Author Description

Login to generate an author description

Ask a Question About This Mathematician

We perform an analysis of the ${D}^{+}\ensuremath{\rightarrow}{K}_{S}^{0}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{0}$ Dalitz plot using a data set of $2.92\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ of ${e}^{+}{e}^{\ensuremath{-}}$ collisions at the $\ensuremath{\psi}(3770)$ mass accumulated by the BESIII experiment, in … We perform an analysis of the ${D}^{+}\ensuremath{\rightarrow}{K}_{S}^{0}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{0}$ Dalitz plot using a data set of $2.92\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ of ${e}^{+}{e}^{\ensuremath{-}}$ collisions at the $\ensuremath{\psi}(3770)$ mass accumulated by the BESIII experiment, in which 166694 candidate events are selected with a background of 15.1%. The Dalitz plot is found to be well represented by a combination of six quasi-two-body decay channels [${K}_{S}^{0}{\ensuremath{\rho}}^{+}$, ${K}_{S}^{0}\ensuremath{\rho}(1450{)}^{+}$, ${\overline{K}}^{*0}{\ensuremath{\pi}}^{+}$, ${\overline{K}}_{0}(1430{)}^{0}{\ensuremath{\pi}}^{+}$, $\overline{K}(1680{)}^{0}{\ensuremath{\pi}}^{+}$, ${\overline{\ensuremath{\kappa}}}^{0}{\ensuremath{\pi}}^{+}$] plus a small nonresonant component. Using the fit fractions from this analysis, partial branching ratios are updated with higher precision than previous measurements.
We propose a scheme to distinguish the orbital angular momentum state of the Laguerre-Gaussian (LG) beam based on the electromagnetically induced transparency modulated by a microwave field in atomic ensembles. … We propose a scheme to distinguish the orbital angular momentum state of the Laguerre-Gaussian (LG) beam based on the electromagnetically induced transparency modulated by a microwave field in atomic ensembles. We show that the transverse phase variation of a probe beam with the LG mode can be mapped into the spatial intensity distribution due to the change of atomic coherence caused by the microwave. The proposal may provide a useful tool for studying higher-dimensional quantum information based on atomic ensembles.
A spin polarization separation of reflected light is observed, when a linearly polarized Gaussian beam impinges on an air-glass interface at Brewster angle. In the far-field zone, spins of photons … A spin polarization separation of reflected light is observed, when a linearly polarized Gaussian beam impinges on an air-glass interface at Brewster angle. In the far-field zone, spins of photons are oppositely polarized in two regions along the direction perpendicular to incident plane. Spatial scale of this polarization is related to optical properties of dielectric and can be controlled by experimental configuration. We believe that this study benefits the manipulation of spins of photons and the development of methods for investigating optical properties of materials.
We propose a scheme to implement the Deutsch's algorithm through non-degenerate four-wave mixing process. By employing photon topological charges of optical vortices, we demonstrate the ability to realize the necessary … We propose a scheme to implement the Deutsch's algorithm through non-degenerate four-wave mixing process. By employing photon topological charges of optical vortices, we demonstrate the ability to realize the necessary four logic gates for all balanced and constant functions. We also analyze the feasibility of the proposed scheme on the single photon level.
Using data samples with an integrated luminosity of <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mn>22.42</a:mn><a:mtext> </a:mtext><a:mtext> </a:mtext><a:msup><a:mi>fb</a:mi><a:mrow><a:mo>−</a:mo><a:mn>1</a:mn></a:mrow></a:msup></a:math> collected by the BESIII detector operating at the BEPCII storage ring, we measure the cross sections of … Using data samples with an integrated luminosity of <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mn>22.42</a:mn><a:mtext> </a:mtext><a:mtext> </a:mtext><a:msup><a:mi>fb</a:mi><a:mrow><a:mo>−</a:mo><a:mn>1</a:mn></a:mrow></a:msup></a:math> collected by the BESIII detector operating at the BEPCII storage ring, we measure the cross sections of the <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:msup><c:mi>e</c:mi><c:mo>+</c:mo></c:msup><c:msup><c:mi>e</c:mi><c:mo>−</c:mo></c:msup><c:mo stretchy="false">→</c:mo><c:mi>η</c:mi><c:mi>J</c:mi><c:mo>/</c:mo><c:mi>ψ</c:mi></c:math> process at center-of-mass energies from 3.808 to 4.951 GeV. Three structures are observed in the line shape of the measured cross sections. A maximum-likelihood fit with <f:math xmlns:f="http://www.w3.org/1998/Math/MathML" display="inline"><f:mi>ψ</f:mi><f:mo stretchy="false">(</f:mo><f:mn>4040</f:mn><f:mo stretchy="false">)</f:mo></f:math>, two additional resonances, and a nonresonant component are performed. The mass and width of the first additional state are <j:math xmlns:j="http://www.w3.org/1998/Math/MathML" display="inline"><j:mo stretchy="false">(</j:mo><j:mn>4219.7</j:mn><j:mo>±</j:mo><j:mn>2.5</j:mn><j:mo>±</j:mo><j:mn>4.5</j:mn><j:mo stretchy="false">)</j:mo><j:mtext> </j:mtext><j:mtext> </j:mtext><j:mi>MeV</j:mi><j:mo>/</j:mo><j:msup><j:mi>c</j:mi><j:mn>2</j:mn></j:msup></j:math> and <n:math xmlns:n="http://www.w3.org/1998/Math/MathML" display="inline"><n:mo stretchy="false">(</n:mo><n:mn>80.7</n:mn><n:mo>±</n:mo><n:mn>4.4</n:mn><n:mo>±</n:mo><n:mn>1.4</n:mn><n:mo stretchy="false">)</n:mo><n:mtext> </n:mtext><n:mtext> </n:mtext><n:mi>MeV</n:mi></n:math>, respectively, consistent with the <r:math xmlns:r="http://www.w3.org/1998/Math/MathML" display="inline"><r:mi>ψ</r:mi><r:mo stretchy="false">(</r:mo><r:mn>4230</r:mn><r:mo stretchy="false">)</r:mo></r:math>. For the second state, the mass and width are <v:math xmlns:v="http://www.w3.org/1998/Math/MathML" display="inline"><v:mo stretchy="false">(</v:mo><v:mn>4386</v:mn><v:mo>±</v:mo><v:mn>13</v:mn><v:mo>±</v:mo><v:mn>17</v:mn><v:mo stretchy="false">)</v:mo><v:mtext> </v:mtext><v:mtext> </v:mtext><v:mi>MeV</v:mi><v:mo>/</v:mo><v:msup><v:mi>c</v:mi><v:mn>2</v:mn></v:msup></v:math> and <z:math xmlns:z="http://www.w3.org/1998/Math/MathML" display="inline"><z:mo stretchy="false">(</z:mo><z:mn>177</z:mn><z:mo>±</z:mo><z:mn>32</z:mn><z:mo>±</z:mo><z:mn>13</z:mn><z:mo stretchy="false">)</z:mo><z:mtext> </z:mtext><z:mtext> </z:mtext><z:mi>MeV</z:mi></z:math>, respectively, consistent with the <db:math xmlns:db="http://www.w3.org/1998/Math/MathML" display="inline"><db:mi>ψ</db:mi><db:mo stretchy="false">(</db:mo><db:mn>4360</db:mn><db:mo stretchy="false">)</db:mo></db:math>. The first uncertainties are statistical, and the second ones are systematic. The statistical significance of <hb:math xmlns:hb="http://www.w3.org/1998/Math/MathML" display="inline"><hb:mi>ψ</hb:mi><hb:mo stretchy="false">(</hb:mo><hb:mn>4040</hb:mn><hb:mo stretchy="false">)</hb:mo></hb:math> is <lb:math xmlns:lb="http://www.w3.org/1998/Math/MathML" display="inline"><lb:mn>8.0</lb:mn><lb:mi>σ</lb:mi></lb:math> and those for <nb:math xmlns:nb="http://www.w3.org/1998/Math/MathML" display="inline"><nb:mi>ψ</nb:mi><nb:mo stretchy="false">(</nb:mo><nb:mn>4230</nb:mn><nb:mo stretchy="false">)</nb:mo></nb:math> and <rb:math xmlns:rb="http://www.w3.org/1998/Math/MathML" display="inline"><rb:mi>ψ</rb:mi><rb:mo stretchy="false">(</rb:mo><rb:mn>4360</rb:mn><rb:mo stretchy="false">)</rb:mo></rb:math> are more than <vb:math xmlns:vb="http://www.w3.org/1998/Math/MathML" display="inline"><vb:mn>10.0</vb:mn><vb:mi>σ</vb:mi></vb:math>. Published by the American Physical Society 2024
Using $(10087\pm44)\times10^{6}$ $J/ψ$ events collected with the BESIII detector at the BEPCII $e^+e^-$ storage ring at the center-of-mass energy of $\sqrt{s}=3.097~\rm{GeV}$, we present a search for the rare semi-muonic charmonium … Using $(10087\pm44)\times10^{6}$ $J/ψ$ events collected with the BESIII detector at the BEPCII $e^+e^-$ storage ring at the center-of-mass energy of $\sqrt{s}=3.097~\rm{GeV}$, we present a search for the rare semi-muonic charmonium decay $J/ψ\to D^{-}μ^{+}ν_μ+c.c.$. Since no significant signal is observed, we set an upper limit of the branching fraction to be $\mathcal{B}(J/ψ\to D^{-}μ^{+}ν_μ+c.c.)&lt;5.6\times10^{-7}$ at $90\%$ confidence level. This is the first search for the weak decay of charmonium with a muon in the final state.
