Bagging predictors 1996 Leo Breiman
1