Janina Müttel

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ In the square of graphs, hamiltonicity and pancyclicity, Hamiltonian connectedness and panconnectedness are equivalent concepts 1976 Herbert Fleischner
4
+ The square of every two-connected graph is Hamiltonian 1974 Herbert Fleischner
4
+ Generalized and geometric Ramsey numbers for cycles 2001 Gyula Károlyi
Vera Rosta
3
+ On the circumference of a graph and its complement 2008 Ralph J. Faudree
Linda Lesniak
Ingo Schiermeyer
3
+ PDF Chat The 3-colored Ramsey number of odd cycles 2005 Yoshiharu Kohayakawa
Miklós Simonovits
Jozef Skokan
3
+ PDF Chat Ramsey numbers for cycles in graphs 1973 J. A. Bondy
P. Erdős
3
+ All Ramsey numbers for cycles in graphs 1974 Ralph J. Faudree
R. H. Schelp
3
+ The 3-colored Ramsey number of even cycles 2009 Fabrício Benevides
Jozef Skokan
3
+ Is the Square of Every Nonseparable Graph Hamiltonian? 1969 Hudson V. Kronk
3
+ PDF Chat On a variation of the Ramsey number 1972 Gary Chartrand
Seymour Schuster
3
+ PDF Chat Trees with Hamiltonian square 1971 Frank Harary
Allen J. Schwenk
3
+ Is the Square of Every Nonseparable Graph Hamiltonian? 1969 H. V. Kronk
2
+ Ramsey Results for Cycle Spectra 2012 Stephan Brandt
Felix Joos
Janina Müttel
Dieter Rautenbach
2
+ On a ramsey-type problem of J. A. Bondy and P. Erdös. I 1973 Vera Rosta
2
+ On cliques in graphs 1965 J. W. Moon
Leo Moser
2
+ Hamiltonian results in <i>K</i><sub>1,3</sub>‐free graphs 1984 Manton M. Matthews
David P. Sumner
2
+ Small cycles in Hamiltonian graphs 1997 Uwe Schelten
Ingo Schiermeyer
2
+ Vertex pancyclism in claw-free graphs 1998 Mingchu Li
2
+ A note on cycle spectra of line graphs 2008 Florian Pfender
2
+ On cliques in graphs 1966 P. Erdős
2
+ Cycle Lengths in Hamiltonian Graphs with a Pair of Vertices Having Large Degree Sum 2010 Michael Ferrara
Michael S. Jacobson
Angela Harris
2
+ On the structure of the set of cycle lengths in a hamiltonian graph 2004 Antoni Marczyk
2
+ A short proof of Fleischner’s theorem 2009 Agelos Georgakopoulos
2
+ Cycle spectra of Hamiltonian graphs 2012 Kevin G. Milans
Florian Pfender
Dieter Rautenbach
Friedrich Regen
Douglas B. West
2
+ On cliques in graphs 1971 J. Spencer
2
+ Induced S(K1,3) and hamiltonian cycles in the square of a graph 1999 Mohamed El Kadi Abderrezzak
Evelyne Flandrin
Zdeněk Ryjáček
2
+ Pancyclic graphs II 1976 J. A. Bondy
A. W. Ingleton
2
+ The square of a connected S(K<sub>1,3</sub>)‐free graph is vertex pancyclic 1985 George R. T. Hendry
Walter Vogler
2
+ A new proof of the theorem by Fleischner 1991 Stanislav Říha
2
+ A cycle structure theorem for hamiltonian graphs 1988 E. F. Schmeichel
S. L. Hakimi
2
+ PDF Chat Hamiltonian Cycles in the Square of a Graph 2011 Jan Ekstein
2
+ New sufficient conditions for cycles in graphs 1984 Genghua Fan
1
+ On Hamilton's ideals 1972 Vašek Chvátal
1
+ A characterization of the minimum cycle mean in a digraph 1978 Richard M. Karp
1
+ On maximal paths and circuits of graphs 1959 P. Erdős
Т. Галлаи
1
+ Studies in connectivity 1991 André E. Kézdy
1
+ The circumference of the square of a connected graph 2014 Stephan Brandt
Janina Müttel
Dieter Rautenbach
1
+ Forbidden subgraphs and hamiitonian properties in the square of a connected graph 1984 Ronald J. Gould
Michael S. Jacobson
1
+ A short proof of the versatile version of Fleischner’s theorem 2012 Janina Müttel
Dieter Rautenbach
1
+ On the Cycle Spectrum of Cubic Hamiltonian Graphs 2012 Janina Müttel
Dieter Rautenbach
Friedrich Regen
Thomas Sasse
1
+ Long cycles in graphs with no subgraphs of minimal degree 3 1989 Béla Bollobás
Graham Brightwell
1
+ Bipartite graphs with cycles of all even lengths 1982 E. F. Schmeichel
John Mitchem
1
+ Degree sums for edges and cycle lengths in graphs 1997 Stephan Brandt
H.J. Veldman
1
+ Cycles in squares of trees without generalized claws 2012 Stephan Brandt
Janina Müttel
Dieter Rautenbach
1
+ PDF Chat Induced Subgraphs of the Power of a Cycle 1989 J.-C. Bermond
Claudine Peyrat
1
+ A characterization of the minimum cycle mean in a digraph 1978 Richard M. Karp
1
+ Pancyclism in hamiltonian graphs 1991 Denise Amar
Evelyne Flandrin
I. Fournier
Anne Germa
1
+ On Independent Sets and Bicliques in Graphs 2010 Serge Gaspers
Dieter Kratsch
Mathieu Liedloff
1
+ Pancyclic graphs I 1971 J. A. Bondy
1