We report the measurement of the inclusive cross sections for <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:msup><a:mrow><a:mi>e</a:mi></a:mrow><a:mrow><a:mo>+</a:mo></a:mrow></a:msup><a:msup><a:mrow><a:mi>e</a:mi></a:mrow><a:mrow><a:mo>−</a:mo></a:mrow></a:msup><a:mo stretchy="false">→</a:mo><a:mi>nOCH</a:mi></a:mrow></a:math> (where nOCH denotes non-open charm hadrons) with improved precision at center-of-mass (c.m.) energies from 3.645 to … We report the measurement of the inclusive cross sections for <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:msup><a:mrow><a:mi>e</a:mi></a:mrow><a:mrow><a:mo>+</a:mo></a:mrow></a:msup><a:msup><a:mrow><a:mi>e</a:mi></a:mrow><a:mrow><a:mo>−</a:mo></a:mrow></a:msup><a:mo stretchy="false">→</a:mo><a:mi>nOCH</a:mi></a:mrow></a:math> (where nOCH denotes non-open charm hadrons) with improved precision at center-of-mass (c.m.) energies from 3.645 to 3.871 GeV. We observe three resonances: <d:math xmlns:d="http://www.w3.org/1998/Math/MathML" display="inline"><d:mrow><d:mi mathvariant="script">R</d:mi><d:mo stretchy="false">(</d:mo><d:mn>3760</d:mn><d:mo stretchy="false">)</d:mo></d:mrow></d:math>, <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:mi mathvariant="script">R</i:mi><i:mo stretchy="false">(</i:mo><i:mn>3780</i:mn><i:mo stretchy="false">)</i:mo></i:math>, and <n:math xmlns:n="http://www.w3.org/1998/Math/MathML" display="inline"><n:mi mathvariant="script">R</n:mi><n:mo stretchy="false">(</n:mo><n:mn>3810</n:mn><n:mo stretchy="false">)</n:mo></n:math> with significances of <s:math xmlns:s="http://www.w3.org/1998/Math/MathML" display="inline"><s:mn>8.1</s:mn><s:mi>σ</s:mi></s:math>, <u:math xmlns:u="http://www.w3.org/1998/Math/MathML" display="inline"><u:mn>13.7</u:mn><u:mi>σ</u:mi></u:math>, and <w:math xmlns:w="http://www.w3.org/1998/Math/MathML" display="inline"><w:mn>8.8</w:mn><w:mi>σ</w:mi></w:math>, respectively. The <y:math xmlns:y="http://www.w3.org/1998/Math/MathML" display="inline"><y:mi mathvariant="script">R</y:mi><y:mo stretchy="false">(</y:mo><y:mn>3810</y:mn><y:mo stretchy="false">)</y:mo></y:math> state is observed for the first time, while the <db:math xmlns:db="http://www.w3.org/1998/Math/MathML" display="inline"><db:mi mathvariant="script">R</db:mi><db:mo stretchy="false">(</db:mo><db:mn>3760</db:mn><db:mo stretchy="false">)</db:mo></db:math> and <ib:math xmlns:ib="http://www.w3.org/1998/Math/MathML" display="inline"><ib:mi mathvariant="script">R</ib:mi><ib:mo stretchy="false">(</ib:mo><ib:mn>3780</ib:mn><ib:mo stretchy="false">)</ib:mo></ib:math> states are observed for the first time in the nOCH cross sections. Two sets of resonance parameters describe the energy-dependent line shape of the cross sections well. In set I [set II], the <nb:math xmlns:nb="http://www.w3.org/1998/Math/MathML" display="inline"><nb:mi mathvariant="script">R</nb:mi><nb:mo stretchy="false">(</nb:mo><nb:mn>3810</nb:mn><nb:mo stretchy="false">)</nb:mo></nb:math> state has mass (<sb:math xmlns:sb="http://www.w3.org/1998/Math/MathML" display="inline"><sb:mrow><sb:mn>3805.7</sb:mn><sb:mo>±</sb:mo><sb:mn>1.1</sb:mn><sb:mo>±</sb:mo><sb:mn>2.7</sb:mn></sb:mrow></sb:math>) <ub:math xmlns:ub="http://www.w3.org/1998/Math/MathML" display="inline"><ub:mrow><ub:mo stretchy="false">[</ub:mo><ub:mo stretchy="false">(</ub:mo><ub:mn>3805.7</ub:mn><ub:mo>±</ub:mo><ub:mn>1.1</ub:mn><ub:mo>±</ub:mo><ub:mn>2.7</ub:mn><ub:mo stretchy="false">)</ub:mo><ub:mo stretchy="false">]</ub:mo><ub:mtext> </ub:mtext><ub:mtext> </ub:mtext><ub:mi>MeV</ub:mi><ub:mo>/</ub:mo><ub:msup><ub:mrow><ub:mi>c</ub:mi></ub:mrow><ub:mrow><ub:mn>2</ub:mn></ub:mrow></ub:msup></ub:mrow></ub:math>, total width (<ac:math xmlns:ac="http://www.w3.org/1998/Math/MathML" display="inline"><ac:mrow><ac:mn>11.6</ac:mn><ac:mo>±</ac:mo><ac:mn>2.9</ac:mn><ac:mo>±</ac:mo><ac:mn>1.9</ac:mn></ac:mrow></ac:math>) <cc:math xmlns:cc="http://www.w3.org/1998/Math/MathML" display="inline"><cc:mrow><cc:mo stretchy="false">[</cc:mo><cc:mo stretchy="false">(</cc:mo><cc:mn>11.5</cc:mn><cc:mo>±</cc:mo><cc:mn>2.8</cc:mn><cc:mo>±</cc:mo><cc:mn>1.9</cc:mn><cc:mo stretchy="false">)</cc:mo><cc:mo stretchy="false">]</cc:mo><cc:mtext> </cc:mtext><cc:mtext> </cc:mtext><cc:mi>MeV</cc:mi></cc:mrow></cc:math>, and an electronic width multiplied by the nOCH decay branching fraction of (<ic:math xmlns:ic="http://www.w3.org/1998/Math/MathML" display="inline"><ic:mrow><ic:mn>10.9</ic:mn><ic:mo>±</ic:mo><ic:mn>3.8</ic:mn><ic:mo>±</ic:mo><ic:mn>2.5</ic:mn></ic:mrow></ic:math>) <kc:math xmlns:kc="http://www.w3.org/1998/Math/MathML" display="inline"><kc:mrow><kc:mo stretchy="false">[</kc:mo><kc:mo stretchy="false">(</kc:mo><kc:mn>11.0</kc:mn><kc:mo>±</kc:mo><kc:mn>3.4</kc:mn><kc:mo>±</kc:mo><kc:mn>2.5</kc:mn><kc:mo stretchy="false">)</kc:mo><kc:mo stretchy="false">]</kc:mo><kc:mtext> </kc:mtext><kc:mtext> </kc:mtext><kc:mi>eV</kc:mi></kc:mrow></kc:math>. In addition, we measure the branching fractions <qc:math xmlns:qc="http://www.w3.org/1998/Math/MathML" display="inline"><qc:mrow><qc:mi mathvariant="script">B</qc:mi><qc:mo stretchy="false">[</qc:mo><qc:mi mathvariant="script">R</qc:mi><qc:mo stretchy="false">(</qc:mo><qc:mn>3760</qc:mn><qc:mo stretchy="false">)</qc:mo><qc:mo stretchy="false">→</qc:mo><qc:mi>nOCH</qc:mi><qc:mo stretchy="false">]</qc:mo><qc:mo>=</qc:mo><qc:mo stretchy="false">(</qc:mo><qc:mn>25.2</qc:mn><qc:mo>±</qc:mo><qc:mn>16.1</qc:mn><qc:mo>±</qc:mo><qc:mn>30.4</qc:mn><qc:mo stretchy="false">)</qc:mo><qc:mo>%</qc:mo><qc:mo stretchy="false">[</qc:mo><qc:mo stretchy="false">(</qc:mo><qc:mn>6.4</qc:mn><qc:mo>±</qc:mo><qc:mn>4.8</qc:mn><qc:mo>±</qc:mo><qc:mn>7.7</qc:mn><qc:mo stretchy="false">)</qc:mo><qc:mo>%</qc:mo><qc:mo stretchy="false">]</qc:mo></qc:mrow></qc:math> and <fd:math xmlns:fd="http://www.w3.org/1998/Math/MathML" display="inline"><fd:mrow><fd:mi mathvariant="script">B</fd:mi><fd:mo stretchy="false">[</fd:mo><fd:mi mathvariant="script">R</fd:mi><fd:mo stretchy="false">(</fd:mo><fd:mn>3780</fd:mn><fd:mo stretchy="false">)</fd:mo><fd:mo stretchy="false">→</fd:mo><fd:mi>nOCH</fd:mi><fd:mo stretchy="false">]</fd:mo><fd:mo>=</fd:mo><fd:mo stretchy="false">(</fd:mo><fd:mn>12.3</fd:mn><fd:mo>±</fd:mo><fd:mn>6.6</fd:mn><fd:mo>±</fd:mo><fd:mn>8.3</fd:mn><fd:mo stretchy="false">)</fd:mo><fd:mo>%</fd:mo><fd:mo stretchy="false">[</fd:mo><fd:mo stretchy="false">(</fd:mo><fd:mn>10.4</fd:mn><fd:mo>±</fd:mo><fd:mn>4.8</fd:mn><fd:mo>±</fd:mo><fd:mn>7.0</fd:mn><fd:mo stretchy="false">)</fd:mo><fd:mo>%</fd:mo><fd:mo stretchy="false">]</fd:mo></fd:mrow></fd:math> for the first time. The <ud:math xmlns:ud="http://www.w3.org/1998/Math/MathML" display="inline"><ud:mi mathvariant="script">R</ud:mi><ud:mo stretchy="false">(</ud:mo><ud:mn>3760</ud:mn><ud:mo stretchy="false">)</ud:mo></ud:math> state can be interpreted as an open-charm (OC) molecular state, but containing a simple four-quark state component. The <zd:math xmlns:zd="http://www.w3.org/1998/Math/MathML" display="inline"><zd:mi mathvariant="script">R</zd:mi><zd:mo stretchy="false">(</zd:mo><zd:mn>3810</zd:mn><zd:mo stretchy="false">)</zd:mo></zd:math> state can be interpreted as a hadrocharmonium state. Published by the American Physical Society 2024
