Jessica Y. Bo

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Sparse Robust Regression for Explaining Classifiers 2019 Anton Björklund
Andreas Henelius
Emilia Oikarinen
K. T. S. Kallonen
Kai PuolamÀki
1
+ GLocalX - From Local to Global Explanations of Black Box AI Models 2021 Mattia Setzu
Riccardo Guidotti
Anna Monreale
Franco Turini
Dino Pedreschi
Fosca Giannotti
1
+ PDF Chat Show or suppress? Managing input uncertainty in machine learning model explanations 2021 Danding Wang
Wencan Zhang
Brian Y. Lim
1
+ PDF Chat What do we want from Explainable Artificial Intelligence (XAI)? – A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research 2021 Markus Langer
Daniel Oster
Timo Speith
Holger Hermanns
Lena KĂ€stner
Eva Schmidt
Andreas Sesing-Wagenpfeil
Kevin Baum
1
+ PDF Chat Interpretable machine learning: Fundamental principles and 10 grand challenges 2022 Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
1
+ PDF Chat To Trust or to Think 2021 Zana Buçinca
Maja Barbara Malaya
Krzysztof Z. Gajos
1
+ PDF Chat Manipulating and Measuring Model Interpretability 2021 Forough Poursabzi-Sangdeh
Daniel G. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna Wallach
1
+ PDF Chat Sensible AI: Re-imagining Interpretability and Explainability using Sensemaking Theory 2022 Harmanpreet Kaur
Eytan Adar
Éric Gilbert
Cliff Lampe
1
+ PDF Chat Why does my model fail? 2020 Ana Lučić
Hinda Haned
Maarten de Rijke
1
+ Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR 2017 Sandra Wachter
Brent Mittelstadt
Chris Russell
1
+ PDF Chat SLISEMAP: supervised dimensionality reduction through local explanations 2022 Anton Björklund
Jarmo MÀkelÀ
Kai PuolamÀki
1
+ "Help Me Help the AI": Understanding How Explainability Can Support Human-AI Interaction 2023 Sunnie Kim
Elizabeth Anne Watkins
Olga Russakovsky
Ruth Fong
AndrĂ©s Monroy‐HernĂĄndez
1