Using <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:mo stretchy="false">(</a:mo><a:mn>2712.4</a:mn><a:mo>±</a:mo><a:mn>14.3</a:mn><a:mo stretchy="false">)</a:mo><a:mo>×</a:mo><a:msup><a:mrow><a:mn>10</a:mn></a:mrow><a:mrow><a:mn>6</a:mn></a:mrow></a:msup></a:mrow></a:math> <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mrow><e:mi>ψ</e:mi><e:mo stretchy="false">(</e:mo><e:mn>3686</e:mn><e:mo stretchy="false">)</e:mo></e:mrow></e:math> events collected with the BESIII detector operating at the BEPCII collider, we search for the hadronic transition <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" … Using <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:mo stretchy="false">(</a:mo><a:mn>2712.4</a:mn><a:mo>±</a:mo><a:mn>14.3</a:mn><a:mo stretchy="false">)</a:mo><a:mo>×</a:mo><a:msup><a:mrow><a:mn>10</a:mn></a:mrow><a:mrow><a:mn>6</a:mn></a:mrow></a:msup></a:mrow></a:math> <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mrow><e:mi>ψ</e:mi><e:mo stretchy="false">(</e:mo><e:mn>3686</e:mn><e:mo stretchy="false">)</e:mo></e:mrow></e:math> events collected with the BESIII detector operating at the BEPCII collider, we search for the hadronic transition <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:msub><i:mi>h</i:mi><i:mi>c</i:mi></i:msub><i:mo stretchy="false">→</i:mo><i:msup><i:mi>π</i:mi><i:mo>+</i:mo></i:msup><i:msup><i:mi>π</i:mi><i:mo>−</i:mo></i:msup><i:mi>J</i:mi><i:mo>/</i:mo><i:mi>ψ</i:mi></i:math> via <l:math xmlns:l="http://www.w3.org/1998/Math/MathML" display="inline"><l:mi>ψ</l:mi><l:mo stretchy="false">(</l:mo><l:mn>3686</l:mn><l:mo stretchy="false">)</l:mo><l:mo stretchy="false">→</l:mo><l:msup><l:mi>π</l:mi><l:mn>0</l:mn></l:msup><l:msub><l:mi>h</l:mi><l:mi>c</l:mi></l:msub></l:math>. No significant signal is observed. We set the most stringent upper limits to date on the branching fractions <q:math xmlns:q="http://www.w3.org/1998/Math/MathML" display="inline"><q:mi mathvariant="script">B</q:mi><q:mo stretchy="false">(</q:mo><q:mi>ψ</q:mi><q:mo stretchy="false">(</q:mo><q:mn>3686</q:mn><q:mo stretchy="false">)</q:mo><q:mo stretchy="false">→</q:mo><q:msup><q:mi>π</q:mi><q:mn>0</q:mn></q:msup><q:msub><q:mi>h</q:mi><q:mi>c</q:mi></q:msub><q:mo stretchy="false">)</q:mo><q:mo>×</q:mo><q:mi mathvariant="script">B</q:mi><q:mo stretchy="false">(</q:mo><q:msub><q:mi>h</q:mi><q:mi>c</q:mi></q:msub><q:mo stretchy="false">→</q:mo><q:msup><q:mi>π</q:mi><q:mo>+</q:mo></q:msup><q:msup><q:mi>π</q:mi><q:mo>−</q:mo></q:msup><q:mi>J</q:mi><q:mo>/</q:mo><q:mi>ψ</q:mi><q:mo stretchy="false">)</q:mo></q:math> and <cb:math xmlns:cb="http://www.w3.org/1998/Math/MathML" display="inline"><cb:mi mathvariant="script">B</cb:mi><cb:mo stretchy="false">(</cb:mo><cb:msub><cb:mi>h</cb:mi><cb:mi>c</cb:mi></cb:msub><cb:mo stretchy="false">→</cb:mo><cb:msup><cb:mi>π</cb:mi><cb:mo>+</cb:mo></cb:msup><cb:msup><cb:mi>π</cb:mi><cb:mo>−</cb:mo></cb:msup><cb:mi>J</cb:mi><cb:mo>/</cb:mo><cb:mi>ψ</cb:mi><cb:mo stretchy="false">)</cb:mo></cb:math> at the 90% confidence level, which are determined to be <ib:math xmlns:ib="http://www.w3.org/1998/Math/MathML" display="inline"><ib:mn>6.7</ib:mn><ib:mo>×</ib:mo><ib:msup><ib:mn>10</ib:mn><ib:mrow><ib:mo>−</ib:mo><ib:mn>7</ib:mn></ib:mrow></ib:msup></ib:math> and <kb:math xmlns:kb="http://www.w3.org/1998/Math/MathML" display="inline"><kb:mn>9.4</kb:mn><kb:mo>×</kb:mo><kb:msup><kb:mn>10</kb:mn><kb:mrow><kb:mo>−</kb:mo><kb:mn>4</kb:mn></kb:mrow></kb:msup></kb:math>, respectively. Published by the American Physical Society 2024
Using $(2712\pm14)\times10^6$ $\psi(3686)$ events collected with the BESIII detector, we perform the first amplitude analysis of the radiative decay $\psi(3686)\to \gamma K_S^0 K_S^0$ within the mass region $M_{K_S^0 K_S^0 }<2.8$ … Using $(2712\pm14)\times10^6$ $\psi(3686)$ events collected with the BESIII detector, we perform the first amplitude analysis of the radiative decay $\psi(3686)\to \gamma K_S^0 K_S^0$ within the mass region $M_{K_S^0 K_S^0 }<2.8$ GeV/$c^2$. Employing a one-channel K-matrix approach for the description of the dynamics of the $K^0_S K^0_S$ system, the data sample is well described with four poles for the $f_0$-wave and three poles for the $f_2$-wave. The determined pole positions are consistent with those of well-established resonance states. The observed $f_0$ and $f_{2}$ states are found to be qualitatively consistent with those produced in radiative $J/\psi$ decays, indicating the similarity between the two charmonium states in their radiative decays.
Using $(2712\pm14)\times10^6$ $\psi(3686)$ events collected with the BESIII detector, we perform the first amplitude analysis of the radiative decay $\psi(3686)\to \gamma K_S^0 K_S^0$ within the mass region $M_{K_S^0 K_S^0 }<2.8$ … Using $(2712\pm14)\times10^6$ $\psi(3686)$ events collected with the BESIII detector, we perform the first amplitude analysis of the radiative decay $\psi(3686)\to \gamma K_S^0 K_S^0$ within the mass region $M_{K_S^0 K_S^0 }<2.8$ GeV/$c^2$. Employing a one-channel K-matrix approach for the description of the dynamics of the $K^0_S K^0_S$ system, the data sample is well described with four poles for the $f_0$-wave and three poles for the $f_2$-wave. The determined pole positions are consistent with those of well-established resonance states. The observed $f_0$ and $f_{2}$ states are found to be qualitatively consistent with those produced in radiative $J/\psi$ decays, indicating the similarity between the two charmonium states in their radiative decays.
Using <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:mo stretchy="false">(</a:mo><a:mn>2712.4</a:mn><a:mo>±</a:mo><a:mn>14.3</a:mn><a:mo stretchy="false">)</a:mo><a:mo>×</a:mo><a:msup><a:mrow><a:mn>10</a:mn></a:mrow><a:mrow><a:mn>6</a:mn></a:mrow></a:msup></a:mrow></a:math> <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mrow><e:mi>ψ</e:mi><e:mo stretchy="false">(</e:mo><e:mn>3686</e:mn><e:mo stretchy="false">)</e:mo></e:mrow></e:math> events collected with the BESIII detector operating at the BEPCII collider, we search for the hadronic transition <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" … Using <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:mo stretchy="false">(</a:mo><a:mn>2712.4</a:mn><a:mo>±</a:mo><a:mn>14.3</a:mn><a:mo stretchy="false">)</a:mo><a:mo>×</a:mo><a:msup><a:mrow><a:mn>10</a:mn></a:mrow><a:mrow><a:mn>6</a:mn></a:mrow></a:msup></a:mrow></a:math> <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mrow><e:mi>ψ</e:mi><e:mo stretchy="false">(</e:mo><e:mn>3686</e:mn><e:mo stretchy="false">)</e:mo></e:mrow></e:math> events collected with the BESIII detector operating at the BEPCII collider, we search for the hadronic transition <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:msub><i:mi>h</i:mi><i:mi>c</i:mi></i:msub><i:mo stretchy="false">→</i:mo><i:msup><i:mi>π</i:mi><i:mo>+</i:mo></i:msup><i:msup><i:mi>π</i:mi><i:mo>−</i:mo></i:msup><i:mi>J</i:mi><i:mo>/</i:mo><i:mi>ψ</i:mi></i:math> via <l:math xmlns:l="http://www.w3.org/1998/Math/MathML" display="inline"><l:mi>ψ</l:mi><l:mo stretchy="false">(</l:mo><l:mn>3686</l:mn><l:mo stretchy="false">)</l:mo><l:mo stretchy="false">→</l:mo><l:msup><l:mi>π</l:mi><l:mn>0</l:mn></l:msup><l:msub><l:mi>h</l:mi><l:mi>c</l:mi></l:msub></l:math>. No significant signal is observed. We set the most stringent upper limits to date on the branching fractions <q:math xmlns:q="http://www.w3.org/1998/Math/MathML" display="inline"><q:mi mathvariant="script">B</q:mi><q:mo stretchy="false">(</q:mo><q:mi>ψ</q:mi><q:mo stretchy="false">(</q:mo><q:mn>3686</q:mn><q:mo stretchy="false">)</q:mo><q:mo stretchy="false">→</q:mo><q:msup><q:mi>π</q:mi><q:mn>0</q:mn></q:msup><q:msub><q:mi>h</q:mi><q:mi>c</q:mi></q:msub><q:mo stretchy="false">)</q:mo><q:mo>×</q:mo><q:mi mathvariant="script">B</q:mi><q:mo stretchy="false">(</q:mo><q:msub><q:mi>h</q:mi><q:mi>c</q:mi></q:msub><q:mo stretchy="false">→</q:mo><q:msup><q:mi>π</q:mi><q:mo>+</q:mo></q:msup><q:msup><q:mi>π</q:mi><q:mo>−</q:mo></q:msup><q:mi>J</q:mi><q:mo>/</q:mo><q:mi>ψ</q:mi><q:mo stretchy="false">)</q:mo></q:math> and <cb:math xmlns:cb="http://www.w3.org/1998/Math/MathML" display="inline"><cb:mi mathvariant="script">B</cb:mi><cb:mo stretchy="false">(</cb:mo><cb:msub><cb:mi>h</cb:mi><cb:mi>c</cb:mi></cb:msub><cb:mo stretchy="false">→</cb:mo><cb:msup><cb:mi>π</cb:mi><cb:mo>+</cb:mo></cb:msup><cb:msup><cb:mi>π</cb:mi><cb:mo>−</cb:mo></cb:msup><cb:mi>J</cb:mi><cb:mo>/</cb:mo><cb:mi>ψ</cb:mi><cb:mo stretchy="false">)</cb:mo></cb:math> at the 90% confidence level, which are determined to be <ib:math xmlns:ib="http://www.w3.org/1998/Math/MathML" display="inline"><ib:mn>6.7</ib:mn><ib:mo>×</ib:mo><ib:msup><ib:mn>10</ib:mn><ib:mrow><ib:mo>−</ib:mo><ib:mn>7</ib:mn></ib:mrow></ib:msup></ib:math> and <kb:math xmlns:kb="http://www.w3.org/1998/Math/MathML" display="inline"><kb:mn>9.4</kb:mn><kb:mo>×</kb:mo><kb:msup><kb:mn>10</kb:mn><kb:mrow><kb:mo>−</kb:mo><kb:mn>4</kb:mn></kb:mrow></kb:msup></kb:math>, respectively. Published by the American Physical Society 2024
Using data samples with an integrated luminosity of <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mn>22.42</a:mn><a:mtext> </a:mtext><a:mtext> </a:mtext><a:msup><a:mi>fb</a:mi><a:mrow><a:mo>−</a:mo><a:mn>1</a:mn></a:mrow></a:msup></a:math> collected by the BESIII detector operating at the BEPCII storage ring, we measure the cross sections of … Using data samples with an integrated luminosity of <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mn>22.42</a:mn><a:mtext> </a:mtext><a:mtext> </a:mtext><a:msup><a:mi>fb</a:mi><a:mrow><a:mo>−</a:mo><a:mn>1</a:mn></a:mrow></a:msup></a:math> collected by the BESIII detector operating at the BEPCII storage ring, we measure the cross sections of the <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:msup><c:mi>e</c:mi><c:mo>+</c:mo></c:msup><c:msup><c:mi>e</c:mi><c:mo>−</c:mo></c:msup><c:mo stretchy="false">→</c:mo><c:mi>η</c:mi><c:mi>J</c:mi><c:mo>/</c:mo><c:mi>ψ</c:mi></c:math> process at center-of-mass energies from 3.808 to 4.951 GeV. Three structures are observed in the line shape of the measured cross sections. A maximum-likelihood fit with <f:math xmlns:f="http://www.w3.org/1998/Math/MathML" display="inline"><f:mi>ψ</f:mi><f:mo stretchy="false">(</f:mo><f:mn>4040</f:mn><f:mo stretchy="false">)</f:mo></f:math>, two additional resonances, and a nonresonant component are performed. The mass and width of the first additional state are <j:math xmlns:j="http://www.w3.org/1998/Math/MathML" display="inline"><j:mo stretchy="false">(</j:mo><j:mn>4219.7</j:mn><j:mo>±</j:mo><j:mn>2.5</j:mn><j:mo>±</j:mo><j:mn>4.5</j:mn><j:mo stretchy="false">)</j:mo><j:mtext> </j:mtext><j:mtext> </j:mtext><j:mi>MeV</j:mi><j:mo>/</j:mo><j:msup><j:mi>c</j:mi><j:mn>2</j:mn></j:msup></j:math> and <n:math xmlns:n="http://www.w3.org/1998/Math/MathML" display="inline"><n:mo stretchy="false">(</n:mo><n:mn>80.7</n:mn><n:mo>±</n:mo><n:mn>4.4</n:mn><n:mo>±</n:mo><n:mn>1.4</n:mn><n:mo stretchy="false">)</n:mo><n:mtext> </n:mtext><n:mtext> </n:mtext><n:mi>MeV</n:mi></n:math>, respectively, consistent with the <r:math xmlns:r="http://www.w3.org/1998/Math/MathML" display="inline"><r:mi>ψ</r:mi><r:mo stretchy="false">(</r:mo><r:mn>4230</r:mn><r:mo stretchy="false">)</r:mo></r:math>. For the second state, the mass and width are <v:math xmlns:v="http://www.w3.org/1998/Math/MathML" display="inline"><v:mo stretchy="false">(</v:mo><v:mn>4386</v:mn><v:mo>±</v:mo><v:mn>13</v:mn><v:mo>±</v:mo><v:mn>17</v:mn><v:mo stretchy="false">)</v:mo><v:mtext> </v:mtext><v:mtext> </v:mtext><v:mi>MeV</v:mi><v:mo>/</v:mo><v:msup><v:mi>c</v:mi><v:mn>2</v:mn></v:msup></v:math> and <z:math xmlns:z="http://www.w3.org/1998/Math/MathML" display="inline"><z:mo stretchy="false">(</z:mo><z:mn>177</z:mn><z:mo>±</z:mo><z:mn>32</z:mn><z:mo>±</z:mo><z:mn>13</z:mn><z:mo stretchy="false">)</z:mo><z:mtext> </z:mtext><z:mtext> </z:mtext><z:mi>MeV</z:mi></z:math>, respectively, consistent with the <db:math xmlns:db="http://www.w3.org/1998/Math/MathML" display="inline"><db:mi>ψ</db:mi><db:mo stretchy="false">(</db:mo><db:mn>4360</db:mn><db:mo stretchy="false">)</db:mo></db:math>. The first uncertainties are statistical, and the second ones are systematic. The statistical significance of <hb:math xmlns:hb="http://www.w3.org/1998/Math/MathML" display="inline"><hb:mi>ψ</hb:mi><hb:mo stretchy="false">(</hb:mo><hb:mn>4040</hb:mn><hb:mo stretchy="false">)</hb:mo></hb:math> is <lb:math xmlns:lb="http://www.w3.org/1998/Math/MathML" display="inline"><lb:mn>8.0</lb:mn><lb:mi>σ</lb:mi></lb:math> and those for <nb:math xmlns:nb="http://www.w3.org/1998/Math/MathML" display="inline"><nb:mi>ψ</nb:mi><nb:mo stretchy="false">(</nb:mo><nb:mn>4230</nb:mn><nb:mo stretchy="false">)</nb:mo></nb:math> and <rb:math xmlns:rb="http://www.w3.org/1998/Math/MathML" display="inline"><rb:mi>ψ</rb:mi><rb:mo stretchy="false">(</rb:mo><rb:mn>4360</rb:mn><rb:mo stretchy="false">)</rb:mo></rb:math> are more than <vb:math xmlns:vb="http://www.w3.org/1998/Math/MathML" display="inline"><vb:mn>10.0</vb:mn><vb:mi>σ</vb:mi></vb:math>. Published by the American Physical Society 2024
We report the measurement of the inclusive cross sections for <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:msup><a:mrow><a:mi>e</a:mi></a:mrow><a:mrow><a:mo>+</a:mo></a:mrow></a:msup><a:msup><a:mrow><a:mi>e</a:mi></a:mrow><a:mrow><a:mo>−</a:mo></a:mrow></a:msup><a:mo stretchy="false">→</a:mo><a:mi>nOCH</a:mi></a:mrow></a:math> (where nOCH denotes non-open charm hadrons) with improved precision at center-of-mass (c.m.) energies from 3.645 to … We report the measurement of the inclusive cross sections for <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mrow><a:msup><a:mrow><a:mi>e</a:mi></a:mrow><a:mrow><a:mo>+</a:mo></a:mrow></a:msup><a:msup><a:mrow><a:mi>e</a:mi></a:mrow><a:mrow><a:mo>−</a:mo></a:mrow></a:msup><a:mo stretchy="false">→</a:mo><a:mi>nOCH</a:mi></a:mrow></a:math> (where nOCH denotes non-open charm hadrons) with improved precision at center-of-mass (c.m.) energies from 3.645 to 3.871 GeV. We observe three resonances: <d:math xmlns:d="http://www.w3.org/1998/Math/MathML" display="inline"><d:mrow><d:mi mathvariant="script">R</d:mi><d:mo stretchy="false">(</d:mo><d:mn>3760</d:mn><d:mo stretchy="false">)</d:mo></d:mrow></d:math>, <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" display="inline"><i:mi mathvariant="script">R</i:mi><i:mo stretchy="false">(</i:mo><i:mn>3780</i:mn><i:mo stretchy="false">)</i:mo></i:math>, and <n:math xmlns:n="http://www.w3.org/1998/Math/MathML" display="inline"><n:mi mathvariant="script">R</n:mi><n:mo stretchy="false">(</n:mo><n:mn>3810</n:mn><n:mo stretchy="false">)</n:mo></n:math> with significances of <s:math xmlns:s="http://www.w3.org/1998/Math/MathML" display="inline"><s:mn>8.1</s:mn><s:mi>σ</s:mi></s:math>, <u:math xmlns:u="http://www.w3.org/1998/Math/MathML" display="inline"><u:mn>13.7</u:mn><u:mi>σ</u:mi></u:math>, and <w:math xmlns:w="http://www.w3.org/1998/Math/MathML" display="inline"><w:mn>8.8</w:mn><w:mi>σ</w:mi></w:math>, respectively. The <y:math xmlns:y="http://www.w3.org/1998/Math/MathML" display="inline"><y:mi mathvariant="script">R</y:mi><y:mo stretchy="false">(</y:mo><y:mn>3810</y:mn><y:mo stretchy="false">)</y:mo></y:math> state is observed for the first time, while the <db:math xmlns:db="http://www.w3.org/1998/Math/MathML" display="inline"><db:mi mathvariant="script">R</db:mi><db:mo stretchy="false">(</db:mo><db:mn>3760</db:mn><db:mo stretchy="false">)</db:mo></db:math> and <ib:math xmlns:ib="http://www.w3.org/1998/Math/MathML" display="inline"><ib:mi mathvariant="script">R</ib:mi><ib:mo stretchy="false">(</ib:mo><ib:mn>3780</ib:mn><ib:mo stretchy="false">)</ib:mo></ib:math> states are observed for the first time in the nOCH cross sections. Two sets of resonance parameters describe the energy-dependent line shape of the cross sections well. In set I [set II], the <nb:math xmlns:nb="http://www.w3.org/1998/Math/MathML" display="inline"><nb:mi mathvariant="script">R</nb:mi><nb:mo stretchy="false">(</nb:mo><nb:mn>3810</nb:mn><nb:mo stretchy="false">)</nb:mo></nb:math> state has mass (<sb:math xmlns:sb="http://www.w3.org/1998/Math/MathML" display="inline"><sb:mrow><sb:mn>3805.7</sb:mn><sb:mo>±</sb:mo><sb:mn>1.1</sb:mn><sb:mo>±</sb:mo><sb:mn>2.7</sb:mn></sb:mrow></sb:math>) <ub:math xmlns:ub="http://www.w3.org/1998/Math/MathML" display="inline"><ub:mrow><ub:mo stretchy="false">[</ub:mo><ub:mo stretchy="false">(</ub:mo><ub:mn>3805.7</ub:mn><ub:mo>±</ub:mo><ub:mn>1.1</ub:mn><ub:mo>±</ub:mo><ub:mn>2.7</ub:mn><ub:mo stretchy="false">)</ub:mo><ub:mo stretchy="false">]</ub:mo><ub:mtext> </ub:mtext><ub:mtext> </ub:mtext><ub:mi>MeV</ub:mi><ub:mo>/</ub:mo><ub:msup><ub:mrow><ub:mi>c</ub:mi></ub:mrow><ub:mrow><ub:mn>2</ub:mn></ub:mrow></ub:msup></ub:mrow></ub:math>, total width (<ac:math xmlns:ac="http://www.w3.org/1998/Math/MathML" display="inline"><ac:mrow><ac:mn>11.6</ac:mn><ac:mo>±</ac:mo><ac:mn>2.9</ac:mn><ac:mo>±</ac:mo><ac:mn>1.9</ac:mn></ac:mrow></ac:math>) <cc:math xmlns:cc="http://www.w3.org/1998/Math/MathML" display="inline"><cc:mrow><cc:mo stretchy="false">[</cc:mo><cc:mo stretchy="false">(</cc:mo><cc:mn>11.5</cc:mn><cc:mo>±</cc:mo><cc:mn>2.8</cc:mn><cc:mo>±</cc:mo><cc:mn>1.9</cc:mn><cc:mo stretchy="false">)</cc:mo><cc:mo stretchy="false">]</cc:mo><cc:mtext> </cc:mtext><cc:mtext> </cc:mtext><cc:mi>MeV</cc:mi></cc:mrow></cc:math>, and an electronic width multiplied by the nOCH decay branching fraction of (<ic:math xmlns:ic="http://www.w3.org/1998/Math/MathML" display="inline"><ic:mrow><ic:mn>10.9</ic:mn><ic:mo>±</ic:mo><ic:mn>3.8</ic:mn><ic:mo>±</ic:mo><ic:mn>2.5</ic:mn></ic:mrow></ic:math>) <kc:math xmlns:kc="http://www.w3.org/1998/Math/MathML" display="inline"><kc:mrow><kc:mo stretchy="false">[</kc:mo><kc:mo stretchy="false">(</kc:mo><kc:mn>11.0</kc:mn><kc:mo>±</kc:mo><kc:mn>3.4</kc:mn><kc:mo>±</kc:mo><kc:mn>2.5</kc:mn><kc:mo stretchy="false">)</kc:mo><kc:mo stretchy="false">]</kc:mo><kc:mtext> </kc:mtext><kc:mtext> </kc:mtext><kc:mi>eV</kc:mi></kc:mrow></kc:math>. In addition, we measure the branching fractions <qc:math xmlns:qc="http://www.w3.org/1998/Math/MathML" display="inline"><qc:mrow><qc:mi mathvariant="script">B</qc:mi><qc:mo stretchy="false">[</qc:mo><qc:mi mathvariant="script">R</qc:mi><qc:mo stretchy="false">(</qc:mo><qc:mn>3760</qc:mn><qc:mo stretchy="false">)</qc:mo><qc:mo stretchy="false">→</qc:mo><qc:mi>nOCH</qc:mi><qc:mo stretchy="false">]</qc:mo><qc:mo>=</qc:mo><qc:mo stretchy="false">(</qc:mo><qc:mn>25.2</qc:mn><qc:mo>±</qc:mo><qc:mn>16.1</qc:mn><qc:mo>±</qc:mo><qc:mn>30.4</qc:mn><qc:mo stretchy="false">)</qc:mo><qc:mo>%</qc:mo><qc:mo stretchy="false">[</qc:mo><qc:mo stretchy="false">(</qc:mo><qc:mn>6.4</qc:mn><qc:mo>±</qc:mo><qc:mn>4.8</qc:mn><qc:mo>±</qc:mo><qc:mn>7.7</qc:mn><qc:mo stretchy="false">)</qc:mo><qc:mo>%</qc:mo><qc:mo stretchy="false">]</qc:mo></qc:mrow></qc:math> and <fd:math xmlns:fd="http://www.w3.org/1998/Math/MathML" display="inline"><fd:mrow><fd:mi mathvariant="script">B</fd:mi><fd:mo stretchy="false">[</fd:mo><fd:mi mathvariant="script">R</fd:mi><fd:mo stretchy="false">(</fd:mo><fd:mn>3780</fd:mn><fd:mo stretchy="false">)</fd:mo><fd:mo stretchy="false">→</fd:mo><fd:mi>nOCH</fd:mi><fd:mo stretchy="false">]</fd:mo><fd:mo>=</fd:mo><fd:mo stretchy="false">(</fd:mo><fd:mn>12.3</fd:mn><fd:mo>±</fd:mo><fd:mn>6.6</fd:mn><fd:mo>±</fd:mo><fd:mn>8.3</fd:mn><fd:mo stretchy="false">)</fd:mo><fd:mo>%</fd:mo><fd:mo stretchy="false">[</fd:mo><fd:mo stretchy="false">(</fd:mo><fd:mn>10.4</fd:mn><fd:mo>±</fd:mo><fd:mn>4.8</fd:mn><fd:mo>±</fd:mo><fd:mn>7.0</fd:mn><fd:mo stretchy="false">)</fd:mo><fd:mo>%</fd:mo><fd:mo stretchy="false">]</fd:mo></fd:mrow></fd:math> for the first time. The <ud:math xmlns:ud="http://www.w3.org/1998/Math/MathML" display="inline"><ud:mi mathvariant="script">R</ud:mi><ud:mo stretchy="false">(</ud:mo><ud:mn>3760</ud:mn><ud:mo stretchy="false">)</ud:mo></ud:math> state can be interpreted as an open-charm (OC) molecular state, but containing a simple four-quark state component. The <zd:math xmlns:zd="http://www.w3.org/1998/Math/MathML" display="inline"><zd:mi mathvariant="script">R</zd:mi><zd:mo stretchy="false">(</zd:mo><zd:mn>3810</zd:mn><zd:mo stretchy="false">)</zd:mo></zd:math> state can be interpreted as a hadrocharmonium state. Published by the American Physical Society 2024
Using $(10087\pm44)\times10^{6}$ $J/ψ$ events collected with the BESIII detector at the BEPCII $e^+e^-$ storage ring at the center-of-mass energy of $\sqrt{s}=3.097~\rm{GeV}$, we present a search for the rare semi-muonic charmonium … Using $(10087\pm44)\times10^{6}$ $J/ψ$ events collected with the BESIII detector at the BEPCII $e^+e^-$ storage ring at the center-of-mass energy of $\sqrt{s}=3.097~\rm{GeV}$, we present a search for the rare semi-muonic charmonium decay $J/ψ\to D^{-}μ^{+}ν_μ+c.c.$. Since no significant signal is observed, we set an upper limit of the branching fraction to be $\mathcal{B}(J/ψ\to D^{-}μ^{+}ν_μ+c.c.)&lt;5.6\times10^{-7}$ at $90\%$ confidence level. This is the first search for the weak decay of charmonium with a muon in the final state.
We perform an analysis of the ${D}^{+}\ensuremath{\rightarrow}{K}_{S}^{0}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{0}$ Dalitz plot using a data set of $2.92\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ of ${e}^{+}{e}^{\ensuremath{-}}$ collisions at the $\ensuremath{\psi}(3770)$ mass accumulated by the BESIII experiment, in … We perform an analysis of the ${D}^{+}\ensuremath{\rightarrow}{K}_{S}^{0}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{0}$ Dalitz plot using a data set of $2.92\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ of ${e}^{+}{e}^{\ensuremath{-}}$ collisions at the $\ensuremath{\psi}(3770)$ mass accumulated by the BESIII experiment, in which 166694 candidate events are selected with a background of 15.1%. The Dalitz plot is found to be well represented by a combination of six quasi-two-body decay channels [${K}_{S}^{0}{\ensuremath{\rho}}^{+}$, ${K}_{S}^{0}\ensuremath{\rho}(1450{)}^{+}$, ${\overline{K}}^{*0}{\ensuremath{\pi}}^{+}$, ${\overline{K}}_{0}(1430{)}^{0}{\ensuremath{\pi}}^{+}$, $\overline{K}(1680{)}^{0}{\ensuremath{\pi}}^{+}$, ${\overline{\ensuremath{\kappa}}}^{0}{\ensuremath{\pi}}^{+}$] plus a small nonresonant component. Using the fit fractions from this analysis, partial branching ratios are updated with higher precision than previous measurements.
We propose a scheme to implement the Deutsch's algorithm through non-degenerate four-wave mixing process. By employing photon topological charges of optical vortices, we demonstrate the ability to realize the necessary … We propose a scheme to implement the Deutsch's algorithm through non-degenerate four-wave mixing process. By employing photon topological charges of optical vortices, we demonstrate the ability to realize the necessary four logic gates for all balanced and constant functions. We also analyze the feasibility of the proposed scheme on the single photon level.
We propose a scheme to distinguish the orbital angular momentum state of the Laguerre-Gaussian (LG) beam based on the electromagnetically induced transparency modulated by a microwave field in atomic ensembles. … We propose a scheme to distinguish the orbital angular momentum state of the Laguerre-Gaussian (LG) beam based on the electromagnetically induced transparency modulated by a microwave field in atomic ensembles. We show that the transverse phase variation of a probe beam with the LG mode can be mapped into the spatial intensity distribution due to the change of atomic coherence caused by the microwave. The proposal may provide a useful tool for studying higher-dimensional quantum information based on atomic ensembles.
A spin polarization separation of reflected light is observed, when a linearly polarized Gaussian beam impinges on an air-glass interface at Brewster angle. In the far-field zone, spins of photons … A spin polarization separation of reflected light is observed, when a linearly polarized Gaussian beam impinges on an air-glass interface at Brewster angle. In the far-field zone, spins of photons are oppositely polarized in two regions along the direction perpendicular to incident plane. Spatial scale of this polarization is related to optical properties of dielectric and can be controlled by experimental configuration. We believe that this study benefits the manipulation of spins of photons and the development of methods for investigating optical properties of materials.
A maximum likelihood method is used to deal with the combined estimation of multi-measurements of a branching ratio, where each result can be presented as an upper limit. The joint … A maximum likelihood method is used to deal with the combined estimation of multi-measurements of a branching ratio, where each result can be presented as an upper limit. The joint likelihood function is constructed using observed spectra of all measurements and the combined estimate of the branching ratio is obtained by maximizing the joint likelihood function. The Bayesian credible interval or upper limit of the combined branching ratio, is given in cases both with and without inclusion of systematic error.
The cross sections of ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{h}_{c}$ at center-of-mass energies from 3.896 to 4.600 GeV are measured using data samples collected with the BESIII detector operating at the Beijing Electron Positron Collider. … The cross sections of ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{h}_{c}$ at center-of-mass energies from 3.896 to 4.600 GeV are measured using data samples collected with the BESIII detector operating at the Beijing Electron Positron Collider. The cross sections are found to be of the same order of magnitude as those of ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}J/\ensuremath{\psi}$ and ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\psi}(2S)$, but the line shape is inconsistent with the $Y$ states observed in the latter two modes. Two structures are observed in the ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{h}_{c}$ cross sections around 4.22 and $4.39\text{ }\text{ }\mathrm{GeV}/{c}^{2}$, which we call $Y(4220)$ and $Y(4390)$, respectively. A fit with a coherent sum of two Breit-Wigner functions results in a mass of $(4218.{4}_{\ensuremath{-}4.5}^{+5.5}\ifmmode\pm\else\textpm\fi{}0.9)\text{ }\text{ }\mathrm{MeV}/{c}^{2}$ and a width of $(66.{0}_{\ensuremath{-}8.3}^{+12.3}\ifmmode\pm\else\textpm\fi{}0.4)\text{ }\text{ }\mathrm{MeV}$ for the $Y(4220)$, and a mass of $(4391.{5}_{\ensuremath{-}6.8}^{+6.3}\ifmmode\pm\else\textpm\fi{}1.0)\text{ }\text{ }\mathrm{MeV}/{c}^{2}$ and a width of $(139.{5}_{\ensuremath{-}20.6}^{+16.2}\ifmmode\pm\else\textpm\fi{}0.6)\text{ }\text{ }\mathrm{MeV}$ for the $Y(4390)$, where the first uncertainties are statistical and the second ones systematic. The statistical significance of $Y(4220)$ and $Y(4390)$ is $10\ensuremath{\sigma}$ over one structure assumption.
Hadronic transitions of ${\ensuremath{\chi}}_{cJ}\ensuremath{\rightarrow}{\ensuremath{\eta}}_{c}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}$ ($J=0$, 1, 2) are searched for using a sample of $1.06\ifmmode\times\else\texttimes\fi{}{10}^{8}$ $\ensuremath{\psi}(3686)$ events collected with the BESIII detector at the BEPCII storage ring. The ${\ensuremath{\eta}}_{c}$ is … Hadronic transitions of ${\ensuremath{\chi}}_{cJ}\ensuremath{\rightarrow}{\ensuremath{\eta}}_{c}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}$ ($J=0$, 1, 2) are searched for using a sample of $1.06\ifmmode\times\else\texttimes\fi{}{10}^{8}$ $\ensuremath{\psi}(3686)$ events collected with the BESIII detector at the BEPCII storage ring. The ${\ensuremath{\eta}}_{c}$ is reconstructed with ${K}_{S}^{0}{K}^{\ifmmode\pm\else\textpm\fi{}}{\ensuremath{\pi}}^{\ensuremath{\mp}}$ and ${K}^{+}{K}^{\ensuremath{-}}{\ensuremath{\pi}}^{0}$ final states. No signals are observed in any of the three ${\ensuremath{\chi}}_{cJ}$ states in either ${\ensuremath{\eta}}_{c}$ decay mode. At the 90% confidence level, the upper limits are determined to be $\mathcal{B}({\ensuremath{\chi}}_{c0}\ensuremath{\rightarrow}{\ensuremath{\eta}}_{c}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}})<0.07%$, $\mathcal{B}({\ensuremath{\chi}}_{c1}\ensuremath{\rightarrow}{\ensuremath{\eta}}_{c}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}})<0.32%$, and $\mathcal{B}({\ensuremath{\chi}}_{c2}\ensuremath{\rightarrow}{\ensuremath{\eta}}_{c}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}})<0.54%$. The upper limit of $\mathcal{B}({\ensuremath{\chi}}_{c1}\ensuremath{\rightarrow}{\ensuremath{\eta}}_{c}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}})$ is lower than the existing theoretical prediction by almost an order of magnitude. The branching fractions of ${\ensuremath{\chi}}_{cJ}\ensuremath{\rightarrow}{K}_{S}^{0}{K}^{\ifmmode\pm\else\textpm\fi{}}{\ensuremath{\pi}}^{\ensuremath{\mp}}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}$, ${K}^{+}{K}^{\ensuremath{-}}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\pi}}^{0}$, $\ensuremath{\omega}{K}^{+}{K}^{\ensuremath{-}}$, and $\ensuremath{\phi}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\pi}}^{0}$ $J=0$, 1, 2) are measured for the first time.
We present a measurement of the cross section of the process e(+)e(-)-->pi(+)pi(-)psi(2S) from threshold up to 8 GeV center-of-mass energy using events containing initial-state radiation, produced at the SLAC PEP-II … We present a measurement of the cross section of the process e(+)e(-)-->pi(+)pi(-)psi(2S) from threshold up to 8 GeV center-of-mass energy using events containing initial-state radiation, produced at the SLAC PEP-II e(+)e(-) storage rings. The study is based on 298 fb(-1) of data recorded with the BABAR detector. A structure is observed in the cross section not far above threshold, near 4.32 GeV. We also investigate the compatibility of this structure with the Y(4260) previously reported by this experiment.
The cross section for ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\psi}(2S)$ between threshold and $\sqrt{s}=5.5\text{ }\text{ }\mathrm{GeV}$ is measured using $673\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ of data on and off the $\ensuremath{\Upsilon}(4S)$ resonance collected with the Belle detector … The cross section for ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\psi}(2S)$ between threshold and $\sqrt{s}=5.5\text{ }\text{ }\mathrm{GeV}$ is measured using $673\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ of data on and off the $\ensuremath{\Upsilon}(4S)$ resonance collected with the Belle detector at KEKB. Two resonant structures are observed in the ${\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}\ensuremath{\psi}(2S)$ invariant-mass distribution, one at $4361\ifmmode\pm\else\textpm\fi{}9\ifmmode\pm\else\textpm\fi{}9\text{ }\text{ }\mathrm{MeV}/{c}^{2}$ with a width of $74\ifmmode\pm\else\textpm\fi{}15\ifmmode\pm\else\textpm\fi{}10\text{ }\text{ }\mathrm{MeV}/{c}^{2}$, and another at $4664\ifmmode\pm\else\textpm\fi{}11\ifmmode\pm\else\textpm\fi{}5\text{ }\text{ }\mathrm{MeV}/{c}^{2}$ with a width of $48\ifmmode\pm\else\textpm\fi{}15\ifmmode\pm\else\textpm\fi{}3\text{ }\text{ }\mathrm{MeV}/{c}^{2}$, if the mass spectrum is parametrized with the coherent sum of two Breit-Wigner functions. These values do not match those of any of the known charmonium states.
The cross section for the process $e^+e^-\to \pi^+\pi^-J/\psi$ is measured precisely at center-of-mass energies from 3.77 to 4.60~GeV using 9~fb$^{-1}$ of data collected with the BESIII detector operating at the … The cross section for the process $e^+e^-\to \pi^+\pi^-J/\psi$ is measured precisely at center-of-mass energies from 3.77 to 4.60~GeV using 9~fb$^{-1}$ of data collected with the BESIII detector operating at the BEPCII storage ring. Two resonant structures are observed in a fit to the cross section. The first resonance has a mass of $(4222.0\pm 3.1\pm 1.4)$~MeV/$c^2$ and a width of $(44.1\pm 4.3\pm 2.0)$~MeV, while the second one has a mass of $(4320.0\pm 10.4 \pm 7.0)$~MeV/$c^2$ and a width of $(101.4^{+25.3}_{-19.7}\pm 10.2)$~MeV, where the first errors are statistical and second ones are systematic. The first resonance agrees with the $Y(4260)$ resonance reported by previous experiments. The precision of its resonant parameters is improved significantly. The second resonance is observed in $e^+e^-\to \pi^+\pi^-J/\psi$ for the first time. The statistical significance of this resonance is estimated to be larger than $7.6\sigma$. The mass and width of the second resonance agree with the $Y(4360)$ resonance reported by the $BABAR$ and Belle experiments within errors. Finally, the $Y(4008)$ resonance previously observed by the Belle experiment is not confirmed in the description of the BESIII data.
We study initial-state radiation events, ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\gamma}}_{\mathrm{ISR}}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}J/\ensuremath{\psi}$, with data collected with the BABAR detector. We observe an accumulation of events near $4.26\text{ }\text{ }\mathrm{GeV}/{c}^{2}$ in the invariant-mass spectrum of ${\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}J/\ensuremath{\psi}$. Fits … We study initial-state radiation events, ${e}^{+}{e}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\gamma}}_{\mathrm{ISR}}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}J/\ensuremath{\psi}$, with data collected with the BABAR detector. We observe an accumulation of events near $4.26\text{ }\text{ }\mathrm{GeV}/{c}^{2}$ in the invariant-mass spectrum of ${\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}J/\ensuremath{\psi}$. Fits to the mass spectrum indicate that a broad resonance with a mass of about $4.26\text{ }\text{ }\mathrm{GeV}/{c}^{2}$ is required to describe the observed structure. The presence of additional narrow resonances cannot be excluded. The fitted width of the broad resonance is 50 to $90\text{ }\text{ }\mathrm{MeV}/{c}^{2}$, depending on the fit hypothesis.
In this paper, we experimentally demonstrate that the photon pairs generated via spontaneous four-wave mixing in a hot atomic ensemble are in entangled orbital angular momentum (OAM) states. The density … In this paper, we experimentally demonstrate that the photon pairs generated via spontaneous four-wave mixing in a hot atomic ensemble are in entangled orbital angular momentum (OAM) states. The density matrix of the OAM states of the photon pair is reconstructed, from which the fidelity to the maximal entangled state and the concurrence are estimated to be about 0.89 and 0.81, respectively. The experimental result also suggests the existence of the entanglement concerned with spatial degrees of freedom between the hot atomic ensemble and the Stokes photon.
We study the process ee+ e- → π+ π- J/ψ at a center-of-mass energy of 4.260 GeV using a 525 pb(-1) data sample collected with the BESIII detector operating at … We study the process ee+ e- → π+ π- J/ψ at a center-of-mass energy of 4.260 GeV using a 525 pb(-1) data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross section is measured to be (62.9±1.9±3.7) pb, consistent with the production of the Y(4260). We observe a structure at around 3.9 GeV/c2 in the π(±)J/ψ mass spectrum, which we refer to as the Z(c)(3900). If interpreted as a new particle, it is unusual in that it carries an electric charge and couples to charmonium. A fit to the π(±)J/ψ invariant mass spectrum, neglecting interference, results in a mass of (3899.0±3.6±4.9) MeV/c2 and a width of (46±10±20) MeV. Its production ratio is measured to be R = (σ(e+ e- → π(±)Z(c)(3900)(∓) → π+ π- J/ψ)/σ(e+ e- → π+ π- J/ψ)) = (21.5±3.3±7.5)%. In all measurements the first errors are statistical and the second are systematic.
We present the new coherent exclusive exponentiation (CEEX), the older exclusive exponentiation (EEX), and the semianalytical inclusive exponentiation (IEX) for the process ${e}^{\ensuremath{-}}{e}^{+}\ensuremath{\rightarrow}f\overline{f}+n\ensuremath{\gamma},$ where $f=\ensuremath{\mu},\ensuremath{\tau},d,u,s,c,b,$ which are valid for center-of-mass … We present the new coherent exclusive exponentiation (CEEX), the older exclusive exponentiation (EEX), and the semianalytical inclusive exponentiation (IEX) for the process ${e}^{\ensuremath{-}}{e}^{+}\ensuremath{\rightarrow}f\overline{f}+n\ensuremath{\gamma},$ where $f=\ensuremath{\mu},\ensuremath{\tau},d,u,s,c,b,$ which are valid for center-of-mass energies from the $\ensuremath{\tau}$ lepton threshold to 1 TeV, that is, for CERN LEP1, LEP2, the SLC, future linear colliders, and $b,c,\ensuremath{\tau}$ factories, etc. The approaches are based on Yennie-Frautschi-Suura exponentiation. In CEEX, the effects due to photon emission from initial beams and outgoing fermions are calculated in QED up to second order, including all interference effects. Electroweak corrections are included to first order, at the amplitude level. Beams can be polarized longitudinally and transversely, and all spin correlations are incorporated in an exact manner. The EEX is more primitive, lacks initial-final interferences, but it is valuable for testing the newer CEEX. The IEX provides us with a set of sophisticated semianalytical formulas for the total cross section and selected inclusive distributions, which are mainly used for cross-checks of the Monte Carlo results. We analyze numerical results at the Z peak, 189 GeV and 500 GeV for simple kinematical cuts (comparisons with inclusive exponentiation) and for realistic experimental cuts. The physical precision and technical precision are determined for the total cross section and for the charge asymmetry.
We present a high-precision QED calculation, with 0.1% theoretical accuracy, of two photon production in $e^+ e^-$ annihilation, as required by more and more accurate luminosity monitoring at flavour factories. … We present a high-precision QED calculation, with 0.1% theoretical accuracy, of two photon production in $e^+ e^-$ annihilation, as required by more and more accurate luminosity monitoring at flavour factories. The accuracy of the approach, which is based on the matching of exact next-to-leading order corrections with a QED Parton Shower algorithm, is demonstrated through a detailed analysis of the impact of the various sources of radiative corrections to the experimentally relevant observables. The calculation is implemented in the latest version of the event generator BabaYaga, available for precision simulations of photon pair production at $e^+ e^-$ colliders of moderately high energies.
Productions and decays of spin-singlet $S,P-$wave charmonium states, $\eta_{c}^{'}$ and $h_{c} (^{1}P_{1})$, in the $e^+ e^-$ annihilations are considered in the QCD multipole expansion with neglecting nonlocality in time coming … Productions and decays of spin-singlet $S,P-$wave charmonium states, $\eta_{c}^{'}$ and $h_{c} (^{1}P_{1})$, in the $e^+ e^-$ annihilations are considered in the QCD multipole expansion with neglecting nonlocality in time coming from the color-octet intermediate states. Our approximation is opposite to the Kuang-Yan's model. The results are $B (\psi^{'} \rightarrow h_{c} + \pi^{0}) \approx 0.3 \%$, $B ( \psi^{'} \rightarrow \eta^{'} + \gamma ) \approx 0.34 \%$, $\Gamma (\eta_{c}^{'} \rightarrow J/\psi + \gamma) \approx 0.26$ keV and $\Gamma (h_{c} \rightarrow J/\psi + \pi^{0}) \approx 2.5$ keV.
We consider the production and scattering amplitudes of heavy mesons in a situation, where there are two closely spaced narrow resonances, whose structure we refer to as a diresonance. Assuming … We consider the production and scattering amplitudes of heavy mesons in a situation, where there are two closely spaced narrow resonances, whose structure we refer to as a diresonance. Assuming strong overlapping of the resonances coupled to common channels, it is found, using the unitarity and analyticity constraints, that the production amplitudes by a weak source should have similar behavior with energy in different channels. In particular, the ratio of the coefficients for each pole contribution to the production amplitude is fixed at $\ensuremath{-}1$.
We study flavor changing processes $Υ\to B/{\bar B} X_s$ and $J/ψ\to D/{\bar D} X_u$ in the B factories and the Tau-Charm factories. In the standard model, these processes are predicted … We study flavor changing processes $Υ\to B/{\bar B} X_s$ and $J/ψ\to D/{\bar D} X_u$ in the B factories and the Tau-Charm factories. In the standard model, these processes are predicted to be unobservable, so they serve as a probe of the new physics. We first perform a model independent analysis, then examine the predictions of models; such as TopColor models, MSSM with R-parity violation and the two Higgs doublet model; for the branching ratios of $Υ\to B/{\bar B} X_s$ and $J/ψ\to D/{\bar D} X_u$ . We find that these branching ratios could be as large as $10^{-6}$ and $10^{-5}$ in the presence of new physics.
Tests are discussed to distinguish c cbar, hybrid charmonium and molecular interpretations of the narrow Belle resonance at 3872 MeV. Tests are discussed to distinguish c cbar, hybrid charmonium and molecular interpretations of the narrow Belle resonance at 3872 MeV.
Using $13.3\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ of ${e}^{+}{e}^{\ensuremath{-}}$ collision data taken in the $\ensuremath{\Upsilon}(1S\ensuremath{-}4S)$ region with the CLEO III detector at the CESR collider, a search has been made for the new … Using $13.3\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ of ${e}^{+}{e}^{\ensuremath{-}}$ collision data taken in the $\ensuremath{\Upsilon}(1S\ensuremath{-}4S)$ region with the CLEO III detector at the CESR collider, a search has been made for the new resonance $Y(4260)$ recently reported by the BABAR Collaboration. The production of $Y(4260)$ in initial state radiation (ISR), and its decay into ${\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}J/\ensuremath{\psi}$, are confirmed. A good quality fit to our data is obtained with a single resonance. We determine $M(Y(4260))=({4284}_{\ensuremath{-}16}^{+17}(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}4(\mathrm{syst}))\text{ }\text{ }\mathrm{MeV}/{c}^{2}$, $\ensuremath{\Gamma}(Y(4260))=({73}_{\ensuremath{-}25}^{+39}(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}5(\mathrm{syst}))\text{ }\text{ }\mathrm{MeV}/{c}^{2}$, and ${\ensuremath{\Gamma}}_{ee}(Y(4260))\ifmmode\times\else\texttimes\fi{}\mathcal{B}(Y(4260)\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}J/\ensuremath{\psi})=({8.9}_{\ensuremath{-}3.1}^{+3.9}(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}1.8(\mathrm{syst}))\text{ }\text{ }\mathrm{eV}/{c}^{2}$.
Polariton formalism is applied for studying the propagation of a probe field of light in a cloud of cold atoms influenced by two control laser beams of larger intensity. The … Polariton formalism is applied for studying the propagation of a probe field of light in a cloud of cold atoms influenced by two control laser beams of larger intensity. The laser beams couple resonantly three hyperfine atomic ground states to a common excited state thus forming a tripod configuration of the atomic energy levels involved. The first control beam can have an optical vortex with the intensity of the beam going to zero at the vortex core. The second control beam without a vortex ensures the loseless (adiabatic) propagation of the probe beam at a vortex core of the first control laser. We investigate the storage of the probe pulse into atomic coherences by switching off the control beams, as well as its subsequent retrieval by switching the control beams on. The optical vortex is transferred from the control to the probe fields during the storage or retrieval of the probe field. We analyze conditions for the vortex to be transferred efficiently to the regenerated probe beam and discuss possibilities of experimental implementation of the proposed scheme using atoms like rubidium or sodium.
In this paper, we report an experiment, which demonstrates computation of topological charges of two optical vortices via non-degenerate four-wave-mixing process. We show that the output signal beam carries orbital … In this paper, we report an experiment, which demonstrates computation of topological charges of two optical vortices via non-degenerate four-wave-mixing process. We show that the output signal beam carries orbital angular momentum which equals to the subtraction of the orbital angular momenta of the probe light and the backward pump light. The &#8312;&#8309;Rb atoms are used as the nonlinear medium, which transfer the orbital angular momenta of lights.
The recent observation of the hc is an important test of QCD calculations and provides constraints on models of quarkonium spectroscopy. In this contribution I discuss some of these implications … The recent observation of the hc is an important test of QCD calculations and provides constraints on models of quarkonium spectroscopy. In this contribution I discuss some of these implications and describe methods to search for the hc and hb via radiative transitions and other means.
We derive the semiclassical equation of motion for the wave packet of light taking into account the Berry curvature in momentum-space. This equation naturally describes the interplay between orbital and … We derive the semiclassical equation of motion for the wave packet of light taking into account the Berry curvature in momentum-space. This equation naturally describes the interplay between orbital and spin angular momenta, i.e., the conservation of the total angular momentum of light. This leads to the shift of wave-packet motion perpendicular to the gradient of the dielectric constant, i.e., the polarization-dependent Hall effect of light. An enhancement of this effect in photonic crystals is also proposed.
Valuable data on quarkonia (the bound states of a heavy quark $Q=c,b$ and the corresponding antiquark) have recently been provided by a variety of sources, mainly ${e}^{+}{e}^{\ensuremath{-}}$ collisions, but also … Valuable data on quarkonia (the bound states of a heavy quark $Q=c,b$ and the corresponding antiquark) have recently been provided by a variety of sources, mainly ${e}^{+}{e}^{\ensuremath{-}}$ collisions, but also hadronic interactions. This permits a thorough updating of the experimental and theoretical status of electromagnetic and strong transitions in quarkonia. The $Q\overline{Q}$ transitions to other $Q\overline{Q}$ states are discussed, with some reference to processes involving $Q\overline{Q}$ annihilation.
We show that the large corrections due to final state interactions (FSI) in the D^+\to \pi^-\pi^+\pi^+, D^+_s\to \pi^-\pi^+\pi^+, and D^+\to K^-\pi^+\pi^+ decays can be accounted for by invoking scattering amplitudes … We show that the large corrections due to final state interactions (FSI) in the D^+\to \pi^-\pi^+\pi^+, D^+_s\to \pi^-\pi^+\pi^+, and D^+\to K^-\pi^+\pi^+ decays can be accounted for by invoking scattering amplitudes in agreement with those derived from phase shifts studies. In this way, broad/overlapping resonances in S-waves are properly treated and the phase motions of the transition amplitudes are driven by the corresponding scattering matrix elements determined in many other experiments. This is an important step forward in resolving the puzzle of the FSI in these decays. We also discuss why the \sigma and \kappa resonances, hardly visible in scattering experiments, are much more prominent and clearly visible in these decays without destroying the agreement with the experimental \pi\pi and K\pi low energy S-wave phase shifts.
By assuming that $Y(4260)$ is a $D_1\bar D$ molecular state, we investigate some hidden-charm and charmed pair decay channels of $Y(4260)$ via intermediate $D_1\bar D$ meson loops with an effective … By assuming that $Y(4260)$ is a $D_1\bar D$ molecular state, we investigate some hidden-charm and charmed pair decay channels of $Y(4260)$ via intermediate $D_1\bar D$ meson loops with an effective Lagrangian approach. Through investigating the $\alpha$-dependence of branching ratios and ratios between different decay channels, we show that the intermediate $D_1 \bar D$ meson loops are crucial for driving these transitions of $Y(4260)$ studied here. The coupled channel effects turn out to be more important in $Y(4260) \to D^{*}\bar{D}^{*}$, which can be tested in the future experiments.
We derive an analytic expression for the linewidth of electromagnetically induced transparency (EIT) resonance in a Doppler-broadened system. It is shown here that for relatively low intensity of the driving … We derive an analytic expression for the linewidth of electromagnetically induced transparency (EIT) resonance in a Doppler-broadened system. It is shown here that for relatively low intensity of the driving field the EIT linewidth is proportional to the square root of intensity and is independent of the Doppler width, similar to the laser-induced line narrowing effect described by Feld and Javan. In the limit of high intensity we recover the usual power-broadening case where the EIT linewidth is proportional to the intensity and inversely proportional to the Doppler width.
We reveal an enhanced and switchable spin Hall effect (SHE) of light near Brewster angle on reflection both theoretically and experimentally. The obtained spin-dependent splitting reaches 3200nm near Brewster angle, … We reveal an enhanced and switchable spin Hall effect (SHE) of light near Brewster angle on reflection both theoretically and experimentally. The obtained spin-dependent splitting reaches 3200nm near Brewster angle, 50 times larger than the previous reported values in refraction. We find that the amplifying factor in week measurement is not a constant which is significantly different from that in refraction. As an analogy of SHE in electronic system, a switchable spin accumulation in SHE of light is detected. We were able to switch the direction of the spin accumulations by slightly adjusting the incident angle.
From December 2011 to May 2014, about 5 fb−1 of data were taken with the BESIII detector at center-of-mass energies between 3.810 GeV and 4.600 GeV to study the charmonium-like … From December 2011 to May 2014, about 5 fb−1 of data were taken with the BESIII detector at center-of-mass energies between 3.810 GeV and 4.600 GeV to study the charmonium-like states and higher excited charmonium states. The time-integrated luminosity of the collected data sample is measured to a precision of 1% by analyzing events produced by the large-angle Bhabha scattering process.
We have experimentally studied the propagation of two optical fields in a dense rubidium (Rb) gas in the case when an additional microwave field is coupled to the hyperfine levels … We have experimentally studied the propagation of two optical fields in a dense rubidium (Rb) gas in the case when an additional microwave field is coupled to the hyperfine levels of Rb atoms. The Rb energy levels form a close-$\ensuremath{\Lambda}$ three-level system coupled to the optical fields and the microwave field. It has been found that the maximum transmission of the probe field depends on the relative phase between the optical and the microwave fields. We have observed both constructive and destructive interferences in electromagnetically induced transparency. A simple theoretical model and a numerical simulation have been developed to explain the observed experimental results.
We report the transfer of phase structure, and in particular of orbital angular momentum, from near-infrared pump light to blue light generated in a four-wave-mixing process in 85Rb vapour. The … We report the transfer of phase structure, and in particular of orbital angular momentum, from near-infrared pump light to blue light generated in a four-wave-mixing process in 85Rb vapour. The intensity and phase profile of the two pump lasers at 780nm and 776nm, shaped by a spatial light modulator, influences the phase and intensity profile of light at 420nm which is generated in a subsequent coherent cascade. In particular we oberve that the phase profile associated with orbital angular momentum is transferred entirely from the pump light to the blue. Pumping with more complicated light profiles results in the excitation of spatial modes in the blue that depend strongly on phase-matching, thus demonstrating the parametric nature of the mode transfer. These results have implications on the inscription and storage of phase-information in atomic gases.
We report an experimental demonstration of quantum Deutsch's algorithm by using linear-optical system. By employing photon's polarization and spatial modes, we implement all balanced and constant functions for quantum computer. … We report an experimental demonstration of quantum Deutsch's algorithm by using linear-optical system. By employing photon's polarization and spatial modes, we implement all balanced and constant functions for quantum computer. The experimental system is very stable and the experimental data are excellent in accordance with the theoretical results.
We investigate the separability, nonlocality, and squeezing of the continuous-variable analog of the Werner state: a mixture of a pure two-mode squeezed vacuum state with local thermal radiations. Utilizing this … We investigate the separability, nonlocality, and squeezing of the continuous-variable analog of the Werner state: a mixture of a pure two-mode squeezed vacuum state with local thermal radiations. Utilizing this Werner state, coherent-state teleportation in the Braunstein-Kimble setup is discussed.
We report an experiment in which a light pulse is effectively decelerated and trapped in a vapor of Rb atoms, stored for a controlled period of time, and then released … We report an experiment in which a light pulse is effectively decelerated and trapped in a vapor of Rb atoms, stored for a controlled period of time, and then released on demand. We accomplish this "storage of light" by dynamically reducing the group velocity of the light pulse to zero, so that the coherent excitation of the light is reversibly mapped into a Zeeman (spin) coherence of the Rb vapor.
We study the Dalitz plot of the decay D(+)-->K(-)pi(+)pi(+) with a sample of 15090 events from Fermilab experiment E791. Modeling the decay amplitude as the coherent sum of known Kpi … We study the Dalitz plot of the decay D(+)-->K(-)pi(+)pi(+) with a sample of 15090 events from Fermilab experiment E791. Modeling the decay amplitude as the coherent sum of known Kpi resonances and a uniform nonresonant term, we do not obtain an acceptable fit. If we allow the mass and width of the K(*)(0)(1430) to float, we obtain values consistent with those from PDG but the chi(2) per degree of freedom of the fit is still unsatisfactory. A good fit is found when we allow for the presence of an additional scalar resonance, with mass 797+/-19+/-43 MeV/c(2) and width 410+/-43+/-87 MeV/c(2). The mass and width of the K(*)(0)(1430) become 1459+/-7+/-5 MeV/c(2) and 175+/-12+/-12 MeV/c(2), respectively. Our results provide new information on the scalar sector in hadron spectroscopy.
We present a scheme for creating and measuring entanglement between two double quantum dot charge qubits in a transport setup in which voltage pulses can modify system parameters. Detection of … We present a scheme for creating and measuring entanglement between two double quantum dot charge qubits in a transport setup in which voltage pulses can modify system parameters. Detection of entanglement is performed via the construction of a Bell inequality with current correlation measurements. An essential feature is the use of the internal dynamics of the qubits as the constituent electrons tunnel into the leads to give the single-particle rotations necessary for the Bell measurement.
Recently, the LHCb experiment announced 3.5σ evidence for direct CP violation in D0 decay by looking at the difference between ACP(D0 → K+K−) and ACP(D0 → π+π−). This is the … Recently, the LHCb experiment announced 3.5σ evidence for direct CP violation in D0 decay by looking at the difference between ACP(D0 → K+K−) and ACP(D0 → π+π−). This is the first evidence of CP violation in a charm system, which may indicate new physics beyond the Standard Model. Motivated by this measurement, we review rare processes in charmonium decay, especially, the weak decay, C or P violated decay, and lepton flavor violated decays. In case the new physics appears in charm sector, these rare decays of charmonium states will provide an opportunity to search for significant contributions from physics beyond the Standard Model. With huge J/ψ and ψ (2S) samples in BESIII experiment, the rare decays may be feasible.